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Aim: Gestational diabetes mellitus (GDM) has been linked with adverse long-term health outcomes for
the fetus and mother. These effects may be mediated by epigenetic modifications. Materials & meth-
ods: Genome-wide RNA sequencing was performed in placental tissue and maternal blood in six GDM
and six non-GDM pregnancies. Promoter region DNA methylation was examined for selected genes and
correlated with gene expression to examine an epigenetic modulator mechanism. Results: Reductions of
mMRNA expression and increases in promoter methylation were observed for G6PD in GDM women, and
for genes encoding IGF-binding proteins in GDM-exposed placenta. Conclusion: GDM involves epigenetic
attenuation of G6PD, which may lead to hyperglycemia and oxidative stress, and the IGF-axis, which may
modulate fetal macrosomia.
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Changes in adult lifestyle are thought to be the main contributor to the rising prevalence of noncommunicable
diseases observed over the past decade [1]. However, events during early development may also play a crucial role in
the pathogenesis of chronic conditions [2]. The Developmental Origins of Health and Disease hypothesis suggests
that exposure to adverse prenatal and/or neonatal conditions may reprogram the fetus in order to ensure immediate
survival [3,4. However, these adaptions, thought to occur through epigenetic modifications, may enhance disease
risk later in life, including Type 2 diabetes (T2D) [s].

Gestational diabetes mellitus (GDM) has been suggested as an appropriate disease model for studying the impact
of the fetal environment on gene programming and future disease risk. Gestational diabetes is known to lead to fetal
macrosomia and it also increases risk in the offspring of developing obesity, metabolic syndrome, cardiovascular
complications and T2D in adult life. Women with GDM also have an increased risk of developing T2D later in
life (6-8]. The disease is characterized by high blood glucose levels that first develop during pregnancy and normalize
after parturition [9,10]. Although the clinical manifestations and potential implications of GDM for the mother and
fetus have been well characterized, the pathogenesis of GDM is still not fully understood [11,12].

The aim of the current study was to investigate the impact of GDM on gene regulation in fetal placental
tissue and in blood samples from mothers with GDM. Genes with altered transcription patterns, identified by
RNA sequencing, were selected for DNA methylation studies to assess alterations in the epigenome. Using this
methodology, we sought to identify complex regulatory changes associated with GDM that may impact fetal
(re)programming and give insights into the pathogenic processes involved in the development of GDM.
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Research design & methods

Participant selection

Participant recruitment and sample collection was performed under the umbrella of the Soweto First 1000 Days
Cohort [13]. Inclusion criteria were: black South African women over 18 years of age during the first trimester of
pregnancy, HIV negative, not taking any medication that may modulate blood glucose levels, not suffering from
any other diseases, nonsmokers and singleton pregnancies. Women who met the inclusion criteria were recruited
from the Developmental Pathways for Health Research Unit at Chris Hani Baragwanath Academic Hospital and
followed from their first trimester of pregnancy (<14 weeks) to delivery. Glucose tolerance was assessed using a
75 g oral glucose tolerance test (OGTT) performed at approximately 24-28 weeks’ gestation. The International
Association of the Diabetes and Pregnancy Study Groups (IADPSG) criteria were used to diagnose GDM [14].
Only women with female babies were recruited in order to eliminate sex-specific differences in placenta global gene
expression as an additional variable in this small study [15-18]. Once the sex of the baby was known, six women
with confirmed GDM and six healthy controls with normal glucose tolerance were selected. All study participants
provided written informed consent and the study was approved by the University of the Witwatersrand Human
Research Ethics Committee (Medical) (Ethics clearance no.: M130420).

Sample collection

Two tubes of whole blood were taken at 29-33 weeks’ gestation: one for DNA and one for RNA extraction. At the
time of delivery, the placenta of female babies was obtained and two 8-mm vertical placental punch biopsies were
taken within 1 h after birth. The biopsies were taken from the placental disc, avoiding the umbilical cord insertion
site and approximately 3 cm from the edge of the placenta. The direction of the punch biopsy was from maternal
to fetal side. One punch biopsy was used for RNA extraction and one was used for DNA extraction.

