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Zipf’s law seems to be ubiquitous in human languages and appears to be a universal property of complex
communicating systems. Following the early proposal made by Zipf concerning the presence of a tension
between the efforts of speaker and hearer in a communication system, we introduce evolution by means of a
variational approach to the problem based on Kullback’s Minimum Discrimination of Information Principle.
Therefore, using a formalism fully embedded in the framework of information theory, we demonstrate that
Zipf’s law is the only expected outcome of an evolving communicative system under a rigorous definition of the
communicative tension described by Zipf.
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I. INTRODUCTION

Zipf’s law is one of the most common power laws found
in nature and society [1–6]. Although it was early observed
in the distribution of money income [7] and city sizes [1], it
was popularized by the linguist George Kingsley Zipf, who
observed that it accounts for the frequency of words within
written texts [2,3]. Specifically, if we rank all the occurrences
of words in a text from the most common to the least, Zipf’s
law states that the probability q(sm) that, in a random trial,
we find the mth most common word (i = 1, . . . , n) falls
off as

q(sm) = 1

Z
m−γ ,

where

Z =
∑
j�n

j−γ ,

with γ ≈ 1. The ubiquity of this scaling behavior suggested
several mechanisms to account for the emergence of this
distribution; among many others, see [4,8–12].

Within the context of human language, G. K. Zipf
conjectured early that this scaling law is the outcome of
a tension between two forces acting in a communication
system [3]. Following Zipf’s proposal, speakers and hearers
need to simultaneously minimize their efforts under what he
called vocabulary balance—a particular case of the so-called
Principle of Least Effort. This triggers a tension between the
two communicative agents, while trying to simultaneously
minimize their efforts. The speaker’s economy would favor a
reduction of the size of the vocabulary to a single word whereas
the hearer’s economy would lead to an increase of the size of
a vocabulary to a point where there would be a different word
for each meaning. The resulting vocabulary would emerge
out of this unification-diversification conflict [3]. Although
both numerical and theoretical studies have explored this
idea [10,11,13], no truly analytic proof of unicity has been
provided under realistic information-theoretic constraints. We

can view the proposals made in [10,11,13] as static because
they consider a fixed size of code.

A recent approach, which goes beyond the communicative
framework, defined the key complexity properties of a system
to display a statistics of events following Zipf’s law: An open,
unbounded number of accessible states and a linear loss of
entropy due to generic internal constraints [12]. The linear loss
of entropy grasps the intuitive idea that the studied systems
are in an intermediate state between order and disorder—or
that a possible informative tension is balanced, as we shall
see—and the unbounded number of accessible states reflects
their open nature. It was shown that, under a very general
parametrization, and imposing properties of scale invariance
to the solution, Zipf’s law was the only possible outcome.

Now we adapt and enrich the general framework proposed
in [12] to the communicative context. As we shall see, Zipf’s
hypothesis can be interpreted in such a way that the system can
be studied within the framework proposed in [12]. Moreover,
the parameters that were arbitrary in the general mathematical
framework mentioned above can now be naturally interpreted
in the communicative framework as the key pieces of the
mathematical statement of Zipf’s hypothesis.

Beyond the mathematical formalization of the communica-
tive conflict described by Zipf, we need another ingredient,
pointed out in a different context in [14]; namely, the active
role played by the evolutionary path followed by the code. As
it occurs with other systems growing out of equilibrium, such
as scale-free networks [15], we will consider the evolution
of the communicative exchange under a system’s growth.
Here the evolutionary component is variationally introduced
by minimizing the divergence between code configurations
belonging to successive time steps. This minimal change
follows the so-called Minimum Discrimination Information
Principle (henceforth MDIP), a general variational principle
considered analogous to the Maximum Entropy Principle [16],
from which statistical mechanics can be properly formalized
[17,18]. The MDIP states that, under changes in the constraints
of the system, the most expected probability distribution is the

036115-11539-3755/2011/83(3)/036115(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.036115


COROMINAS-MURTRA, FORTUNY, AND SOLÉ PHYSICAL REVIEW E 83, 036115 (2011)

one minimizing the Kullback-Leibler divergence (also referred
to as Kullback-Leibler entropy or relative entropy) from the
original one [17]. Such a variational principle constrains the
changes of the internal configurations of an statistical ensemble
when the external conditions change in the same way that
internal configurations of an statistical ensemble change when
we introduce moment constraints in a Jaynesian formalism. In
our context, this information-theoretic functional assumes the
role of a Lagrangian whose minimization along the process
defines the possible ensemble configurations one can observe
at a certain point of an evolutionary path.

