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Abstract: 
 
A microkinetic model is developed to study the reactivity of an O/O2 gas mixture over a b-cristobalite 
(001) surface. The thermal rate constants for the relevant elementary processes are either inferred from 
quasiclassical trajectory calculations or using some statistical approaches, resting on a recently 
developed interpolated multidimensional potential energy surface based on density functional theory. 
The kinetic model predicts a large molecular coverage at temperatures lower than 1000 K, in contrary 
to a large atomic coverage at higher temperatures. The computed atomic oxygen recombination 
coefficient, mainly involving atomic adsorption and Eley-Rideal recombination, is small and increases 
with temperature in the 700-1700 K range (0.01 < gO < 0.02) in good agreement with experiments. In 
the same temperature range, the estimated chemical energy accommodation coefficient, the main 
contribution to which is the atomic adsorption process is almost constant and differs from unity (0.75 < 
bO < 0.80). 
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1. Introduction 

 
The reentry of space vehicles into Earth’s atmosphere, involves hypersonic speeds. The 

corresponding hypersonic flows are usually characterized by strong shocks leading to equilibrium or 

nonequilibrium molecular plasmas 1-2. Elementary processes involving atomic/molecular oxygen and 

nitrogen in the boundary layer are catalysed by the materials used as thermal protection systems (TPS) 

of these vehicles, increasing the total heat flux to their surfaces. The seeming simple heterogeneous 

processes that happen in these extreme conditions (e.g., O adsorption, O2 dissociative adsorption, O 

recombination via an Eley-Rideal mechanism,..) are even nowadays difficult to study experimentally 

or theoretically 3-4. Computer fluid dynamics (CFD) simulations are usually carried out to predict the 

relevant aerothermodynamics 1. In these simulations two coefficients are required to include 

appropriately the wall catalycity effects: a) the atomic recombination coefficient gi (also called 

catalytic efficiency) 3-4, which is the recombination probability of the i atomic species on the surface 

and b) the chemical energy accommodation coefficient bi 3,4,5, defined as the ratio of energy released to 

the surface per atomic recombination to the maximum energy transferable. Both coefficients are within 

the range 0 ≤ gi , bi ≤ 1 (for air i will be essentially O and N) and are supposed to depend on 

temperature and total/partial pressures (i.e., gi (T, P)) although more detailed description would be 

required for CFD accurate simulations of nonequilibrium flows (e.g., gi (Tgas, Tsurface, P)). Nevertheless, 

many experiments only measure routinely the effective catalycity (geff, i  = gi ¢ = gi • bi). 

Experimental gi and� bi values are characterized by a broad scatter 4 since they depend on the 

conditions under they were measured. According to this, the use of these coefficients does not properly 

describe the heat transfer over the whole surface and the entire trajectory of the vehicle. The important 

effect of gi coefficient on the heat flux has been shown in several simulations 3, 6 ;  some studies yield 

up to a factor of two for the wall heat flux of a fully catalytic wall (i.e., gi = 1)  wall compared to a 

noncatalytic one (i.e., gi = 0). The �bi coefficient is hardly measured and often it is taken equal to 1 

(i.e., fully energy accommodation assumption), although available values are very far from one 4. 

Therefore, more experimental or theoretical gi and �bi values would be necessary to better design 

thermal shields for spacecrafts, which would also allow a payload improvement. 

Recombination and surface activity data for silica-based materials are important as those are 

commonly used in TPS (e.g., in Space Shuttle tiles). Measurements of oxygen and nitrogen 

coefficients for air and O2 or N2 pure gases over SiO2-based surfaces (i.e., gi, gi ¢, bi on quartz, 

cristobalite, RCG, vitreosil, pyrex, silicon carbide,.. ) have been recently reviewed 4,7.  gi coefficients 

show strong temperature dependence, increasing with temperature until a critical value where the 
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thermal desorption becomes significant and hence the recombination coefficient declines. In particular, 

there are measurements of gO 8 and bO 9 for air at 200 Pa over b-cristobalite at high temperatures (800-

1830 K), which were obtained by in situ oxidation of sintered SiC samples. 

A large number of kinetic models for dissociated air, O2 and N2 gases on silica like surfaces have 

been developed in the past 6, 10, 11, 12, 13, 14, 15, 16, 17. These models take into account the main surface 

processes: physisorption, chemisorption, dissociative adsorption, thermal desorption, Eley-Rideal (ER) 

or Langmuir-Hinshelwood (LH) atomic recombinations,… The microscopic parameters used in these 

models (e.g., desorption energies, activation energies, density of adsorption sites,…) may be either 

derived from quantum-mechanical calculations or from semiempirical formulas. However, such 

parameters usually are estimated by fitting the experimental gi(T) coefficients or the heat fluxes 3. 

Thus, gi (T, P) curves are reported although different sets of the kinetic parameters can predict the 

same heat flux. Apart from macroscopic one-temperature models, more advanced state-to-state models 

have been also used in the description of the nonequilibrium chemical kinetics of high temperature 

plasmas 18. The state-to-state approach describes any internal degree of freedom of the molecules 
(vibrational, rotational, electronic). Each level is considered as an independent species subject to an 
appropriate continuity equation, own cross sections and rate coefficients. From the level distributions, 
the thermal properties of the gas and the global rate coefficients are derived, which may significant 
differ from those attained by a thermal equilibrium or weak nonequilibrium analysis. Thus, 
nonequilibrium vibrational kinetics of an O2/O mixture 19 or air 20 hitting a catalytic silica surface has 
been investigated. 

In a previous study of the O/SiO2 system, we carried out Density Functional Theory (DFT) 

calculations of O adsorption over a b-cristobalite (001) surface, showing a strong chemisorption 21. 