DNA & RNA isolation

DNA was extracted from whole blood samples following a salting out method [19] and from placental tissue using the
DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). Total RNA was extracted from whole blood following
the Tempus™ Spin RNA Isolation Kit Protocol (Applied Biosystems, Warrington, UK) and from placental tissue
using the RNeasy Mini Kit (Qiagen). A DNAse treatment step was included during the RNA extraction protocol
(Qiagen) and the RNA integrity number (RIN) for all RNA samples was determined using the Agilent 2100
Bioanalyzer (Agilent Technologies). The RIN values for all samples were above 8.

cDNA library preparation & RNA sequencing

The cDNA libraries were constructed with lllumina’s TruSeq stranded mRNA sample preparation kit. The cDNA
products were amplified and quality control of the libraries was done with the Agilent 2100 Bioanalyzer (Agilent
Technologies). The cDNA samples were indexed and pooled together in equal concentrations into six pools (4
samples per pool as follows: placenta—case, placenta—control, blood—case, blood—control). The blood and placenta
transcriptomes were sequenced at the Centre for Genomic Regulation (CRG) in Barcelona, Spain, with the HiSeq
2000 Illumina sequencing platform as paired-end reads of 75 bp.

RNA-sequence data analysis

The quality of the raw sequence reads was determined with the FastQC tool (Babraham Institute). Reads with a low
quality score <20 and reads shorter than 25 bp were removed. After trimming, the paired-end reads were aligned
to the human genome (version GRCh37/hg19) using TopHat v1.3.1 software 20. The UCSC hgl9 genome
sequence indexes and the GTF transcript annotation files provided by Illumina were used in the alignment. A
transcriptome index was built with a control pool and the same index was used for the other alignments. The
original alignment file was processed to measure transcript abundance using Cufflinks v1.0.3 software. The case
and control groups were compared for differential gene expression with Cuffdiff software [21,22]. In the differential
expression analysis, a q-value (a false discovery rate [FDR] corrected p-value) of <0.05 was considered statistically
significant. Only genes showing a large fold change (of >2 or <-2) between cases and controls were considered
for further analyses. The filtered list of genes (Supplementary Tables 1 & 2) were then run through pathway
and functional annotation analysis using PANTHER-v8.1 (Protein Analysis through Evolutionary Relationships)
Classification System and DAVID (Database for Annotation, Visualisation and Integrated Discovery). Pathway
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level analysis of gene expression data was performed by Gene Set Enrichment Analysis (GSEA) in PANTHER.
Using all of the above information, potential candidate genes were selected for validation.

Reverse transcription & qPCR

One microgram of total RNA was reverse transcribed into cDNA using SuperScriptIII (Invitrogen, CA, USA) and
random hexamers (Sigma-Aldrich, MO, USA). The qPCR reaction was set up using TagMan chemistry (Thermo-
Fisher Scientific, IL, USA) with primers and a probe designed to specifically target each gene. The qPCR runs were
performed on the ABI-7900HT Real-Time PCR machine (Applied Biosystems), in triplicate. Each run included
three housekeeping genes (RPLPO, ACTB and HPRTI), and the appropriate controls. The data generated were
analyzed using the Biogazelle software (relative quantification method). The normalized Cr values were used to
determine the fold change (A ACr) in gene expression between cases and controls. Statistical analysis was performed
using GraphPad Prism.

Promoter region methylation analysis of selected genes

The methylation status of selected CpG islands in the promoter region of the G6PD (CpG Island 115375), TKT
(CpG Island 110332), IGFBP-1 (CpG Island 113146), /GFBP-2 (CpG Island 108855) and /GFBP-6 (CpG Island
103158) genes were examined by methylation-specific PCR. This was performed following the EpiTect Methyl
IT PCR assay (Qiagen) procedure. Real-time PCR was carried out as per the manufacturer’s instructions (Qiagen)
on an ABI-7900HT Real-Time PCR machine (Applied Biosystems). Samples were analyzed as recommended by
the manufacturer (www.sabiosciences.com/dna_methylation_data_analysis.php). Comparisons of gene promoter
methylation levels between two groups (cases blood vs controls blood, cases placenta vs controls placenta; cases
blood vs cases placenta; controls blood vs controls placenta) were determined using the appropriate Student’s t-test.

Correlation analysis

In order to determine whether there is a correlation between the mRNA expression levels of G6PD, TKT, IGFBP-1,
IGFBP-2 and IGFBP-6 with other measured variables such as maternal glucose levels, maternal body mass index
and fetal birth weight, Spearman’s correlation analysis was performed using Intellectus Statistics.

Results

Clinical characteristics

The cases and controls differed for pre-pregnancy body mass index and weight gain, however, these values just failed
to reach statistical significance. The blood glucose levels at fasting and 1 h post oral glucose load were significantly
different between the cases and controls. The blood glucose levels at 2 h post-glucose load were not significantly
different between the two groups. All newborns were females and there was no significant difference for gestational
age at birth or birth weight between the GDM exposed and unexposed groups (Table 1).