Using the MDIP and the framework provided in [12], we
provide a proof of unicity for the emergence of Zipf’s law in
evolving codes. We stress that no arbitrary assumptions are
made on the nature of solutions.

The remainder of the paper is structured as follows:
In Sec. II we rigorously define the communicative tension
intuitively defined by Zipf and explicitly characterize the
evolutionary process in terms of the mathematical statement
of such a tension. In Sec. III we apply the MDIP as the
guiding, variational principle which accounts for the possible
evolutionary paths of the code. Finally, we demonstrate that
the consequences of the application of both the communicative
tension and the MDIP account for the emergence of Zipf’s law
as the unique possible solution of the evolving code. In Sec. IV
we discuss the implications of our results.

II. THE EVOLUTION OF THE
COMMUNICATIVE SYSTEM

In this section we mathematically define (1) the com-
municative tension described by Zipf and (2) the evolution
or growth of a given code subject to such a tension. We
furthermore define the range of application of our formalism.
As we shall see in Sec. III, the proposal made in this section
defines a framework whose key piece to work with is Eq. (6).

A. The explicit description of the communicative conflict

The first task is to properly define the communicative
tension between the coder and the decoder and how this
tension is solved. Following the standard nomenclature used
in studies of the evolution of communicating autonomous
agents [19–21], in our system there are two agents: the coder
agent P, encoding information from a set of external events �,
and the decoder or external observer, which infers the behavior
of � through the code provided by the coder agent P. In this
way,

� = {m1, . . . , mn}
is the set of external events acting as the input alphabet, and

S = {s1, . . . , sn}
is the set of signals or output alphabet. The coder module P
[Fig. 1(a)] is fully described by a matrix P (Xs |X�), where
X� is a random variable taking values on the set � following
the probability measure p; with p(mk) being the probability
to have symbol mk as the input in a given computation.
Complementarily, Xs is a random variable taking values on

DECOD

Noise

XΩ(n) Xs(n)

Xs(n + 1)XΩ(n + 1)

P

DECOD

Noise

P

P =

Ω
S

(a) (b)

H(Xs) = H(XΩ|Xs) minD(qn||qn+1)

FIG. 1. A growing communication system. In (a), possible
meaning-signal associations made by the coder module P, in which
Eq. (2) holds, is depicted. In (b), we summarize the evolution rules of
our communicative system. Suppose that symmetry between coder
and decoder [i.e., Eq. (2)] holds for the step n (above). At each step
(below) a new element is added to the set � and Eq. (2) holds again
for this new configuration. Furthermore, the new configuration is
constrained by the MDIP, which introduces a path dependency in the
evolutionary process.

S and following the probability distribution q which, for a
given si ∈ S, reads

q(si) =
∑
k�n

p(mk)P (si |mk); (1)

that is, the probability to obtain si as the output of a
codification. We assume that

(∀mk ∈ �)
∑
i�n

P (si |mk) = 1.

For the decoder agent inferring the input set from the output
set with least effort, the best scenario is a one-to-one mapping
between � and S. In this case, P generates an unambiguous
code, and no supplementary amount of information to success-
fully reconstruct X� is required. However, from the coding
device perspective, this coding has a high cost. In order to
characterize this conflict, let us properly formalize the above
intuitive statement: The decoder agent wants to reconstruct
X� through the intermediation of the coding performed by P.
Therefore, the amount of bits needed by the decoder of Xs to
unambiguously reconstruct X� is

H (X�,Xs) = −
∑
i�n

∑
k�n

P (mi,sk) logP (mi,sk),

which is the joint Shannon entropy or, simply, joint entropy
of the two random variables X�,Xs .1 From the codification
process, the decoder receives H (Xs) bits and, thus, the
remaining uncertainty it must face will be

H (X�,Xs) − H (Xs) = H (X�|Xs),

1Throughout this paper, log ≡ log2.
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where

