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INTRODUCTION

Stable isotope ecology is a branch of chemical ecol-
ogy that uses stable isotopes as chemical tracers to
follow ecological dynamics. The occurrence of iso -
tope fractionation at the atomic level allows different
ecological processes to be identified, and pre sents a
reliable tool to evaluate trophic ecology (Fry 2006);
consequently, stable isotope analysis (SIA) is widely
used in trophic ecology (Hobson & Wasse naar 1999,
Newsome et al. 2010). Appli ca tions of SIA include
determining habitat use (Pinela et al. 2010), migra -
tion patterns (Kurle & Worthy 2002, Caut et al. 2008),
and sources of nutrients in marine food webs (Wada
et al.1987, Fry 1988, Hobson & Clark 1992a,b), as
well as identifying trophic relationships (Minagawa
& Wada 1984) and dietary sources (Hobson & Clark

1992a,b, Hobson et al. 1996, Caut et al. 2009). Stable
isotope ratios (δ15N and δ13C) can be used as proxies
for diet composition, e.g. δ15N increases between 2
and 5‰ during tro phic transfer (DeNiro & Epstein
1981, Mina gawa & Wada 1984, Caut et al. 2009),
while δ13C is a useful indicator of food sources
(France 1995, Cardona et al. 2007), even though the
in cre ment in δ13C values is smaller, between 0.5 and
1‰ for each trophic level (Caut et al. 2009).

The use of SIA in trophic ecology has become in -
creasingly popular but has been paralleled by in -
creasing concern about the reliability of the different
techniques and processes used in laboratories around
the world (Newsome et al. 2010). For in stance, there
are differences among laboratories in sample prepa-
ration (Soreide et al. 2006), preservation methods
(Barrow et al. 2008), lipid extraction methods (Logan
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& Lutcavage 2008, Tarroux et al. 2010), and the use of
different preservatives (Carabel et al. 2009). Studies
on the effects of de composition on the stability of sta-
ble isotope ratios have primarily focused on aquatic
plants, with microbial activity being reported to mod-
ify δ13C and δ15N after death (Fogel et al. 1988, Currin
et al. 1995, Caraco et al. 1998, Kuehn & Suberkropp
1998, Machás et al. 2006, Hill & McQuaid 2009). De-
spite the significance of these findings, no studies
have as sessed whether similar effects occur in animal
tissues, probably be cause many researchers use fresh
samples when they study animals that can be cap-
tured and easily sampled. However, research on en -
dangered species, such as marine mammals and sea
turtles, often involves using the carcasses of animals
involuntarily killed as a result of human interactions
or stranded for other reasons (e.g. Godley et al. 1998,
Revelles et al. 2007a,b, Arthur et al. 2008, Cardona et
al. 2009, Pinela et al. 2010, Fernández et al. 2011,
Gómez-Campos et al. 2011). Carcasses may be found
in various stages of decomposition (Kuiken & García
Hartmann 1993), with tissue degradation potentially
altering isotope signatures. If this is the case, previous
studies using stranded animals might have reached
inaccurate conclusions.

The present study explored the effect of decompo-
sition isotope signatures using skin and muscle sam-
ples from striped dolphin Stenella caeruleoalba and
loggerhead sea turtle Caretta caretta carcasses. We
identified and quantified the changes in δ13C and
δ15N during a 2 mo decomposition process, and as -
sessed the samples for any impacts on stable isotope
interpretation.

MATERIALS AND METHODS

We sampled 3 striped dolphin and 3 loggerhead
sea turtle carcasses from the western Mediterranean
(Spain). The carcasses were collected and supplied to
the authors by the Marine Animals Recovery Center
(CRAM), an organization officially designated by the
Catalonian regional government to collect stranded
marine animals, and transported to the Veterinary
School in Barcelona (Spain). Complete necropsies
were performed by specialized biologists and veteri-
naries following standardized protocols (Wolke &
George 1981, Geraci & Lounsbury 1993). All 6 indi-
viduals were very fresh at necropsy (Decomposition
Code CC1 from Kuiken & García Hartmann 1993),
with no significant pathologies or parasitic infections.
A large muscle sample and corresponding skin sam-
ple from each dolphin was labeled and frozen at

−20°C until the onset of the experiment. In turtles,
the whole head and neck were frozen. All the sam-
ples were taken from the same areas on individual
carcasses. In dolphins, muscle (longissimus dorsi)
and skin were collected from the dorsal region, be -
tween the spiracle and the dorsal fin and skin that
are next to the muscle. In turtles, skin and muscle
(longus colli) samples were taken from the neck.