Differential gene expression

The analysis of the blood dataset identified 1088 genes with a significant difference in expression between GDM
and normal glucose tolerance women, while in the exposed placentas, 1489 genes passed the significance threshold.
Further filtering of genes through gene ontology and enrichment analysis as well as an in-depth literature research
identifying genes linked to diabetes and/or glucose metabolism, was performed and reduced the list of potential
candidate genes to 60 for blood and 52 for placenta.

Pathway & functional analyses
The list of significantly differentially regulated genes in the blood (Supplementary Table 1) and placenta (Sup-
plementary Table 2) was sorted into gene ontology (GO) term categories for molecular function and biological
processes. The GO terms associated with the differentially regulated genes in the blood include a large percentage
annotated as ‘binding activity’ (39.7%) and ‘catalytic activity’ (34.5%). The most common GO terms associated
with the placental genes included ‘metabolic process’ (26.9%), ‘cellular process’ (25.8%), ‘developmental process’
(9.0%) and ‘immune system process’ (9.0%).

From the gene set enrichment analysis, the carbohydrate and NADP metabolic pathways were among those most
significantly enriched (fold enrichment of 48.62 and 21, respectively) in the blood and the five genes clustered
within these pathways were G6PD, TKT, ALDOA, PGLS and DCXR, all of which encode enzymes that function
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Table 1. Clinical characteristics of the study participants.

Maternal characteristics Mothers (whole blood samples)

Controls (n = 6) NGT Cases (n = 6) GDM p-value
Fasting glucose (>5.1 mmol/I) 41 5.2 0.003
1 h OGTTT (>10 mmol/l) 5.5 9.5 0.0001
2 h OGTTT (>8.5 mmol/l) 5.7 7.5 0.08
Age (years) 26.7 31.3 0.18
BMI (kg/m?) 30.8 37.9 0.06
Weight before pregnancy (kg) 86.7 87.0 0.21
Weight after pregnancy (kg) 94.8 98.3 0.17
Weight gain (kg) 8.1 1.4 0.052
Perinatal characteristics Fetuses (placental samples)

Controls (n = 6) Cases (n = 6) p-value
Gestational age at birth (weeks) 38.7 38.5 0.78
Birth weight (kg) 3.36 3.40 0.85
Length (cm) 49.5 45.0 0.41

Data are presented as mean +/- standard deviation. Variables were compared using Student’s nonpaired t-test.

TDone at approximately 24 to 28 weeks' gestation.

Bold font: p < 0.05; significant difference between cases and controls.

BMI: Body mass index; GDM: Gestational diabetes mellitus; HIV: Human immunodeficiency virus; NGT: Normal glucose tolerance; OGTT: Oral glucose tolerance test.

in the pentose phosphate pathway (PPP; Figure 1). In the placenta, the transmembrane receptor protein kinase
signaling pathway was enriched >100-fold (p = 0.00049) and the over-represented group of genes are /GFBP-1,
IGFBP-2 and IGFBP-6. The above-mentioned analyses reduced the list of genes to ten strong functional and
biological candidates from both the blood and placenta datasets. Table 2 lists the 20 genes for qPCR validation.

gPCR validation of RNA sequencing results

The ThermoFisher assays for each of the 20 selected genes are listed in Supplementary Table 3. The TagMan assays
were optimized and validation showed complete concordance of expression with the RNA-sequencing results for
all 20 selected genes (Figure 2A & B). We assessed the correlation between the FPKM values (obtained with RNA
sequencing) with their corresponding AACT values from the TagMan assays using Spearman correlation (Rs)
analysis. In the blood and placenta respectively, the linear regression analysis of the differentially expressed genes
provided Rs values of 0.9377 and 0.923, indicating a strong correlation between the two methods.

Promoter region methylation

From the 20 validated genes, five (G6PD, TK1, IGFBP-1, IGFBP-2 and IFGBP-6) were selected for promoter
region methylation analysis (Supplementary Figure 1). There was no significant alteration in promoter region
methylation for /GFBP-1, IGFBP-2 and IGFBP-6 in blood samples from GDM patients when compared with the
controls (p = 0.85; p = 0.91 and p = 0.11, respectively). However, the promoter regions of /GFBP-1 and IGFBP-2
in exposed placenta are significantly hypermethylated compared with the unexposed group (p < 0.0001 for both;
Figure 3C). For /IGFBP-6, there appears to be a trend toward increased promoter region methylation in the placenta
of the cases when compared with the controls but this was not statistically significant (p = 0.08; Figure 3C).