H (Xs) = −
∑
i�n

q(si) log q(si);

that is, the entropy of the random variable Xs , and

H (X�|Xs) = −
∑
i�n

q(si)
∑
k�n

P (mk|si) logP (mk|si),

is the conditional entropy of the random variable X� condi-
tioned to the random variable Xs . The tension between the
coder and the decoder is solved by imposing a symmetric
balance between its associated efforts [see Fig. 1(a)]. That is,
the coder sends as many bits as the additional bits the observer
needs to perfectly reconstruct X�:

H (Xs) = H (X�|Xs). (2)

The above ansatz is the mathematical formulation of the
symmetric balance between the efforts of the coder and the
decoder. We will refer to this equation as the symmetry
condition and, as pointed out in [11], it mathematically
describes how the communicative tension is solved by using a
cooperative strategy between the coder and the decoder agents.
It is worth noting that different equations sharing the same
spirit were formerly proposed within the framework of the
so-called code-length game [10]. From Eq. (2), we can state
that

H (X�,Xs) = 2H (Xs).

And knowing the classical inequalities

H (X�,Xs) � H (X�),

H (X�|Xs) = H (X�,Xs) − H (Xs) � H (X�),

we reach a general relation between the informative richness
of the input variable X� and the informative richness of the
messages sent by the coder, constrained by Eq. (2):

1
2H (X�) � H (Xs) � H (X�). (3)

The first relation becomes equality only in the case of P
performing a deterministic codification process. The second
relation becomes equality when the coding device performs
completely random associations. It is clear that Eqs. (2) and (3)
alone cannot explain the emergence of Zipf’s law, since one
could tune the parameters of, say, an exponential distribution
to reach the desired relation between entropies. Therefore, we
need to introduce another ingredient to obtain Zipf’s law as
the unique possible solution to our problem.

B. Evolution

The unicity in the solution is provided by the evolution,
which is now explicitly introduced [see Fig. 1(b)]. Let us
suppose that our communicative success grows over time,
thereby increasing the number of input symbols that P can
encode. Formally, this implies that the cardinality of the set �

defined above increases. We introduce this feature by defining
a sequence of �’s �(1), . . . , �(k), . . . satisfying an inclusive
ordering; that is,

�(1) ⊂ �(2) ⊂ . . . ⊂ �(k), . . . ,

which is introduced, without any loss of generality, assuming
that

�(1) = {m1},
�(2) = {m1,m2},

...

�(n − 1) = {m1,...,mn−1},
�(n) = {m1,...,mn−1,mn}.

At time step n, P will be able to process the n symbols of
�(n). The elements m1, . . . , mi, . . . are members of some
infinite countable set �̃ [i.e., (∀i)(�(i) ⊂ �̃)]. �̃ can be
understood, using a thermodynamical metaphor, as a reservoir
of information. Following this characterization, we say that, for
every set �(i), there is a random variable X�(i), taking values
in �(i) following the ordered probability distribution pi .
Furthermore, we assume that there exists a unique μ ∈ (0,1)
such that (∀ε > 0)(∃N ) : (∀n > N),∣∣∣∣H (X�(n))

log n
− μ

∣∣∣∣ < ε. (4)

This means that the entropy of the input set is unbounded when
its size increases, which implies that the potential input set �̃

acts as an infinite reservoir of information.
The behavior of the output set at the stage n is described by a

random variable Xs(n), which follows the ordered probability
distribution qn, as defined in Eq. (1), taking values on S(n) =
{s1, . . . , sn}. We observe that S(n) ⊆ S(n + 1), defining a
sequence S(1), . . . ,S(k), . . . also ordered by inclusion. At
every time step, the consequences of the symmetry condition
[see Eq. (2)] depicted in Eq. (3) are satisfied, which implies
that the sequence

H = H (Xs(1)),H (Xs(2)), . . . ,H (Xs(k)), . . .

also satisfies the convergence ansatz made over the sequence
of normalized entropies of the input [see Eq. (4)]. The only
difference is the value of the limit, ν. The value of ν can be
bounded by using Eqs. (3) and (4), thereby obtaining:

1
2μ � ν � μ. (5)

Therefore, in this case, by virtue of Eqs. (3), (4), and (5),
the convergence condition for the normalized entropies of the
sequence of random variables Xs(1), . . . , Xs(n), . . . reads:
there exists a unique ν ∈ ( 1

2μ,μ) such that (∀ε > 0)(∃N ) :
(∀n > N): ∣∣∣∣H (Xs(n))

log n
− ν

∣∣∣∣ < ε. (6)

The above equation depicts two crucial facts in the forthcoming
derivations: If the potential informative richness of the input
set is unbounded, so is the informative richness of the output
set, under the constraints imposed by the symmetry condition
[see Eq. (2)].