Quasiclassical trajectory studies (QCT) of atomic oxygen on a clean 22 or O-precovered  23,24 b-

cristobalite (001) surface reveal the importance of the atomic adsorption or penetration into the SiO2 

slab (absorption) along with the formation of adsorbed (O2(ad)) and gas phase (O2(gas)) molecular oxygen; 

these latter species mainly were formed through an Eley-Rideal (ER) mechanism. The O2 scattering on 

a clean b-cristobalite (001) surface 24,25 produces principally reflection and sticking 

(absorption/adsorption), while the dissociative sticking is only open at high collision energies (i.e., Ei > 

1 eV). Other authors have also made similar theoretical studies for oxygen on quartz 26 or b-cristobalite 
27,28. Up to now, the published theoretical gO coefficients are directly estimated from calculated reaction 

probabilities of ER and Langmuir-Hinshelwood (LH) reactions. A very recent study on the O/O2-b-

quartz surface catalysis based on molecular dynamics simulations using a ReaxFF potential 29, presents 
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gO coefficients for O or O/O2 gases at very high pressures (10-100 atm) in the temperature range of 

500-2000 K, which are larger than most experimental values. 

In the present work, we carry out new QCT thermal studies for the principal elementary processes 

(i.e., ER, O and O2 reaction dynamics) and we propose a microkinetic model for thermal O/O2 

mixtures reacting over a b-cristobalite (001) surface. All kinetic parameters are derived mainly from 

QCT data; the corresponding gO and bO coefficients for different temperatures and partial/total 

pressures are predicted. To our knowledge it is one of the few macroscopic models for this kind of 

systems, which only use theoretical data, in a similar way as we did in a previous work for O/O2 over 

graphite (0001) 30.   

 

2. Quasiclassical trajectory studies 
 

We have performed a QCT dynamics study 31 of atomic and molecular oxygen colliding with a 

clean b-cristobalite (001) surface. We have also studied the O collisions with an O-precovered b-

cristobalite (001) surface to investigate the ER reaction. These processes were previously studied at 

several state-specific conditions (e.g., initial collision energy (Ecol), internal O2(v,j) states,..) and only 

in few thermal (or quasithermal) conditions 22,23,24,25. Here we increase  the temperature range (300 - 

1600 K) and improve the statistics of the calculated reaction probabilities. The present study makes use 

of the previous developed PES for the global O2/b-cristobalite system 23, based on DFT data 

interpolated via by the corrugation reduction procedure 32.  In an earlier work 21 we extensively showed 

that spin-polarized DFT-GGA-PW91 calculations seemed to be accurate enough to describe not only 

the bulk properties of silica but also the interaction of oxygen and nitrogen over several b-cristobalite 

faces.  The interpolated PES was based on a dense grid of DFT-GGA-PW91 points calculated for 

several O and O-O configurations over the 1x1 surface unit cell 23, taking the lowest energy state 

(essentially singlet at short surface distances and triplet for longer ones). An empirical silica slab was 

also used to introduce the slab motion. Therefore, the present multidimensional PES allows both the 

oxygen and b-cristobalite movements. A wide description of this adiabatic PES (e.g., expressions, 

parameters, plots,,..) are reported in previous papers 22,23. We have used the same PES (available upon 

request) in the present study although we have added a small correction in two subroutines to make 

sure that the Cartesian gradients were fully periodic for atom/slab calculations with cells larger than 

the 1x1 one. Previous studies should not be affected by this fact as we used also the 1x1 unit cell, 

mainly for normal incidence calculations. 
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For O collisions with the clean surface we keep the second O atom at a large enough distance to the 

surface to avoid any undesirable interaction.  

The QCT description has been widely presented elsewhere 22-23. Briefly, the b-cristobalite slab used 

is formed by 104 atoms distributed into 9-layers for a 2x2 surface unit cell with a lattice parameter of 

7.348 Å. The slab temperature (TS) was controlled by means of a Generalized Langevin equation 

approach 31,33. The initial position of the incoming atomic or molecular oxygen was sampled over an 

1x1 surface unit cell, with an initial distance higher than 6 Å to avoid significant surface interaction. 

For the ER study the adsorbed O atom (Oad) was located over the central Si atom of the first layer 

(T1/T1” sites, Fig. 1) at an initial z distance of around 1.5 Å, being also thermalized together with the 

slab.  Since the experimental measurements of gO on b-cristobalite 8 correspond approximately to a flux 

of air colliding normally to the surface, we have restricted our simulation to normal incidence (qv = 0º) 

for all atomic and molecular collisions.  Thus, as we are interested in quasithermal conditions (i.e., T = 

TO(g)= TO2(g) = TS, qv) , the remaining conditions (i.e., initial O or O2 centre of mass position, azimuthal 

velocity fv angle, molecular f and �q angles,..) were randomly sampled and (Ei, v, j) were also 

sampled from a Boltzmann distribution at each selected temperature (T). Hamilton's equations were 

integrated by means of a modified Beeman algorithm with a fixed step of 1x10-4� ps, which permits an 

energy conservation of 10-4-10-5 eV in absence of the thermal bath.   

Batches of 5000-15000 trajectories were integrated at each temperature to ensure a reasonable good 

statistics for the reaction probabilities of the main channels. Different processes could be observed: 

atomic and molecular reflection, atomic and molecular sticking (adsorption + absorption), O2(ad) 

formation and O2(g) formation (i.e., ER reaction).  Classification criteria for these events were broadly 

discussed in earlier works 22,23.  These were based mainly on the analysis of ZO, ZO’, ZCM (molecular 

centre of mass Z coordinate) and r (O-O distance) variables, and the corresponding z velocity 

components of the atoms or the molecule (vz CM) after a minimum collision time (e.g., t = 2 ps). Thus, 

molecular oxygen (gas) was formed by the ER reaction when ZCM was much larger than 6 Å, the r 

distance was shorter than the double of the equilibrium distance (i.e., r  <  2.5 Å) and vz CM > 0, whereas 

O2(ad) was classified when ZCM <  3.0 Å with  r  <  2.5 Å. For this latter case, the integration was really 

finished if after some extra steps (e.g., 5-10) the classification was preserved. This criterion was 

especially useful for channels involving finally adsorbed/absorbed species. Nevertheless, some 

trajectories were ended up at shorter collision times (t < 2 ps) due to some PES limitations for 

extrapolation (e.g., the PES is not defined for ZCM < 0, ZO < -1.0 A or r < 0.5 Å), although we think that 

the final thermal probabilities are even pretty well converged and accurate enough for rate constant 

calculations. 
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Fig. 2 summarizes the reaction probabilities for quasithermal conditions from 300 to 1600 K. Fig. 