At the beginning of the experiment, the samples,
described above, were left unpreserved outdoors in
an experimental field at the University of Barcelona,
exposed to rain and direct sunlight. At time intervals
of 0, 4, 8, 19, 32, 50 and 62 d after defrosting, two
0.5 g muscle and skin subsamples from each speci-
men were collected and analyzed. This uneven tem-
poral sampling ap proach allowed us to cover the
major stages reported during carcass decomposition
(Kui ken & García Hartmann 1993, Anderson & Van-
Laerhoven 1996). De com position stages were classi-
fied according to Kui ken & García Hartmann (1993),
in agreement with the standard procedure for assess-
ing the de com po sition condition of marine mammal
carcasses. 

For SIA, each muscle and skin subsample (0.5 g)
was dried for 3 d at 70°C and ground with a mortar
and pestle. Lipids were removed by rinsing the
ground tissue several times with a 2:1 ratio of a
 chloroform: methanol mixture (Bligh & Dyer 1959).
Lipids were extracted because they contain lower
levels of δ13C compared to other molecules. De Niro &
Epstein (1977) found that performing an ana lysis
without lipid extraction may lead to erroneous con-
clusions, which is especially important to avoid when
comparing different tissue results (Newsome et al.
2010). After lipid extraction, the subsamples were
dried for 24 h at 70°C. Approximately 0.3 mg of the
powdered subsample was weighed in a tin capsule
and automatically loaded and combusted at 1000°C.
The subsample was then analyzed in a continuous-
flow isotope-ratio mass spectrometer (Delta C Finni-
gan MAT).

The results were expressed in delta (δ) notation, in
which the relative variations of stable isotope ratios
are expressed as ‰ variations from predefined stan-
dards, and calculated as:

δX = [ (Rsample / Rstandard) − 1 ] × 103 (1)

where Rsample is the ratio of the heavy isotope to the
light isotope in the sample (13C/12C or 15N/14N), and
Rstandard is the ratio of the heavy isotope to the light
isotope in the standard (13C/12C or 15N/14N) in ‰.

Standards used were Pee Dee Belemnite (V-PDB)
calcium carbonate and atmospheric nitrogen (air) for
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carbon and nitrogen, respectively. International sec-
ondary isotopic standards with known 13C/12C and
15N/14N ratios in relation to V-PDB and air, respec-
tively, as given by the IAEA (International Atomic
Energy Agency), were used for δ13C (precision of
0.02‰) and δ15N (precision of 0.03‰) calibration:
namely polyethylene (IAEA CH7, δ13 C = −32.15 vs.
V-PDB), sucrose (IAEA CH6, δ13C = −10.4 vs. V-PDB),
L-glutamic acid (USGS40 δ13C = −26.58 vs. V-PDB; δ15

N = 4.5 vs. air), acetanilide (δ13C = −25.3 vs. V-PDB;
δ15N = −8.8 vs. air), (NH4)2SO4 (IAEA N1 δ15N = +0.4
vs. air; IAEA N2 δ15N = 20.3 vs. air), KNO3 (USGS34,
δ15N = −1.8 vs. air), UCGEMA-F (δ15N = 4.15 vs. air;
δ13C = −26.58 vs. V-PDB), and caffeine (IAEA-600 δ15

N = 1 vs. air; δ13C = −27.7 vs. V-PDB).