III. THE EMERGENCE OF ZIPF’S LAW UNDER THE MDIP

The MDIP is presented in this section as the variational
principle guiding the evolution of the code. As we shall see
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at the end of this section, the consequences of its application
result in a proof of unicity for the emergence of Zipf’s law in
evolving codes.

A. The MDIP and its consequences for the evolution of codes

The question is thus how the probability distribution qn

evolves along the growth process. Under the MDIP we face
a variational problem which is stated as follows: During the
growth process, the most likely code at step n + 1 is the one
minimizing the distance with respect to the code at step n,
consistent with the MDIP. Furthermore, the evolution of the
code must satisfy, along all the evolutionary steps, the sym-
metry condition depicted by Eq. (2). The crucial contribution
of the MDIP is that it naturally introduces the footprints of
the path dependence imposed by evolution. Following the
thermodynamical metaphor, this variational principle acts, in
our context, as a principle on energy minimization acting over
the transitions of successive codes. Putting it formally, let

D(qn||qn+1) ≡
∑

i�n+1

qn(si) log
qn(si)

qn+1(si)

be the Kullback-Leibler divergence of the distribution qn+1

with respect to the distribution qn [22]. Therefore, the MDIP
is achieved by minimizing the following functional [17]:

L(qn+1,λ) = D(qn||qn+1) + λ

( ∑
i�n+1

qn+1(si) − 1

)
.

We observe that this functional has a role equivalent to the one
attributed to the Lagrangian function in a given continuous,
differentiable system; therefore, the trajectories minimizing
it will govern the evolution of the system. Furthermore, the
symmetry condition on coding-decoding [Eq. (2)] imposes
that the solutions must lie in the region defined by Eq. (6). The
minimum of L is found when qn+1 satisfies

qn+1(si) =

⎧⎪⎨
⎪⎩

1

λ
qn(si), iff i � n

1 − 1

λ
, iff i = n + 1,

(7)

where λ is the Lagrange multiplier, which is a positive unique
constant for all elements of the probability distribution qn+1.
We observe that, for λ = 1, D(qn||qn+1) = 0, but, in this case,
H (Xs(n)) = H (Xs(n + 1)), in contradiction to the assumption
provided by Eq. (6), according to which informative richness
grows during the evolutionary process.

Now we want to find the asymptotic behavior of qn, n →
∞ under the above-justified conditions (6) and (7). The key
feature we derive from the path dependency in the evolution
imposed by the MDIP is that the following quotient

(∀k + j � n) f (k,k + j ) = qn(sk+j )

qn(sk)
(8)

does not depend on n. Therefore, along the evolutionary
process, as soon as

qn(sk), qn(sk+j ) > 0,

f (k,k + j ) remains invariant.

B. The emergence of Zipf’s law

The asymptotic behavior of quotient f and, thus, the
tail of qn is strongly constrained by the entropy restriction
provided by Eq. (6) [12]. As we shall see, the key of the
forthcoming derivations will be the convergence properties
of the normalized entropies of a given random variable X

having n possible states whose (ordered) probabilities follow
a power-law distribution function; namely, g(si) ∝ i−γ . The
explicit form of these entropies is

H (X)

log n
= 1

log n

(
γ

Zγ

∑
i�n

log i

iγ
+ log Zγ

)
. (9)

Consistently, Zγ is the normalization constant.
The first observation is that it can be shown that the

convergence properties of the Riemann ζ function on R+ [23],

ζ (γ ) =
∞∑
i=1

1

iγ
,

strongly constrain the convergence properties of a given
probability distribution [12]. Indeed, we find that, if (∀δ >

0, n > m)(∃N ) such that:

(∀m > N) f (m,m + 1) <

(
m

m + 1

)1+δ

,

then (∃C < ∞ ∈ R+) such that (∀n)[H (Xs(n)) < C], which
contradicts the assumptions of the problem depicted by Eq. (6).
Indeed, primarily, one can observe that the above statement
implies that qn is dominated by a power law having exponent
1 + δ; that is, that qn decays faster than q ′

n, which is defined as

q ′
n(si) = i−(1+δ)

Z1+δ

,

where Z1+δ is the normalization constant. Now, we write the
explicit form of the entropy of X′

s(n) ∼ q ′
n—to be written

as H (X′
s(n))—when n → ∞ by multiplying the expression

derived in Eq. (9) by log n:

lim
n→∞ H (X′

s(n)) = 1 + δ

ζ (1 + δ)

∞∑
i=1

log i

i1+δ
+ log[ζ (1 + δ)].

We observe that all the elements of the above equation are
finite constants, since

∞∑
i=1

log i

i1+δ
< ∞.

Thus, having q ′
n as defined above,

lim
n→∞ H (X′

s(n)) < ∞.

Therefore, during the growth process, due to the constraint
imposed by Eq. (6),

f (m,m + 1) >

(
m

m + 1

)(1+δ)

, (10)

with δ arbitrarily small, provided that n can increase unbound-
edly. Otherwise, its normalized entropy [see Eq. (9)] will have
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as an asymptotic value

H (Xs(n))
log n

→ 0,

in contradiction to the assumption that ν > 0 as depicted in
Eq. (6).

Furthermore, we observe that, if (∀δ > 0, n > m) (∃N )
such that

(∀m > N) f (m,m + 1) >

(
m

m + 1

)(1−δ)

, (11)

then

lim
n→∞

H (Xs(n))
log n

= 1,

again in contradiction to Eq. (6), except in the extreme
pathological case where ν = 1, when the coding process is
completely noisy. To see how we reach this latter point we
observe that statement (11) implies that qn is not dominated
by a power-law probability distribution q ′

n having exponent
1 − δ; namely,

q ′
n(si) = i−(1−δ)

Z1−δ

,

where Z1−δ is the normalization constant. Putting explicitly
the expression of the normalized entropy [see Eq. (9)] for the
random variable X′

s(n), one obtains

lim
n→∞

H (X′
s(n))

log n
= lim

n→∞

(
δ(1 − δ)

nδ log n

∑
k�n

log k

k1−δ
+ δ

)

= lim
n→∞

1 − δ

log n

(
log n − 1

δ

)
+ δ

= 1,

which is the desired result. Accordingly, since from Eq. (6) ν

is generally different from 1,

f (m,m + 1) <

(
m

m + 1

)(1−δ)

. (12)

Thus, combining Eqs. (10) and (12), we have shown that
the asymptotic solution is bounded by the following chain of
inequalities:(

m

m + 1

)(1+δ)

< f (m,m + 1) <

(
m

m + 1

)(1−δ)

.

The crucial step is that it can be shown that, if n → ∞, we can
set

δ → 0.

(The mathematical technicalities of this result can be found
in [12].) This implies, in turn, that, for n � 1,

f (m,m + 1) ≈ m

m + 1
,

and, from the definition of f provided in Eq. (8), we conclude
that

qn(sm) ∝ 1

m
,

which leads us to Zipf’s law as the unique asymptotic solution.

10
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FIG. 2. Numerical simulation of the final distribution qn (n =
104) obtained by constraining the growth process with (i) the conse-
quences of the symmetry of coding-decoding [see Eq. (2)] provided
by Eq. (6) and (ii) the application of the MDIP at every step of the
growth process. Different convergence values are studied: (a) ν =
0.2, (b) ν = 0.3, and (c) ν = 0.5. The dashed lines are the best-fit
interpolations, which give estimated exponents γ = 1.06, 1.04, and
1.01, respectively (all with correlation coefficients r < −0.99).