The level of G6PD promoter region methylation in both blood and placenta samples from cases was significantly
higher (p < 0.0001 for both) than in the controls (Figure 3C). The level of 7K7 promoter region methylation was
not significant between cases and controls in the blood or placenta (Figure 3C). For the /GFBPs, the methylation
levels were higher in the placenta than in the blood for both cases and controls. This is not the case for G6PD,
where the methylation levels are higher in the blood and placenta cases compared with controls (see above and
Figure 3C), and for 7KT, where methylation was not different between groups or tissues (Figure 3C).

Figure 3D plots the relationship between gene expression and promoter region methylation of the differentially
expressed genes. We observed a significant negative association between the level of promoter region methylation
and the magnitude of gene expression for /GFBP-1 and IGFBP-2, but not for /GFBP-6, in the placental samples
(Figure 3D). For all three genes, there is no association in the blood samples. There is a significant negative association
between G6PD mRNA expression and promoter region methylation in both the blood and placenta samples
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Figure 1. A schematic presentation of the pentose phosphate pathway highlighting the genes found to be differentially expressed
between gestational diabetes mellitus cases and control. The genes of interest are marked in red. The full names, gene symbol and their
location within the pentose phosphate pathway are shown. The bar charts within the figure represent the normalized gene expression
values (FPKM) of each gene in each individual case (in red) and control (in blue) sample.

FPKM: Fragments per Kilobase of transcript per Million mapped reads.

(Figure 3D). There is no significant association between mRNA expression and promoter region methylation for
TKT in the blood and placenta samples (Figure 3D). The heat map (Figure 4) illustrates the higher promoter region
methylation of /GFBP-1, IGFBP-2 and IGFBP-6 in the placenta exposed to GDM in utero in comparison to the
control samples. This figure also highlights the higher level of G6PD promoter region methylation in the women
who develop GDM in comparison to controls.

Relationship of mMRNA expression & promoter methylation with other measured variables

There was a significant negative correlation between G6°D mRNA expression in the blood and placenta with the
level of maternal glucose at fasting, 1 and 2 h post-glucose load (Table 3). We observed a significantly positive
correlation between G6PD promoter region methylation in both blood and placental tissues with maternal glucose
levels at fasting and at 1 h post-glucose load. For 7K7, significantly negative correlations were observed in the
blood between the level of mRNA expression and maternal glucose levels at fasting and at 1 h post-glucose load
but no significant correlation was observed between maternal glucose levels and mRNA expression levels for TKT
in the placenta (Table 3). No correlations were observed for blood or placental 7K7 gene methylation with any of
the blood glucose levels.

For the /GFBP, significant negative correlations were observed between the mRNA expression levels of /GFBP-1
in maternal blood with maternal glucose levels at fasting, 1- and 2 h post-glucose load (Table 3); and for /GFBP-2
at fasting and 1 h post-glucose load. No significant correlation was observed between mRNA expression levels
and maternal glucose levels 2 h post-glucose load for /GFBP-2. No significant correlation was observed between
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Table 2. Top ranked differentially expressed genes in gestational diabetes mellitus compared to non-gestational

diabetes mellitus (RNA-sequencing analysis).

Gene.id Gene symbol Gene name Relative fold p-value Gene enrichment (fold enrichment;

ENSG00000 change significance)

BLOOD

105221 AKT2 RAC-beta serine/threonine-protein kinase ~ -2.28 0.0005 No result

149925 ALDOA Fructose-bisphosphate aldolase A -2.26 <0.0001 NADP metabolic process (48.62; 0.014)
Carbohydrate metabolic process (21.02;
0.0003)

185347 C140rf80 Uncharacterized protein C140rf80 -2.13 <0.0001 No result

169738 DCXR Xylulose reductase -2.18 0.0003 NADP metabolic process (48.62; 0.014)
Carbohydrate metabolic process (21.02;
0.0003)

160211 G6PD Gluscose-6-phosphate dehydrogenase -3.09 <0.0001 NADP metabolic process (48.62; 0.014)
Carbohydrate metabolic process (21.02;
0.0003)

105723 GSK3A Glycogen synthase kinase-3 a 3.20 0.0005 No result

53918 KCNQ1 Potassium voltage-gated channel subfam -2.02 0.0004 No result

KQT member

130313 PGLS 6-phosphogluconolactonase -2.52 0.0003 NADP metabolic process (48.62; 0.014)
Carbohydrate metabolic process (21.02;
0.0003)

146678 IGFBP-1 IGF-binding protein 1 -2.31 0.0003 No result

163931 TKT Transketolase -2.94 <0.0001 NADP metabolic process (48.62; 0.014)
Carbohydrate metabolic process (21.02;
0.0003)