Statistical analysis

Data were analyzed using a Kolmogorov-Smirnov
test to assess normality. The homogeneity of vari-
ances between sample groups was tested using the
Levene test. Repeated-measures ANOVA of 2 factors
(time and species) was conducted separately for iso-
topes (δ15N and δ13C) and tissues (skin and muscle).
Time and species were considered as within-subject
and inter-subject factors, respectively. The same
analysis was conducted on % C and % N in order to
complement the study.

RESULTS

Samples exuded a moderate smell of decomposi-
tion and exhibited changes in colour and consistency
on Days 4 and 8 after defrosting, thus qualifying as
decomposition stage CC3. From Days 19 to 62 after
defrosting, samples were in an advanced stage of de -
composition, with the skin and muscle clearly altered
and a clear smell of decomposition, thus qualifying as
decomposition stage CC4. Fly larvae were present on
the samples from Day 4 and remained throughout the
experiment, although were more abundant in the
turtle samples.

Results of δ15N and δ13C values over the 62 d de -
composition period are shown in Table 1 and Fig. 1
and of the %N and %C values  in Table 2 and Fig. 2.

The results from repeated-measures ANOVA
showed that δ13C, δ15N, %N and %C did not vary over
time (within-subject) and that there was no temporal
variation in the 2 species (inter-subject) for any 2 tis-
sues considered (Tables 3 & 4). Therefore, we infer
that samples at different states of decomposition did

not differ in isotopic signatures or in C and N percent-
ages as a consequence of the decomposition process.

DISCUSSION

Fry (2006) defined SIA as one of the most powerful
tools to identify different ecological processes, and as
such this technique should be accurately tested to
achieve depurated methodologies and avoid erro-
neous conclusions or misinterpretations. Moreover,
an increase in the use of SIA has generated the need
for tissue collections and preparation protocols to be
standardized to improve the quality and reliability of
inter-laboratory comparisons. Accordingly, much sci-
entific literature has been produced to test the relia-
bility of sample manipulation techniques (Hobson et
al. 1997, Kaehler & Pakhomov 2001, Kelly et al. 2006,
Barrow et al. 2008, Carabel et al. 2009).
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Species      Time (d) δ15N           δ13C
Tissue                           Mean      SD           Mean      SD

S. coeruleoalba
Muscle           0             9.67      0.51          −17.44     0.37

                         4             9.72      0.45          −17.55     0.23
                         8             9.76      0.48          −17.43     0.21
                        19            9.82      0.12          −17.58     0.04
                        32            9.85      0.25              −            −
                        50            9.63      0.28          −17.63     0.18
                        62            9.74      0.42          −17.52     0.36

Skin                0             10.96      0.57          −17.09     0.40
                         4             11.30      0.76          −16.91     0.36
                         8             11.09      0.76          −16.74     0.47
                        19            10.61      0.82          −17.29     0.61
                        32            10.88      0.51          −17.18     0.18
                        50            11.13      0.64          −16.90     0.45
                        62            11.16      0.61          −17.04     0.37

C. caretta
Muscle           0             8.74      0.30          −18.30     0.04

                         4             8.53      1.10          −18.48     0.29 
                         8             7.99      0.42              −            −
                        19            8.73      0.77          −17.90     0.71
                        32            8.57      0.08          −18.21     0.80
                        50            8.51      0.91          −18.17     0.12
                        62            8.49      0.80          −17.91     0.38

Skin                0             7.88      0.42          −16.12     0.05
                         4             7.97      0.41          −16.19     0.37
                         8             7.92      0.42          −16.38     0.08
                        19            7.93      0.42          −16.16     0.38
                        32            7.94      0.41          −16.05     0.17
                        50            8.08      0.42          −16.14     0.21
                        62            7.64      0.22          −16.05     0.87

Table 1. Stenella coeruleoalba, Caretta caretta. δ15N and δ13C
values in muscle and skin during the 62 d decomposition 

process. –: missing data
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The present study addressed a separate potential
source of isotope signature bias by investigating the
effect of animal tissue decomposition. It is difficult to
obtain tissue samples of marine mammals and marine
turtles when alive because of their scarcity and elu-
siveness; hence, many biochemical analyses are car-
ried out on samples from stranded dead individuals
with different preservation conditions. Therefore, it is
essential to evaluate how the decomposition process
might influence SIA to obtain sound interpretations
about ecological processes (Hill & McQuaid 2009).
Certainly, a number of carcasses from simultaneously
dead turtles and dolphins allowed to decompose on
the beach and daily sampling would offer a more re-
alistic experimental approach, but such an experi-
mental design faces a number of logistic challenges.