In Fig. (2) we numerically explored the behavior of the rank
probability distribution of signals belonging to a growing code
under the assumption of symmetry in coding-decoding pro-
vided by Eqs. (2) and (6), and the MDIP whose consequences
in the evolution of qn are depicted in Eq. (7). The outcome
perfectly fits with the mathematical derivations, showing very
well-defined power laws with exponents close to 1, although
the convergence values ν diverge from 0.2 to 0.5. This numeri-
cal validation shows that the predicted asymptotic effects (i.e.,
the convergence of qn to Zipf’s law) are perfectly appreciated
even in finite simulations where 105 signals are at work.

We end this section with a remark on the boundary
conditions needed for the emergence of Zipf’s law. In the
Sec. II B, we imposed that the potential information richness
of the source must be unbounded. Such a condition is
mathematically stated by (4). We observe that, more than an
assumption, Eq. (4) is a boundary condition under which a
growing code can (asymptotically) exhibit Zipf’s law.2 In this

2We notice that Eq. (4) depicts a linear relation between H (X�(n))
and log n; that is, H (X�(n)) ∼ μ log n. There are strong reasons to
believe that one could generalize this statement by saying that the
only condition needed is that, in spite that

lim
n→∞

H (X�(n))
log n

= 0,

if H (X�(n)) is a monotonic, growing and unbounded function on n,
then Zipf’s law would emerge using similar arguments to the ones
used in this paper. The lack of a rigorous demonstration for this latter
point forces us to restrict our arguments to the region of application
of Eq. (4).

036115-5
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way, since H (Xs(n)) has a linear relation with H (X�(n)), the
divergence of the latter implies the divergence of the former.
And it is a required condition, since the entropy of a system
exhibiting a power law with an exponent equal to 1 diverges
with n. Otherwise, exponents are higher, or other probability
distributions can emerge.

IV. DISCUSSION

The results provided in our study define a general rationale
for the emergence of Zipf’s law in the abundance of signals
of evolving communication systems. The variational approach
taken here as a formal picture of the least effort hypothesis
has two ingredients. First, starting from Zipf’s conjecture, we
reach a static symmetry equation to solve the communicative
tension between coder and decoder. This is consistent with
previous work, but reveals itself insufficient to derive Zipf’s
law as the unique solution, for it is easy to check that
static equations of the kind of Eqs. (2) and (3) have infinite
arbitrary solutions, even in the asymptotic regime, due to
the possible parametrizations of the solutions. Secondly—and
crucially—we consider that the code evolves through time and
that, consistently, there is a path dependence in its evolution,
which is mathematically stated by imposing a variational
principle, the MDIP, between successive states of the code. It
is only by imposing evolution (and thus, path dependence) that
we reach Zipf’s law as the only asymptotic solution. Therefore,
the origin of the power law with exponent γ = −1 derives from
three complementary and very general conditions:

(1) the unbounded informative potential of the code,
(2) the loss of information resulting from the symmetry

condition, depicted in Eq. (2), and
(3) evolution, and its associated path dependence, variation-

ally imposed by the application of the MDIP over successive
states of the evolution of the system.

There is another, very interesting point, intimately tied
to a code exhibiting Zipf’s law and, more specially, the

consequences of the symmetry condition, the mathematical
ansatz which abstractly encodes the Zipf’s hypothesis of
vocabulary balance: The presence of an inevitable ambiguity
in the code. It is a common observation that natural languages
are ambiguous; namely, that linguistic utterances or parts
of linguistic utterances can be assigned more than one
interpretation. If the principle of least effort is at work and,
thus, a cooperative strategy exists between the coder and the
decoder, then the presence of a certain amount of ambiguity
is expected, provided that the speaker tends to assign more
than one meaning to certain signals. Therefore, ambiguity is a
byproduct of efficient communication rather than a fingerprint
of poor communicative design.

The presented framework is general, and rigorously demon-
strates that Zipf’s law is a natural outcome of a broad class
of communication systems evolving under coding-decoding
tensions. In other words, Zipf’s law emerges in a system where
the coder and decoder coevolve under a general problem of
energy minimization. The range of application to real-world
phenomena, however, must be contrasted with the validity of
data, for it has been pointed out that many supposed power-law
behaviors show deviations when the statistical analysis is
performed accurately [24,25]. It should be noted, however, that
a deviation of the predicted behavior need not be necessarily
attributed to a failure of the framework. One should take
into account that other constraints, such as general memory
limitations, can play a role in shaping the final distribution.
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