2a presents the O collisions over a clean surface, observing a very strong sticking, which decreases 

with the temperature raise. A much lower sticking is observed in Fig. 2b for O2 collisions over a clean 

surface. These behaviours were previously explained due to the favourable adsorption of both species 

(mostly for O) over several sites of the Si-terminated b-cristobalite surface, especially on top (T1 site) 

or very close (T1’ and T1” sites) to Si atoms 23 (see Fig. 1).  Molecular dissociative adsorption is not 

observed in this temperature range in agreement with previous QCT studies 24,25 that predict that this 

process is only open at higher collision energies (e.g., Ei > 1 eV). Fig. 2c and 2d show the reaction 

probabilities for O collisions with an O-precovered surface (O on T1/T1” site, which means an atomic 

coverage qO�= 0.25). The atomic sticking decreases in comparison with the clean surface probabilities 

as new processes such as O2 formation appear. In fact, we distinguish between the formation of the 

O2(g) via the ER reaction and the production of molecular oxygen that is strongly retained on the surface 

(O2(ad)). This second reaction channel is much more probable than the first one, which is shown in a 

semilogarithmic scale in Fig. 2d. This trend was also observed in similar studies of atomic oxygen 

recombination over quartz 26 and in previous molecular dynamic simulations for O/O2 over b-quartz 29. 

In this latter study, O2(ad) formation was established if adsorption was longer than 5 ps, although 

simulations at very long times (i.e., 1.5 ns) showed important O2 desorption, which increased the final 

ER probabilities and hence their g coefficients, although possibly this should be classified instead as 

molecular desorption.� The comparison of the present probabilities (Fig. 2c and 2d) with our previous 

ones 23 show small differences (i.e., lower O2 sticking and consequently larger O sticking for O 

collisions over an O-precovered surface, because the sum of probabilities is the unity) mainly 

originated by the introduction in our QCT code of a different classification of O2(ad) events (e.g., ZCM <  

3.0 instead of 1.9 Å, which was used in the previous study 23). The use of longer integration times in 

our trajectories (i.e., t > 2.5 ps) could also increase a bit the final O2 desorption although the mentioned 

PES limitations (i.e., energy extrapolation at very short O or O2 distances to the surface) avoid to 

describe more accurately such process. 

 

3. Microkinetic modelling of O/O2 mixtures reacting over b-cristobalite 
 

3.1 Surface processes 

 

We propose a first microkinetic model to ascertain the global effect of the main heterogeneous 

processes involving different O/O2 mixtures over a b-cristobalite (001) surface at quasithermal 
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conditions. Ten surface elementary processes are included, where i label will be used for the direct 

processes and –i for their reverse ones (i = 1,..,5). These are: 

 

chemisorption  (k1) and desorption (k-1) of oxygen atoms, 
 

  (1) 

 

molecular nondissociative adsorption (k2) and molecular desorption (k-2), 
 

  (2) 

 

O2(ad) formation by atomic recombination (k3) and molecular dissociative desorption (k-3), 
 

  (3) 

 

Eley-Rideal reaction (k4) and molecular dissociative adsorption (k-4), 
 

  (4) 

 

and Langmuir-Hinshelwood reaction (k5) and molecular dissociative adsorption (k-5), 

 

  (5) 

 

where s indicates a free site on the surface. DFT studies show that molecular oxygen is adsorbed in 

parallel over a Si atom, using two free adjacent sites of the four available in each (1x1) unit cell 23. The 

O2 dissociation can produce several final products (e.g., O(ad) + O(ad), O(g) + O(ad),..).  Adsorbed (ad) or 

absorbed (ab) species are indicated hereafter using only the ad subscript, as they are not distinguished 

within this model. Processes are labelled as direct and reverse ones for notation compactness (i.e., ki 

and k-i). 

 

 

 

 

 

O(g) + s →← O(ad)

O2(g) + 2s →← O2(ad)

O(g) +O(ad) + s →← O2(ad)

O(g) +O(ad) →← O2(g) + s

O(ad) +O(ad) →← O2(g) + 2s
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3.2 Thermal rate constants 

 

We have calculated the thermal rate constants for the elementary processes (1), (2), (3) and (4) from 

the corresponding thermal QCT reaction probabilities (Pi(T)) reported in section 2 (Fig. 2) by using 

conveniently the following standard expressions 6,12 ,  
 

  (6) 

  (7) 

 

where kB is the Boltzmann constant, T is the temperature, ml is the atomic mass (molecular mass for  

k2) and [s]0 is the initial surface density of free sites (i.e., 4 sites per unit cell or 7.41x1018 sites •m-2 for a 

b-cristobalite (001) surface). The i values in the eqn (6) and (7) show the elementary processes for 

which these rate constants are calculated. 