PLACENTA

163464 CXCR1 C-X-C chemokine receptor type 1 -3.37 <0.0001 Cellular response to interleukin-8 (7.67;
0.045)

180871 CXCR2 C-X-C chemokine receptor type 2 -2.35 <0.0001 Cellular response to interleukin-8 (7.67;
0.045)

160211 G6PD Glucose-6-phosphate dehydrogenase -2.68 <0.0001 NADP metabolic process (3.56; 0.01)
Carbohydrate metabolic process (5.67;
0.003)

146678 IGFBP-1 IGF-binding protein 1 -4.74 <0.0001 Transmembrane receptor protein tyrosine
kinase signaling pathway (>100; 0.00049)

115457 IGFBP-2 IGF-binding protein 2 -2.65 <0.0001 Transmembrane receptor protein tyrosine
kinase signaling pathway (>100; 0.00049)

211896 IGFBP-6 IGF-binding protein 6 -2.92 0.0007 Transmembrane receptor protein tyrosine
kinase signaling pathway (>100; 0.00049)

110347 MMP12 Macrophage metalloelastase 2.03 0.0005 No result

151948 GLT1D1 Glycosyltransferase 1 domain-containing -2.87 0.0001 No result

protein 1

197421 GGT3P Putative gamma-glutamyltranspeptidase 3  8.01 0.0002 No result

163931 TKT Transketolase -2.56 <0.0001 NADP metabolic process (3.56; 0.01)
Carbohydrate metabolic process (5.67;
0.003)

Student’s t-test used to determine p-value; significance taken as p < 0.05. These genes were also selected as potential candidates due to gene ontology and enrichment analysis
as well as extensive literature search to identify involvement in metabolic disease.
Relative fold change: GDM relative to controls and normalized to housekeeping genes. No result: the gene is not associated with any annotated pathway.

maternal glucose levels and mRNA expression levels for /GFBP-6 (Table 3). For the placenta, significant negative
correlations were observed between the mRNA expression levels of /GFBP-1 and maternal glucose levels at fasting,
1- and 2 h post-glucose load; for /GFBP-2 at fasting and 1 h post-glucose load and for /GFBP-6 at fasting and at
1 h post-glucose load (Table 3). With regard to methylation, no significant correlation was observed for promoter
region methylation of /GFBP-1, IGFBP-2 and IGFBP-6 in maternal blood with maternal glucose levels. However,
in the placenta, there was a significant positive correlation between promoter region methylation and maternal
glucose levels for /IGFBP-1, IGFBP-2 and IGFBP-6 at fasting and at 1 h post-glucose load. No significant association
was observed between promoter region methylation and glucose levels at 2 h for any of the /GFBPs (Table 3).
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Figure 2. RT-gPCR validation of RNA-seq results using TagMan probes. Validation of RNA-seq results was performed
in the 20 most promising candidate genes (listed in Table 2) (A) Fold change comparison between RNA-seq and
RT-qPCR fold change results from the same RNA samples in blood samples (B) Fold change comparison between
RNA-seq and RT-qPCR fold change results from the same RNA samples in placenta samples. Fold changes represented
gene expression changes in each group relative to the control group.

There was a tendency for G6PD and TKT mRNA expression in the mother’s blood to fall with birthweight,
but these relationships just missed statistical significance. However, in the placenta there was a significant negative
correlation observed between G6PD mRNA expression and birthweight but a positive correlation with methylation.
No significant relationships were observed for placental 7K 7 expression or methylation with birthweight.

There was a significant positive correlation of /GFBP-1 mRNA expression in maternal blood with birthweight.
There was no significant correlation observed for /GFBP-2 and /GFBP-6 in maternal blood with birthweight. There
was a significant positive correlation of birthweight with /GFBP-1, IGFBP-2 and IGFBP-6 mRNA levels in the
placenta (Table 3). With reference to methylation, no significant correlation was observed between methylation of

the /GFBPs in the blood with birthweight. However, there was a significant positive correlation of the methylation
of the IGFBPs (IGFBP-1, IGFBP-2 and IGFBP-6) in the placenta with birthweight.
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Figure 3. Differentially expressed genes in the RNA-seq blood and placenta dataset. (A) Venn diagram of tissue specific and overlapping
differentially expressed genes from the filtered datasets. (B) From these datasets, five genes were differentially expressed in both the
blood and placenta. They were chosen for promoter region methylation analysis. G6PD, TKT and IGFBP-1 were statistically significantly
downregulated in blood and placenta while IGFBP-2 and IGFBP-6 were downregulated in both datasets but this only reached levels of
significance in the placenta. (C) Graphic visualization of the relationship between gene expression and promoter region methylation. The
columns represent the expression data and black lines represent the methylation data. (D) Spearman’s correlation rank for each gene was