Firstly, a massive dead stranding would be neces-
sary to assure that all the experimental animals died
within a brief time interval and decomposed in a sim-
ilar environment. Massive strandings of dolphins are
relatively common, but turtles seldom strand mas-
sively as they are solitary animals. Accordingly, we
decided to freeze samples from individual strandings
and begin the experiment only when the sample size
was large enough to guarantee that all samples could
be exposed to the same environmental conditions.
Al though freezing and thawing cause faster initial
water loss and slightly modify the se quence of
changes associated with carcass decomposition (Mi -

cozzi 1986), freezing does not cause major changes in
the composition of bacterial communities (Davis
1976, Micozzi 1986) and it is not thought to affect the
stability of stable isotope ratios during the de -
composition process. Secondly, daily sampling would
have dramatically increased the cost of analysis and
it is not cost-effective, because de composition is a
non-linear process and the rate of change slows
down through time (Anderson & VanLaerhoven
1996). Accordingly, increasing time be tween succes-
sive sample collections is a more cost-effective
approach than regular sampling. Thirdly, leaving the
carcasses on the beach was not possible, because
Spanish regulations require the immediate removal
of stranded carcasses of marine mammals and turtles
to protect public health.

The results of the current study revealed no statis-
tically significant differences in δ13C and δ15N values
of the skin and muscle of either striped dolphins or
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Species      Time (d) %N            %C
Tissue                           Mean      SD           Mean      SD

S. coeruleoalba
Muscle           0             14.40      0.34           46.35      0.91

                         4             14.46      0.35           46.14      1.09
                         8             14.32      0.60           46.13      1.80
                        19            14.47      0.46           46.63      1.17
                        32            14.69      1.08           45.78      2.62
                        50            14.02      1.39           44.84      4.19
                        62            14.73      0.38           47.12      0.63

Skin                0             14.48      0.35           45.23      1.03
                         4             14.91      0.36           45.72      0.71
                         8             14.74      0.36           45.19      0.98
                        19            14.55      0.60           45.30      1.06
                        32            14.50      0.32           44.98      0.94
                        50            14.41      0.37           44.87      0.81
                        62            14.62      0.44           45.11      0.71

C. caretta
Muscle             0             14.20      0.53           45.87      1.14
                         4             13.28      0.98           44.12      3.69
                         8             14.48      0.94           45.98      2.69
                        19            13.86      1.35           42.71      4.05
                        32            13.04      1.42           42.58      4.16
                        50            14.43      0.83           43.89      5.55
                        62            13.91      0.63           44.62      1.73

Skin                  0             15.20      0.56           43.50      1.24
                         4             15.33      0.25           44.09      0.66
                         8             14.51      0.97           41.66      2.66
                        19            15.03      0.70           44.40      0.80
                        32            15.25      0.87           43.96      1.63
                        50            15.37      0.82           44.54      2.92
                        62            14.89      0.68           43.19      2.62

Table 2. Stenella coeruleoalba, Caretta caretta. %N and %C
values in muscle and skin during the 62 d decomposition 

process

Fig. 1. Stenella coeruleoalba, Caretta caretta. Mean (±SE)
δ15N in (a) skin and (b) muscle, and δ13C in (c) skin and (d)
muscle of carcass samples left unpreserved outdoors to de-

compose for 62 d
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loggerhead turtles across a 62 d period and, hence,
confirm that the de composition process itself is a
minor source of variability in the isotope ratios of
these 2 species These findings contrast with some of
the results reported in the extensive literature about