We have used fittings of the QCT probabilities by using some polynomials for (1), (2) or (4) processes 

or an Arrhenius expression for ER reaction (3), which are also plotted in Fig. 2. As the LH reaction 

was not studied by the QCT method, we have estimated its rate constant from the following equation 
6,12 , 
 

  (8) 

 

where ∆ is the mean distance between active sites, the square root term is the mean velocity of O 

reacting adatoms, assuming a two-dimensional gas and  is the LH energy barrier including zero 

point energy, derived from our PES data (i.e., 3.29 eV).  The rate constants for reverse 

processes (k-i) were obtained by means of the principle of detailed balance, using the DFT reaction 

exo- or endothermicities of each process ( , including zero point energies).  We have not 

introduced spin statistical factors into the rate constants. This assumption could be acceptable as we 

use the same adiabatic PES for all O2/b-cristobalite processes and because these factors should produce 

only small and similar changes into the calculate rate constants. 

ki (T ) = Pi(T ) kBT
2πml

1
s[ ]0

  ,  i = 1,4    (m3 ⋅ s-1)

ki (T ) = Pi(T ) 
kBT

2πml

1

s[ ]0
2

  ,  i = 2,3    (m
5
⋅ s

-1
)

k5 (T ) = 1
Δ

πkBT
2mO

1
s[ ]0

e
−ΔE5

0≠

kBT   ,    (m2 ⋅ s-1)

ΔE5
0≠

ΔE5
0≠ ≈ ΔE5

0 =

ΔEi
0
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Fig. 3 shows the calculated QCT rate constants within the 400-2000 K range of temperature. The 

great differences in these rate constants will have an important influence on the global recombination 

kinetics of the system. It is for instance expected that LH reaction contributes much less than ER 

reaction to the global recombination within this model. 

The rate constants are finally fitted by using an Arrhenius formula within the 700-1700 K range, 

whose parameters (Ai, Ea,i) are indicated in Table 1 together with values. This more restricted 

temperature range is selected to obtain better Arrhenius parameters to be used for the following gO and 

bO calculations; the initial T interval is too wide (400-2000) so that significant curvature is observed at 

lower temperatures. 

 

 

3.3 Surface coverage and gO recombination coefficient 

 

The time evolution of the surface concentration of both atomic and molecular adsorbed species 

resulting from the microkinetic model is given by the solution of the coupled equations 

   

 (9) 

 

and 
 

 (10) 

 

where as each O2(ad) uses two sites, the density of free adsorption sites at any time will be 
 

  (11) 

 

Fig. 1 shows the available sites over the unit cell of b-cristobalite (001) surface. The incoming O atom 

approaches preferentially the surface over Si atoms (T1 sites) but at closer distances the adatom can be 

tilted over the more stable T1” sites as was shown in previous studies 22. Thus, every Si can adsorb two 

O atoms using its two dangling bonds. The factor 1/3 takes into account that only the nearest 

ΔEi
0

d[O(ad) ]
dt

= k1[O][s] − k−1[O(ad) ]-k3
1
3
[O][O(ad) ][s] + k−3[O2(ad) ]-

-k4[O][O(ad) ] + k−4 [O2][s] − 2k5 [O(ad) ]
2 + k−5

1
3
[O2][s]

2

d[O2(ad) ]
dt

= k2
1
3
[O2][s]

2 − k−2[O2(ad) ] + k3
1
3
[O][O(ad) ][s] − k−3[O2(ad) ]

[s] = [s]0 − [O(ad) ] − 2[O2(ad) ]  
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neighbours (i.e., two O on the same Si) will be effective for several reactions (e.g., two adjacent sites 

inside the unit cell, which means one of the three pairs of sites, are necessary for reaction (2)). In fact, 

this small correction introduces some correlation between the locations of the reactants on the surface 

that a phenomenological kinetics approach does not take into account as compared with more accurate 

kinetic Monte Carlo simulations 34. 

The numerical integration of these differential equations  (eqn 9 and 10) for a constant flux of an 

O/O2 mixture (i.e., constant PO and PO2) impinging against the surface at a given temperature allows 

monitoring the evolution of atomic (qO) and molecular (qO2) coverages up to final steady-state (ss) as 

shown in Fig. 4 at 900 and 1500 K for PO = 91 Pa and PO2 = 9 Pa. These partial pressures are close to 

the experimental ones for highly dissociated air plasma (ca. 70-80 %) 8,35  at total pressure of 200 Pa 

over b-cristobalite. Two different trends are observed:  a) a final molecular coverage at temperatures 

lower than 1000 K, which occurs at much longer times and b) a final predominant and very high 

atomic coverage at high temperatures. These overall behaviours are observed for several mixtures; 

however, the formation of O2(ad) by the competitive processes (2) and (3), which have similar rate 

constants (Fig. 3), increases mainly with the raise of PO2 and PO, respectively, hence alternating their 

influence for different initial mixtures. For pure O mostly atomic coverage is observed. 

 The difference between both behaviours are mainly originated from the temperature dependence of 

both molecular desorption processes (-2) and (-3). At very high temperatures their rate constants   (k-2, 

k-3) are very large (being k-2 >> k-3) and only a final atomic adsorption is observed (e.g., qO = 0.99 at 

1500 K, Fig.4b), �being negligible the �final O2(ad) formation by (2) or (3) processes. At lower 

temperatures atomic oxygen is initially adsorbed until a suitable atomic coverage (maximum in Fig. 

4a),  when reaction (3) start to produce O2(ad), which is not desorbed enough because both k-2 and k-3 

(also with k-2 >> k-3) are now much lower (e.g., qO = 0.11 at 900 K, Fig. 4a). The calculated atomic and 

molecular coverages are much larger that the ones observed for graphite (0001) (qO < 10-3 and qO2 » 0) 
30, which can be justified by the very strong atomic and molecular chemisorptions on b-cristobalite.  