performed using Intellectus Statistics in order to identify a significant correlation between relative mRNA expression of the gene and
promoter region methylation between the cases and control samples of each dataset.
FPKM: Fragments per Kilobase of transcript per Million mapped reads.
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Figure 3. Differentially expressed genes in the RNA-seq blood and placenta dataset (cont.). (A) Venn diagram of tissue specific and
overlapping differentially expressed genes from the filtered datasets. (B) From these datasets, five genes were differentially expressed in
both the blood and placenta. They were chosen for promoter region methylation analysis. G6PD, TKT and IGFBP-1 were statistically
significantly downregulated in blood and placenta while IGFBP-2 and IGFBP-6 were downregulated in both datasets but this only reached
levels of significance in the placenta. (C) Graphic visualization of the relationship between gene expression and promoter region
methylation. The columns represent the expression data and black lines represent the methylation data. (D) Spearman’s correlation rank
for each gene was performed using Intellectus Statistics in order to identify a significant correlation between relative mRNA expression of
the gene and promoter region methylation between the cases and control samples of each dataset.

FPKM: Fragments per Kilobase of transcript per Million mapped reads.
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Figure 4. Heat map for blood and placental methylation data for the five most promising candidate genes. The heat
map compares the methylation status of five genes in the genomic DNA of blood and placental samples using the
EpiTect Methyl Il Assays. The results further illustrate the correlation of increased methylation in G6PD for both blood
and placenta cases and for IGFBPs in the placenta. Red blocks indicate high methylation and green blocks indicate
low (or no) methylation.
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Table 3. Summary of the correlation analysis of gene expression and methylation with maternal glucose levels, birth

weight and maternal BMI in maternal blood and fetal placental tissue.

Maternal blood

Gene Expression vs maternal glucose levels Methylation vs maternal glucose levels Expression Methylation Expression
versus versus versus BMIT
birthweight birthweight

Fasting 1h 2h Fasting 1h 2h

G6PD -0.74 (0.006) -0.67 (0.016) -0.27 (0.84) 0.91 (0.001) 0.81 (0.001) 0.41 (0.69) -0.52 (0.08) 0.59 (0.05) -0.27 (0.39)

TKT -0.82 (0.003) -0.75 (0.005) -0.41 (0.87) -0.17 (0.71) -0.35 (0.56) -0.22 (0.32) -0.56 (0.06) -0.21 (0.50) -0.41 (0.18)

IGFBP-1 -0.88 (0.001) -0.75 (0.005) -0.73 (0.003) -0.15 (0.65) -0.32 (0.71) -0.10 (0.58) 0.75 (0.005) 0.10 (0.75) 0.24 (0.42)

IGFBP-2 -0.85 (0.001) -0.64 (0.025) -0.42 (0.68) -0.17 (0.39) 0.20 (0.41) -0.38 (0.71) 0.57 (0.87) -0.50 (0.87) 0.46 (0.70)

IGFBP-6 0.001 (0.81) 0.004 (0.96) -0.30 (0.45) -0.52 (0.74) -0.39 (0.89) -0.15 (0.57) 0.13 (0.20) 0.56 (0.30) 0.36 (0.23)

Placental tissue

Gene Expression vs maternal glucose levels Methylation vs maternal glucose levels Expression Methylation Expression
versus versus versus BMIT
birthweight birthweight

Fasting 1h 2h Fasting 1h 2h

G6PD -0.84 (0.001) -0.73 (0.007) -0.59 (0.045) 0.65 (0.023) 0.76 (0.004) 0.23 (0.32) -0.67 (0.01) 0.70 (0.009) -0.46 (0.13)

TKT -0.26 (0.91) -0.12 (0.46) 0.02 (0.50) -0.32 (0.58) -0.14 (0.89) -0.09 (0.78) -0.17 (0.6) 0.39 (0.21) -0.43 (0.25)

IGFBP-1 -0.96 (0.001) -0.75 (0.005) -0.58 (0.048) 0.63 (0.027) 0.75 (0.005) 0.19 (0.32) 0.67 (0.017) 0.77 (0.003) -0.46 (0.13)

IGFBP-2 -0.83 (0.001) -0.89 (0.001) -0.43 (0.84) 0.68 (0.014) 0.87 (0.001) 0.50 (0.28) 0.66 (0.021) 0.73 (0.007) -0.41(0.19)

IGFBP-6 -0.72 (0.005) -0.70 (0.012) -0.36 (0.62) 0.68 (0.016) 0.58 (0.047) 0.46 (0.51) 0.59 (0.043) 0.61 (0.034) -0.24 (0.45)

T Methylation versus maternal BMI is not shown since there were no significant associations for any of the five candidate genes in blood and placental tissue.
Bold values: p < 0.05; significant difference between measured variables

BMI: Body mass index.

