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Abstract 
 

A quasiclassical trajectory dynamics study of molecular oxygen colliding over a free of defects and 

clean graphite (0001) surface has been performed with a recently published density functional theory 

based flexible periodic London-Eyring-Polanyi-Sato potential energy surface (PES). Although the PES 

was mainly constructed for describing accurately the recombination of atomic oxygen over an O-

preadsorbed surface, here we show that this PES is also reliable to study the scattering of O2 over 

graphite surface. Thus, several initial conditions have been explored: collision energies (0.2 £ Ecol £ 1.2 

eV), incident angles (qv = 0°, 45°), surface temperatures (100 £ Tsurf £ 900 K) and some rovibrational 

O2 levels (v = 0,1,2 and j = 1,17,25). The calculated polar scattering angular distributions are in good 

agreement with the experimental ones in a wide range of explored conditions. Moreover, the 

comparison with hyperthermal experimental data, which was unclear in a previous work, has been 

finally clarified. The effect of O2 (v,j) internal state on the scattering is very small. 
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I. Introduction 

 

Satellites and other orbiting vehicles in low Earth orbits (i.e., at 160 – 2000 Km above Earth) must 

travel at velocities around 7.5 km/s in order to avoid collapsing on Earth’s surface due to gravity. At 

these high velocities the shielding of the vehicle receives a great amount of highly energetic collisions 

(i.e., about 4.5 ± 1.0 eV 1) of the main present species (O/O2). These collisions can produce several 

heterogeneous processes (etching, adsorption, reflection, recombination, oxidation) and also a flux of 

heat to the surface of the vehicle. It is worth for space industry to model this kind of elementary 

processes in order to improve the behaviour of the thermal protection systems of space vehicles at these 

extreme conditions. Among these processes, the oxidation reaction between O2 and several carbon-

made materials such as graphite, graphene and single-wall carbon nanotubes is known to play an 

important role not only during these reentries but also in many other fields (e.g., heterogeneous 

oxidation catalysis, solubility and functionalization of single-wall carbon nanotubes). The oxidation of 

these materials alters their physicochemical properties such as the wettability, adsorption (sticking) of 

the surface and use to be a drawback for their technological application. It is known that the molecular 

chemisorption and the dissociative adsorption of O2 molecule over carbon materials depend on the 

availability of reactive sites (i.e., graphitic edge planes or defects 2) and also on the surface 

temperature. It is important to note that graphite with defect-free basal planes undergoes thermal 

oxidation at extremely high temperatures whereas at low-temperatures exposure leads to only weakly 

physisorbed O2. According to this, a pristine (i.e., free of defects) graphite surface would be the more 

appropriate and desirable for acting as a thermal protection system since the number of surface 

reactions would be minimized and also the heat transfer to the surface. 

Recently, some experiments 3,4 reported the polar scattering angular distributions resulting from a 

highly collimated and nearly monoenergetic incident beam of O2 scattered from the surface of highly 
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oriented pyrolitic graphite. An important characteristic of the experimental setup is the use of a fixed 

source-detector geometry in which the angle between the incident beam and the detector direction was 

held at an angle of 90º. These experiments were carried out at the particular incident energy within the 

range 0.291 eV £ Ecol £ 0.614 eV and also for a surface temperature in the interval (150 K £ Tsurf £ 500 

K). For each collision energy and surface temperature the angular distribution intensities were reported 

as a function of final polar scattering angle (θv') relative to the surface normal. Moreover, some 

experiments 5,6,7 were also performed with hyperthermal beams of O(3P) atoms with some extent of 

O2(X3Σg-) that impinge over highly oriented graphite. In a previous work 10, we showed that the 

quasiclassical trajectory (QCT) polar scattering angular distributions, I(qv’), of the O2 molecules 

formed by the Eley-Rideal reaction presented a peak centred at qv’ = ~40º much lower than the 

experimental O2 distribution, peaked at qv’ = ~60º 5. This discrepancy is understood since in the 

experiment, a mixture of O2/O forms the initial beam, so the higher contribution to the O2 polar 

scattering angle distribution should come from the O2 molecules directly scattered by the surface. Thus, 

in order to elucidate this point we have completed our previous Eley-Rideal QCT study 10 with the 

addition of a new O2 QCT scattering analysis for the same initial experimental conditions. 

 This paper presents a QCT dynamics study of O2 molecules colliding with a pristine graphite 

(0001) surface. Our recent Flexible Periodic London-Eyring-Polanyi-Sato (FPLEPS) potential energy 

surface (PES) based on density functional theory (DFT) data has been used. This PES was used 

previously for describing the O collisions with a clean 8,9 and with an O-preadsorbed 10 graphite (0001) 

surface, obtaining a good agreement with experimental data. As above mentioned, thermal oxidation on 

free of defects graphite surfaces only occur at extremely high temperatures, so the FPLEPS surface (for 

a graphite surface without any defects) must be accurate enough for describing the main process (i.e., 

molecular scattering) occurring during the collision. The use of an analytical expression for the PES 
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allows obtaining easily and efficiently the potential energy and its first order derivatives for performing 

fast dynamics calculations. Some extra DFT calculations were also performed in order to know the 

accuracy of the analytical PES in describing the O2 interaction with the graphite surface. 