We have also calculated the atomic oxygen recombination coefficient gO as the ratio of the total flux 

of recombining oxygen atoms (O(g) consumption and formation) to the initial flux of impinging oxygen 

atoms (ZO) over the surface once achieved the steady-state concentrations, using the following 

equation, 
 

 

γO =
k1[O][s]ss − k−1[O(ad) ]ss + k3

1
3
[O][O(ad) ]ss [s]ss − k−3[O2(ad) ]ss + k4[O][O(ad) ]ss − k−4 [O2][s]ss

ZO
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  (12) 
 

ZO, which is the number of O collisions over a surface per unit area and unit time, is given by the 

standard Hertz-Knudsen relation 36, 
 

  (13) 

 

for a constant and normal flux of O/O2 (i.e., [O] = [O]0 and [O2] = [O2]0). We have checked that the gO 

coefficient derived from O2 balance 36,16 led to the same values than the ones from eqn (12) at the final 

steady-state (or quasisteady-state). At lower temperatures, the surface suffers a passivation (gO » 0) due 

to the high O2 coverage, which prevents any atomic recombination. Therefore, in this case we have 

estimated gO coefficient at the quasisteady-state reached at shorter times, which is comparable with 

experimental measurements on b-cristobalite 8. Fig. 5 shows gO dependency against the inverse of the 

temperature, splitting this among the three main contributions: (1), (3) and (4) processes. We observe 

that gO is almost independent on the initial mixture composition, as we have verified for some initial 

conditions (e.g., PO/PO2 = 0.1, 1, 10 at several total pressures lower than 5000 Pa). Atomic oxygen 

recombination is almost insensitive to the presence of molecular oxygen in the initial flux because of 

the very low rate constants of the processes (2), (-4) and (-5) involving O2 (see Fig. 3), leading to 

negligible molecular dissociative or nondissociative adsorptions. However, at very large pressures 

these processes could become more important (i.e., through the concentration effect in eqn 12) as it 

was shown for O recombination over b-quartz at 100 atm 29, where for O/O2 mixtures with partial 

pressures of 50 atm the gO coefficient decreased with respect to pure O at 100 atm. 

Small recombination coefficients are observed (0.01 < gO < 0.02) in the 700-1700 K range, which 

are essentially originated from atomic adsorption and ER reaction with a similar proportion. No LH 

contribution is observed at all. In spite of the reaction (3) competes with ER reaction (4) with much 

higher reaction probabilities (Fig. 2c and d), its lower rate constants (i.e., k3 < k4; see Fig. 3a and c) 

together with the small amount of free surface sites (see [s]ss in Fig. 4), can justify its negligible 

contribution to gO. 

These two contributions in gO are in agreement with previous assumptions made in similar kinetic 

models 5, 37. At very large pressures the LH reaction seems to gain importance for b-quartz 29 , leading 

to larger gO values (0.01 ≤ gO ≤0.35). 

 

ZO = [O]
kBT
2πmO
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Fig. 6 compares the calculated gO values with recent molecular dynamics calculations on O/O2 over 

b-quartz 29 along with experimental measurements on several silica surfaces 8,38,39,40. The calculated 

coefficients increase with T following an exponential trend in agreement with the scattered 

experimental data. The dispersion in the experimental data may be due to several factors such as 

composition and structure of the silica surface (i.e., amorphous silica, several crystalline 

polymorphs,..), surface roughness 4,38, gas composition (e.g., air, pure O, O/O2 mixtures,..) or the 

experimental method used. The present calculated gO coefficients correspond to a perfect b-cristobalite 

(001) surface. The introduction of defects in our surface (e.g., corners, steps, O vacants,..) would 

modify somewhat the reactivity and consequently the calculated gO coefficient. In fact, the 

experimental measurements used a b-cristobalite surface coating 8 obtained by oxidation of sintered 

SiC samples at different temperatures, with possibly a polycrystalline nature, which could justify the 

slightly higher experimental reactivity. 

In a previous work 23 we directly compared the experimental gO values with QCT ER reaction 

probabilities, obtaining similar values although with a slope closer to the experimental one than that of 

the present work. The seemingly better previous results could be fortuitous because another processes 

(e.g., specially the atomic adsorption) should be included in a more reliable calculation of this 

coefficient. On the other hand, as the calculated gO coefficients are based on QCT reaction 

probabilities, some improvements on those could increase slightly the gO values. Thus, the inclusion of 

physisorbed O atoms (not only chemisorbed on T1/T1” sites) in the ER study would probably increase 

the O2 formation. Moreover, the integration at longer times (e.g.,  2.5-5 ps) for reaction (3), which 

produces adsorbed O2, could increase the molecular desorption with following final augment of the ER 

contribution. For instance, simulations for b-quartz 29 were ran at least for t < 5 ps, showing also a 

significantly increasing of gO but possibly at too long times (i.e., 1.5 ns). 

Finally, although microkinetic models are commonly used to simulate the heterogeneous chemical 

kinetics of dissociated airflows impinging different types of surfaces 16,36 with good agreement in 

comparison to available experimental data (e.g., total heat flux to the surface, g coefficients,..), more 

developed Monte Carlo simulations (e.g., N over silica 41, H over graphite 42) could also be needed to 

provide a deeper microscopic understanding of these processes. 
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3.4 bO chemical energy accommodation coefficients 

 

Following a similar approach as for the calculation of g  coefficient, we can calculate the 

b  coefficient once achieved the final steady- or quasisteady-state  from the ratio of the total chemical 

energy that can be transferred to the surface to the energy that would be released if all consumed O 

atoms gave place to O2(g), using the expression 

  (14) 

where DO2 is the O2 dissociation energy, Fi represents the atomic or molecular fluxes at the steady-

state (shown in Table 1)  and Qi are the energies per O atom required or released in each process, 

which are derived from the expressions and activation energies (Table 1). We assumed that adsorbed 

species (e.g., process (1)) release all of their available energy to the surface and that gas products (e.g., 

process (4)) will escape with all of their available energy (i.e., assuming a very short interaction with 

the surface), which would give a minimum b. This latter point is supported by previous QCT study of 

the ER reaction on b-cristobalite 23, which showed that formed O2 molecules become translationally 