Discussion

We have demonstrated significant epigenetic shifts leading to altered gene expression in specific genes in the blood
of pregnant women with GDM and in the placental tissues of the fetuses. The level of mRNA expression of genes
encoding enzymes within the PPP and for /GFBPs was lower in the blood and placenta of women with GDM
compared with controls. Quantitative analysis of gene methylation demonstrated that for some of these genes, the
mRNA expression levels correlated negatively with gene methylation.

The PPP produces precursors for the synthesis of coenzymes, nucleotides, RNA and DNA and also to generate
NADPH. Shunting of accumulated cytosolic glycolytic intermediates into the PPP is proposed to unburden
glycolysis and limits processing of glycolytic intermediates into harmful metabolic products. In this way, the
PPP represents a ‘protective’ mechanism against hyperglycemia-induced damage [23). The G6PD gene encodes a
cytoplasmic enzyme that catalyzes the rate-limiting step in the oxidative branch of the PPP that generates the
first molecule of NADPH, and therefore its expression and activity are tightly regulated [24-26]. One of the major
functions of NADPH is to act as a co-factor in cellular pathways that prevent oxidative stress [27].

The expression levels of genes coding for enzymes within the PPP were significantly downregulated in white
blood cells and placental tissue taken from women with GDM. Furthermore, in both these tissues expression of
G6PD correlated negatively with methylation at the promoter region of the gene. It is possible that the attenuation
of expression of the other genes in the PPP is a result of G6PD downregulation, since this enzyme is the rate-
determining step of the pathway [23,24]. It was also found that maternal blood glucose levels correlated negatively
with G6PD expression and positively with methylation in both the placenta and the white blood cells. Previous
studies demonstrated downregulation of G6PD activity by glucose [27,28], but this is the first study to show that the
effect of hyperglycemia on G6PD expression may be mediated via an epigenetic mechanism. These data suggest
that elevated maternal glucose levels may reduce activity of the PPP by increasing methylation of the G6PD gene
hence reducing its expression. However, not all investigations demonstrate a negative effect of glucose on G6PD
expression or activity, with some studies showing a positive relationship between these factors [29,30].

The consequences of low G6PD expression would include a reduction in NADPH production and attenuation of
the cellular processes that protect against oxidative stress [31,32]. Oxidative stress is a risk factor for both T2D [33] and
GDM 34 and studies have shown that placenta from women with GDM have high levels of oxidative stress (35,36].
Thus, low expression of maternal and placental G6PD may enhance progression of GDM in the mother, while in
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the placenta it may be one of the factors that contributes to oxidative stress. It is known that GDM is a risk factor
for pre-eclampsia [37,38] and that placental oxidative stress is involved in its etiology (39]. It is therefore possible that
low G6PD expression in the placenta may mediate the association of GDM with pre-eclampsia, and this warrants
further investigation.

In GDM, insulin output is lower than in nondiabetic mothers at each level of insulin resistance [40]. It is possible
that the G6PD deficiency we see in GDM women could be involved in this process. Thus, high glucose levels may
reduce G6PD gene expression in the f-cells leading to attenuation of the anti-oxidant system in these cells and
reduced insulin output [41). A previous study showed that incubating islets in high glucose medium does reduce
G6PD expression and increase B-cell apoptosis [42].

The major role of /GFBP-1 and IGFBP-2 is the regulation of the bioavailability of IGF (IGF)-1 and IGF-2,
although each binding protein also has effects that are IGF independent (43]. Throughout pregnancy, the expression
and circulating levels of IGFBPs change in the mother and may influence IGF bioavailability (44]. Reduced levels
of these binding proteins will result in an increase in free, unbound IGFs, which are then able to bind to their
respective receptors. The maternal IGF system plays a vital role in fetal growth regulation via stimulation of
extravillous trophoblast migration/invasion and facilitation of nutrient exchange through the promotion of growth
and development of the placenta [45].

Suppression of /GFBP-1 expression in women with GDM and in exposed placenta was observed. We also
observed a negative correlation of maternal and placental /GFBP-1 and /GFBP-2 mRNA levels with maternal
glucose levels. Furthermore, there was a negative association of birthweight with maternal IGFBP-1 expression and
with placental expression of all three binding proteins. These results are supported by a study showing that cord
plasma IGFBP-1 levels correlated negatively with birthweight and that IGFBP-1 levels are lower both in women
with GDM and in cord blood from such pregnancies [46]. These data suggest that high maternal glucose levels
during pregnancy influence the bioavailability of IGFs through attenuation of both maternal and placental /GFBP
expression which may increase fetal somatic growth.