changes in isotopic signature caused by the decom-
position of submerged vascular macrophytes, sea-
grasses, seaweeds, and mangroves. These studies
have identified different trends in the temporal vari-
ation of δ13C and δ15N values over the decomposition
process, with significant differences reported among
taxonomic groups (Zieman et al. 1984, Benner et al.
1987, Fenton & Ritz 1988, Fellerhoff et al. 2003,
Machás et al. 2005, Hill & McQuaid 2009). These dif-
ferences are caused by variation in the nitrogen con-
tent and chemical composition of the cell wall of dif-
ferent taxonomic groups (Zieman et al. 1984, Fenton
& Ritz 1988, Hill & Mc Quaid 2009). In contrast, pro-
tein is the major macromolecule of vertebrate soft tis-
sues once fat has been removed, which results in a
rather constant C/N ratio in lean tissue (Clawson et
al. 1991, Sterner and Elser 2002, Hendrixson et al.
2007) and probably explains why differences are not
observed over time between tissues and species.

Although the results reported in the present study
suggest that stable isotope ratios of stranded dead
dolphins and turtles are suitable for evaluating food
sources, habitat use, and trophic relationships, there
are a number of limitations, derived from the experi-
mental design. Firstly, the process of decomposition
differs in carcasses exposed to air and those totally
submerged (Payne & King 1972), so the results
reported here cannot be invoked to claim the stabil-
ity of the stable isotope ratios in carcasses that have
remained underwater for a long time. Secondly, the
results reported here do not demonstrate the stability
of the stable isotope ratios of carcasses reaching
decomposition stage CC5, with organs beyond clear
recognition or absent (Kuiken & García Hartmann
1993), because the samples used for the present
experiment reached only stage CC4. Finally, other
internal organs, such as liver or kidneys, may decom-
pose faster than muscle or skin, and, hence, stability
of stable isotope ratios cannot be assured until exper-
imentally assessed.

CONCLUSIONS

To our knowledge, this is the first study verifying
that non-submerged marine animal tissue decompo-
sition does not affect stable isotope signatures. Our
findings have strong implications for all preceding
and future studies, as we did not detect any evidence
of change over time in decomposing samples of mus-
cle and skin samples exposed to air and reaching
decomposition stage CC4. This study provides strong
evidence confirming that the results obtained in pre-
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                             Tissue δ13C       δ15N
                                                  F          p            F          p

Time                    Muscle      0.564    0.608     0.893    0.447
Time × Species   Muscle      0.676    0.550     0.936    0.488
Time                       Skin        0.365    0.713     0.859    0.439
Time × Species      Skin        1.486    0.281     0.856    0.440

Table 3. Repeated-measures ANOVA of 1 within-subjects
factor: time (0, 4, 8, 19, 32, 50 and 62 d after the start of the
decomposition process), and its interaction with inter-subject
factors: species (Stenella coeruleoalba and Caretta caretta)

for δ13C and δ15N

                             Tissue  %C        %N
                                                  F          p            F          p

Time                    Muscle      0.985    0.377     0.411    0.858
Time × Species   Muscle      1.580    0.277     1.603    0.229
Time                       Skin        2.004    0.105     1.150    0.365
Time × Species      Skin        1.000    0.231     1.459    0.234

Table 4. Repeated-measures ANOVA of 1 within-subjects
factor: time (0, 4, 8, 19, 32, 50 and 62 d after the start of the
decomposition process), and its interaction with inter-subject
factors: species (Stenella coeruleoalba and Caretta caretta)

for %C and %N

Fig. 2. Stenella coeruleoalba, Caretta caretta. Mean (±SE)
% N in (a) skin and (b) muscle, and %C in (c) skin and (d)
muscle of carcass samples left unpreserved outdoors to 

decompose for 62 d
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vious studies are statistically comparable despite ani-
mal samples being at different states of freshness,
and validating their utility in scientific studies. How-
ever, further research is needed to confirm that sta-
ble isotope ratios in other tissues are not influenced
by decomposition and also that they are stable when
carcasses decompose under water.
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