and internally excited, taking rather some energy from the surface. Similar expressions were used in 

earlier studies 5 to estimate this b coefficient under several assumptions. This calculation should be 

considered as a first approximation to this coefficient (bmin) as there is not a unique choice of Qi 

energies. Detailed dynamics studies on each elementary process, determining their energy fluxes with 

the solid, could afford a much accurate b calculation. Fig. 7a presents bO as a function of temperature 

for the same conditions as for Fig. 6, showing a value within the 0.75-0.80 range. There is only a very 

slight dependency with the temperature with a small maximum around 1100 K, which arises from the 

small decrease in molecular coverage  (see Fig. 7b) due to the desorption process (-2) becomes more 

important than the O2 formation by process (3) for T ≥ 1100 K, being in these conditions b 

proportional to k1 [s]/g T1/2. A similar shape with almost constant b values were found for instance 

for N recombination over palladium and rhodium 5. We have also calculated bO for several initial 

O/O2 mixtures with similar results; only for PO = PO2  = 50 Pa the maximum achieved a larger value 

(i.e., bO = 0.85 at 1000 K). The values obtained show that the common assumption that bO = 1 and 

hence gO’ = gO is not justified at all for O recombination over b-cristobalite. An analysis of the main 

β =

Fi ⋅Qi
i=−5, i≠0

+5
∑

ZO ⋅ γ ⋅ DO2 / 2( )
  

⋅ ⋅
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contributions to bO is shown in Fig. 8, which displays the total and the partial energy fluxes originated 

by the main processes. Clearly, the atomic adsorption process is largely the one producing almost the 

total energy released to the surface. 

Up to our knowledge there is only a communication 43 about some direct measurements of bO and 

catalytic recombination fluxes on b-cristobalite, which reports a strong decrease of this coefficient in 

the interval 966-1770 K at 200 Pa (0.69 < bO < 0.12), but with a surprising almost constant energy flux 

(e.g., 35 ± 5 kW/m2 for the lowest and highest bO values) in this temperature range. The same authors 

have presented the effective catalycity (gO¢ = gO• bO), which decreases slightly as temperature augments 
7 contrary to the common increase of gO¢ observed for several silica materials (e.g., RCG, SiO2+B2O3,.. 

7). The present calculations show nearly constant bO coefficients and energy fluxes, showing however 

lower values (10.4-11.3 kW/m2 for PO = 91 Pa, PO2  = 9 Pa) and a different behaviour particularly 

respect to bO. The experimental recombination fluxes increase for more catalytic materials (SiC  » SiC 

+ SiO2 ≤ AlN ≤ Al2O3) 44; thus sintered SiC shows a nearly constant value (25 or 35 kW/m2 for air at 

200 or 2000 Pa, respectively) while pure alumina reaches 184 kW/m2 at 1400 K, decreasing to 93 

kW/m2 at 1800 K for 2000 Pa 44. The experimental increase of this flux as pressure rises (e.g., from 

200 to 2000 Pa) could also indicate the necessity of a better understanding of the experimental 

conditions in order to facilitate a more reliable comparison with our calculations. For instance, we 

observe also this increase for higher oxygen pressures (e.g., a mean value of 23.5 kW/m2 for P = PO = 

200 Pa). Moreover, new measurements of bO for pure oxygen mixtures would be necessary to see if the 

results for air are reliable enough and to compare more properly with the present calculations. 

 

 

4. Summary and conclusions 

 

 In this work we present a theoretical study of a gas mixture of atomic and molecular oxygen 

reacting over a b-cristobalite (001) surface, which is relevant for the simulation and the understanding 

of the aerodynamic heating produced during the reentry of spacecrafts into Earth’s atmosphere. 

 We use a previous multidimensional potential energy surface based on DFT data to determine 

thermal rate constants for atomic or molecular oxygen colliding with a clean surface and for atomic 

oxygen colliding with an O-precovered surface, by means of quasiclassical trajectories. 

The present dynamical studies confirm earlier conclusions: atomic sticking over the clean surface is 

the predominant process but decreases for an O-precovered surface due to the appearance of two 
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competitive processes that produce O2(ad) and O2(g). Moreover, molecular nondissociative sticking is 

also observed. 

We propose a microkinetic model with ten heterogeneous processes to study this system for 

different O/O2 mixtures and temperatures. Rate constants are derived from QCT data for direct 

processes or using the principle of detailed balance for reverse ones. The numerical integration of the 

corresponding differential equations allows determining the evolution of atomic and molecular surface 

coverage until the final steady-state. A large molecular coverage is observed at temperatures lower 

than 1000 K, which could produce surface passivation at long times, whereas a large atomic coverage 

at higher temperatures for O/O2 mixtures is obtained. 

We have calculated the atomic oxygen recombination coefficients, showing small values in the 700-

1700 K range (0.01 < gO < 0.02) almost independent on the initial mixture composition, being the 

atomic adsorption and Eley-Rideal their main contributions. The calculated coefficients increase with 

the temperature following an Arrhenius equation in agreement with experimental data, with values 

close to the experimental ones. 

An estimation of a minimum chemical energy accommodation coefficient has been also presented, 

obtaining an almost constant value (0.75 < bO < 0.80) within 700-1700 K; therefore the common 

assumption that bO = 1 and hence gO’ = gO seems inaccurate for O recombination over b-cristobalite. 

The atomic adsorption process is mostly the one producing almost the total energy released to the 

surface. Nevertheless, there are some divergences of the calculated bO respect the only set of available 

experimental values for air over b-cristobalite, although the agreement is much better respect the total 

energy flux transferred to the surface. Additional measurements of gO and bO for pure oxygen mixtures 

instead of for air and a better knowledge of the experimental conditions would be necessary to 

compare more correctly the present calculated coefficients.  