In the placental but not maternal tissue, the expression of /GFBP-1 and /GFBP-2 mRNA is negatively correlated
with promoter region methylation. For all three /GFBPs, methylation correlates positively with maternal glucose
levels and with birthweight. In support of these findings, a recent study showed that gene expression levels of IGFBPs
1, 2, 3, 4 and 7 were highest in small-for-gestational age neonates and lowest in large-for-gestational age neonates
while gene methylation levels followed the opposite trend 471. Our observations suggest that DNA methylation
reduces expression of these binding proteins only in the placenta. It is important for the placenta to be able to
respond to prevailing nutrient levels and an epigenetic process may facilitate a more chronic response, while in the
adult, there is no gene methylation and this may provide a more acute change in /GFBP levels in response to the
glucose supply. We conclude that the hypermethylation observed at the promoter region of these binding proteins
in the placenta may be a result of the presence of GDM and may be one mechanism through which GDM leads
to fetal macrosomia.

A limitation of this study is the small sample size. Although this does limit data interpretation and statistical
analysis, it was still sufficient to allow observations of major differences in gene expression and methylation patterns
between the cases and controls. Maternal white blood cells were used for gene expression analysis due to ease of
access. However, expression patterns in these cells may not reflect those of other more disease-relevant tissues such
as pancreatic islets or skeletal muscle. We did not measure the HbA1c levels in the women because, unlike detecting
diabetes in a nonpregnant patient, testing HbAlc is ineffective in diagnosing GDM due to red blood cell turnover
increasing during pregnancy and naturally reducing HbAlc levels in early and late pregnancy (4s).

In conclusion, the present study shows that GDM-associated hyperglycemia is associated with changes in gene
methylation levels which cause the attenuation of expression of genes controlling the PPP and IGFBP levels. This
may lead to greater maternal and placental oxidative stress and higher levels of free IGE respectively. Through
these mechanisms epigenetic processes may therefore play an important role in GDM disease progression and fetal
macrosomia.

Future perspective

Future studies could investigate whether expression levels of G6PD in blood correlate with that in more strongly
disease-associated tissues such as skeletal muscle and islets of Langerhans. Levels of NADPH and markers of oxidative
stress could be measured in the placenta to determine if they correlate with G6PD expression and methylation in
case-control studies of GDM and pre-eclampsia. The expression level of G6PD could be investigated in Type 2
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diabetes and prediabetes and also monitored through pregnancy to find out whether low G6PD levels predate the
development of these diseases. The levels of free IGFs in cord blood could be analyzed in relation to expression
and methylation levels of the placental /GFBP genes. Ultimately these studies will determine whether G6PD has
a fundamental role in the etiology of GDM, Type 2 diabetes and pre-eclampsia and uncover possible new drug
targets for disease intervention.

Summary points

e It has been suggested that gestational diabetes mellitus (GDM) may affect the epigenetic status of key genes of
the exposed offspring and the mother, leading to an increased risk of diabetes in both parent and child.

e The purpose of the current study was therefore to compare genome-wide gene expression levels and gene
methylation of affected genes in placental tissue and blood samples from mothers with and without GDM.

e We observed a significant decrease in the mRNA expression of genes involved in the pentose phosphate pathway,
but most particularly G6PD, in blood samples from women who were diagnosed with GDM, as well as in
placental tissue taken from these pregnancies.

e The reduced expression of G6PD in both the blood of affected women and placental tissue from exposed fetuses
was significantly related to an increase in the level of G6PD methylation.

e Maternal blood glucose levels correlated negatively with G6PD expression and positively with gene methylation
in both the placenta and the white blood cells of the GDM cases.

e There was a significant reduction in the expression of the IGF-binding protein genes, IGFBP1 and IGFBP2, and
increased gene methylation at these loci in placental tissue from GDM-exposed fetuses.

e Maternal blood glucose levels correlated negatively with IGFBPT and IGFBP2 placental expression but positively
with gene methylation.

e In mothers with GDM, IGFBP expression in the blood cells was decreased compared with controls and correlated
negatively with maternal blood glucose levels. However, gene methylation at the /GFBPs did not correlate with
gene expression levels in maternal blood cells.

e The fetal macrosomia observed in GDM may partly be explained by reduced placental /IGFBP expression that is
mediated by the effect of maternal glucose levels on gene methylation. Similar mechanisms may drive lower
expression of G6PD in placental and maternal tissues in GDM possibly leading to lower insulin output and greater
oxidative stress.
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