 

 

Acknowledgments 

 

This work was supported in part by the Spanish Ministry of Science and Innovation (Project 

CTQ2009-07647), by the Autonomous Government of Catalonia (Project 2009SGR1041) and by the 

European Commission research funding (Project FP7-SPACE-2009-242311). We also thank to 

Marianne Balat-Pichelin for the explanations about her experiments with air over b-cristobalite. The 

authors also thank to Prof. Ricardo Díez Muiño (Centro de Física de Materiales, Centro Mixto CSIC-

UPV/EHU, San Sebastián, Spain) for fruitful discussions and for some financial support. 



 

 16 

 

 

References  

 

 
  

 1. J.J. Bertin and R. M. Cummings, Ann. Rev. Fluid. Mech., 2006, 38, 129-157. 

 2.  M. Capitelli, R. Celiberto, F. Esposito and A. Laricchiuta, Plasma Proc. and  Polym., 2009,  

  6, 279-294. 

 3.  V. L. Kovalev and A. F. Kolesnikov, Fluid. Dyn., 2005, 40, 669-693. 

 4. J. Thoemel, E. Cosson and O. Chazot, Proceedings of the Sixth European Symposium on 

Aerothermodynamics  for Space Vehicles, Versailles , France, 2008, ESA SP-659, session 18, 1-14. 

 5.  B. Halpern and D.E. Rosner, J. Chem. Soc. Farad. Trans., 1978, 74, 1883-1912. 

 6.  T.  Kurotaki, AIAA, 2000, 2366, 1-7. 

 7. L. Bedra and M. Balat-Pichelin, Aerosp. Sci. Tech., 2005, 8, 318-328. 

 8. M. Balat-Pichelin, J. M. Badie, R. Berjoan and P. Boubert, Chem. Phys., 2003, 291, 181-194. 

 9. M. J.H. Balat-Pichelin, V. L. Kovalev, A.F. Kolesnikov and A.A. Krupnov, Proceedings 

  of the 24th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc., 2005, 762,  

  1347-1352. 

10. W.A. Seward and E.J. Jumper, J. Therm. Heat Trans., 1991, 5, 284-291. 

11.  E.J. Jumper and W.A.  Seward, J. Therm. Heat Trans., 1994, 8, 460-465. 

12. F.  Nasuti, M.  Barbato and C. Bruno, J. Therm. Heat Trans., 1996, 10, 131-136. 

13.  B. Gordiets, C.M. Ferreira, J. Nahorny, D. Pagnon, M. Touzeau and M. Vialle,  

  J. Phys. D: Appl. Phys., 1996, 29, 1021-1031. 

14.  A. Daiss, H.-H. Frühauf and E.W. Messerschmid, J. Therm. Heat Trans., 1997, 11, 346-352. 

15.  G. Cartry, L. Magne and G. Cernogora, J. Phys. D: Appl. Phys.,  2000, 33, 1303-1314. 

16.  V. Guerra, IEE Trans. Plasma Sci., 2007, 35, 1397-1412. 

17. M. Balat-Pichelin, V.L. Kovalev, A.F. Kolesnikov and A.A. Krupnov, Fluid. Dyn., 2008,  

  43, 830-838. 

18. M. Lino da Silva, V. Guerra and J. Loureiro, Plasma Sources Sci. Technol., 2009, 18, 034023-1,11. 

19.  I. Armenise, M. Capitelli, C. Gorse, M. Cacciatore and M. Rutigliano, J. Space. Rock.,  

  2000, 37, 318-323. 

20. I. Armenise, M. Capitelli and C. Gorse, J. Space. Rock., 2001, 38, 482-487. 

21. C. Arasa, P. Gamallo and R. Sayós, J. Phys. Chem. B, 2005, 109, 14954-14964. 



 

 17 

 
22.  C. Arasa, H.F. Busnengo, A. Salin and R. Sayós, Surf. Sci., 2008, 602, 975-985. 

23. C. Arasa, H.F. Busnengo, A. Salin and R. Sayós, Surf. Sci., 2009, 603, 2742-2751. 

24. R. Sayós, V. Morón, C. Arasa and H.F. Busnengo, Proceedings of the Sixth European Symposium 

  on Aerothermodynamics  for Space Vehicles, Versailles , France, 2008, ESA SP-659, session 28, 1-7. 

25. V. Morón, C. Arasa, R. Sayós and H.F.  Busnengo, Proceedings of the 26th International 

  Symposium on Rarefied Gas Dynamics, AIP Conf. Proc., 2008, 1084, 682-687. 

26. L. Bedra, M. Rutigliano, M. Balat-Pichelin and M. Cacciatore, Langmuir, 2006, 22, 7208-7216. 

27. M. Cacciatore, M. Rutigliano and G.D. Billing, J. Therm. Heat. Trans., 1999, 13, 195-203.  

28. M. Rutigliano, C. Zazza, N. Sanna, A. Pieretti, G. Mancini, V. Barone and M. Cacciatore,  

  J. Phys. Chem. A, 2009, 113, 15366-15375.   

29. P. Norman, and T. Schwartztentruber, AIAA, 2010, 4320, 1-15.  

30. V. Morón, P. Gamallo and R. Sayós, Theor. Chem. Acc., 2011, 128, 683-694. 

31. G.D. Billing, Dynamics of Molecule Surface Interactions, John Wiley & Sons, New York, 2000 

(Chap. 5 and 6). 

32. H. F. Busnengo, A. Salin and W. Dong, J. Chem. Phys., 2000, 112, 7641-7651. 

33. J. C. Tully, J. Chem. Phys., 1980, 73, 1975-1985. 

34. B. Temel, H. Meskine, K. Reuter, M. Scheffler and H. Metiu, J. Chem. Phys., 2007, 126,  

  204711-1-12. 

35.  M. Balat-Pichelin and A. Vesel, Chem. Phys., 2006, 327, 112-118. 

36.  M. Barbato, S. Reggiani, C. Bruno and J. Muylaert, J. Therm. Heat Trans., 2000, 14, 412-420. 

37. S. Sepka, Y. Chen, J. Marschall and R. Copeland, J. Therm. Heat Trans., 2000, 14, 45-52. 

38  Y. C. Kim and M. Boudart, Langmuir, 1991, 7, 2999-3005. 

39  J.C. Greaves and J.W. Linnett,  Trans. Farad. Soc., 1959, 55, 1355-1361. 

40  P. Kolodziej and D.A. Stewart,  AIAA., 1987, 87, 1637. 

41  V. Guerra and J. Loureiro, Plasma Sources Sci Tech., 2004, 13, 85-94. 

42  H.M. Cuppen and L. Hornekaer, J. Chem Phys., 2008, 128, 174707-1 

43  M. Balat-Pichelin, V.L. Kovalev, A.F. Kolesnikov and A.A. Krupnov, AIP Conf. Proc.,  

  2005, 762, 1347-1352. 

44  M. Balat, M. Czerniak and J. M. Badie, Appl. Surf. Sci., 1997, 120, 225-238. 

 

 

 

 



 

 18 

 
 

 

 

Figure captions 

 

 

Fig. 1 

 

Fdd2-b-cristobalite unit cell formed by Si (large spheres) and O (small spheres) atoms: (a) 3D unit 

cubic cell and (b) top view of the (001) face showing the two first layers and the T1 (Si) and T1” 

(crosses) sites. 

 

Fig. 2 

 

QCT reaction probabilities for normal incidence at several temperatures (300-1600 K): (a) O over a 

clean surface, (b) O2 over a clean surface, (c) and (d) O over an O-precovered surface. Lines show 

analytical fittings. 

 

Fig. 3 

 

Calculated thermal rate constants (400-2000 K) for the different heterogeneous processes involved in 

the proposed microkinetic model, based on QCT data. Only rate constants with the same units can be 

easily compared. Points are connected with a line to guide the view. 

 

Fig. 4 

 

Free sites fraction, and atomic and molecular surface coverage evolutions for an O/O2 mixture (91, 9 

Pa) at (a) 900 K and (b) 1500 K. 

 

Fig. 5 

 

Calculated gO(T) coefficients versus the reciprocal of the temperature, showing their main process 

contributions: (a) PO = PO2  = 50 Pa, (b) PO = 100 Pa,  PO2  =  0. 
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Fig. 6 

 

Calculated and experimental gO(T) coefficients versus the reciprocal of the temperature for several 

silica materials. The solid lines show an Arrhenius fitting of the calculated data. Calculated gO: this 

work for O/O2 (PO = 91 Pa, PO2  = 9 Pa) on b-cristobalite (filled circles); ReaxFF Molecular Dynamics 

calculations for pure O at 1x106 Pa on b-quartz (empty squares) 29. Experimental gO: air on b-

cristobalite (filled squares) and quartz (filled triangles) at 200 Pa 8; pure O on fused quartz at 27 Pa 

(empty triangles) 38; O on silica (vitreosil) at PO = 1500-1600 Pa (filled diamonds) 39 ; gO’ for O on 

RCG at PO = 133-824 Pa (empty circles) 40. 

 

Fig. 7 

 

Calculated bO(T) coefficients and surface coverage versus for an O/O2 mixture (91, 9 Pa) over on b-

cristobalite at several temperatures. 

 

Fig. 8 

 

Calculated total and partial (Fi•Qi) energy fluxes transferred with the b-cristobalite surface for an O/O2 

mixture (91, 9 Pa) at several temperatures. The main contributions of the different processes are also 

shown. Be careful because the lower panel uses a much more amplified Y-axes (1 kW•m2). 
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Fig.5 
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Fig.6 
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Fig.7 
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Fig.8 
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Table 1 
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Arrhenius parameters derived from the calculated thermal rate constants using analytical Pi(T) 

QCT probabilities within 700-1700 K. are the exo- or endothermicities energies. Qi energies 

and Fi fluxes are used later for b calculations. 

 

reaction process A a Ea,i (eV)  (eV) b Qi c Fi (m-2s-1) d 

  

 1 

 -1 

 2 

 -2 

 3 

 -3 

 4 

 -4 

 5 

 -5 

  

4.404x10-17 

5.018x10 14 

1.980x10-36 

9.730x10 14 

1.285x10-36 

3.492x10 13 

8.686x10-19 

4.802x10-20 

1.663x10-20 

8.069x10-53 

  

 

0.0407 

4.63 

0.0518 

2.60 

0.158 

4.14 

0.0914 

1.53 

4.24 

1.08 

 

  

 -4.65 

 4.65 

 -2.72 

 2.72 

 -4.07 

 4.07 

 -1.36 

 1.36 

 3.29 

 -3.29 

 

Ea, -1 – Ea, 1 

- Ea, -1 

½(Ea, -2 – Ea, 2) 

½ (- Ea, -2) 

Ea, -3 – Ea, 3 

- Ea, -3 

- Ea, 4 

- Ea, -4 

½(- Ea, 5) 

½(- Ea, -5) 

 

k1[O][s] 

k-1[O(ad)] 

(1/3)k2[O][s]2 

k-2[O2(ad)] 

(1/3)k3[O][O(ad)][s] 

k-3[O2(ad)] 

k4[O][O(ad)] 

k-4[O2][s] 

2k5[O(ad)]2 

(1/3)k-5[O2][s]2 

 

a Units (s-1, m3•s-1 , m2•s-1 and m5•s-1) are as for the rate constants (see Fig. 1) 
b Values derived from the interpolated O2/b-cristobalite PES, including zero point energies. Atomic 

adsorption assumed on T1 site. 
c Energies by O atom required (< 0) or released (>0) to the surface for each i process. 
d Partial atomic or molecular fluxes for each reaction process. 
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