This paper is organized as follows: Section 2 provides a brief description about DFT and QCT 

calculations; Section 3 describes the FPLEPS vs. DFT comparison of the O2 scattering (i.e., reflection) 

over graphite and Section 4 presents the main dynamical results and discussion, including the 

comparison with experimental data. Finally, Section 5 gives the summary and conclusions. 

 

II. Theoretical methods 

 

B. DFT calculations 

 

Periodic density functional theory calculations have been performed using the Vienna ab initio 

simulation package (VASP) 11,12,13,14. All the details about the methodology used (e.g., GGA/RPBE 

functional, energy cut off, slab model, …) were discussed deeply in previous works 8,9,10 devoted to 

atomic oxygen interaction with both a clean and an O-preadsorbed graphite surfaces, and are omitted 

here. New DFT calculations have been performed in order to check the accuracy of the analytical 

FPLEPS PES in describing the O2/graphite interaction. According to the previous study 9, it is 

important to remember that the molecular channel does not present any particular feature; it is 

essentially repulsive close to the surface and a high endothermicity (5.22 eV) prevents the molecular 

dissociation at the conditions studied here. Thus, the DFT data used to construct the analytical surface 

were focused mainly on the Eley-Rideal entrance channel. To check the proper description of the 

interaction of the incoming molecule with the surface, some additional configurations at several 

particular f angles (Figure 1) were calculated at DFT level and compared with the data obtained from 
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the FPLEPS PES, with a good agreement as described below in Section III. 

 

B. QCT calculations  

 

A dynamical study involving the interaction of molecular oxygen with graphite surface was 

performed by means of the QCT method 15. Several initial conditions were sampled in order to 

investigate state-specific and hyperthermal processes. State-specific calculations (v, j, Ecol, Tsurf, θv) 

were carried out for fixed initial collision energies in the range of 0.2 eV £ Ecol £ 1.2 eV for a given 

surface temperature Tsurf within the 100 – 900 K interval and several vibrorotational states (v = 0,1,2 

and j = 1,17,25). The incoming velocity angle (θv in Figure 1) is defined with respect to the negative Z 

axis (i.e., 0° for normal incidence) and its projection onto the X-Y plane (i.e., the azimuthal fv angle) 

was uniformly sampled within the 0° - 360° interval since highly oriented graphite surface consists of 

many orientations within the topmost layer, being the measurements an average of all azimuthal 

directions 16. 

The initial collision angles selected for the present study were fixed values at θv = 0° and 45°, and 

also a random sampling within the 10° £ θv £ 70° range. Initial molecular orientation angles (θ, f in 

Figure 1) were sampled by the standard Monte Carlo method within the intervals 0° £ θ £ 180° and 0° 

£ f £ 360°, respectively. The initial r internuclear distance was chosen between the corresponding inner 

(r-) and outer (r+) turning points of each O2 (v, j) internal state. Only odd j initial levels were chosen for 

O2 (X3Σ-g) molecule because even rotational levels do not exist due to the nuclear spin of O16 is zero 17. 

Initial position (Xcm, Ycm) of the molecular centre of mass was randomly selected inside the (1 ´ 1) unit 

cell while Zcm was set at 7.0 Å, where the interaction with surface is negligible. 

A Generalized Langevin Oscillator (GLO) model 18,19,20 was used in order to account for the energy 
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exchange between the molecule and the solid surface, which was considered as a rigid slab (i.e., 6D 

PES). This model includes the surface and ghost particle motions into the Hamilton equations and uses 

also the same optimum parameters, which were previously derived and tested for atomic oxygen 

impinging on both clean 9 and O-preadsorbed graphite surfaces 10. The oscillator surface frequencies 

used were wi,x = wi,y =10-3 and wi,z =3.4 ´10-4 au for i = 1,2,3, with an effective mass of 60 amu and 

with friction constants gg,x = gg,y = gg,z = 4.0 ´10-4 au. The need for an effective mass much larger than 

that of a single carbon atom has been documented previously, and points out a collective scattering 

from a large number of surface carbon atoms 3,4. 

The qctsurf code developed in our group was used to calculate the trajectories integrating the 

Hamilton equations of the system (included the GLO) using the Beeman algorithm. The time step used 

was 5´10-17 s, which ensures a total energy conservation along the trajectories lower than 1´10-4 eV in 

absence of the thermal bath. The total energy is not constant due to the thermal bath dissipation effect. 

Total integration time was set to a maximum value of 2.5 ps, that allows a correct classification of the 

trajectories as reflected, since no other channels were observed. Anyway, the adsorption classification 

was set for Zcm values lower than 2.2 Å and for a number of total molecular rebounds with the surface 

larger than 8, as was also set previously 9,10 for atomic oxygen impinging a clean or an O-preadsorbed 

graphite surface. On the other hand, O2 was considered reflected if Zcm was higher than 7.1 Å and the 

direction of the velocity vector pointed to the vacuum.  

The number of total trajectories (NT) calculated for each state-specific condition was around 20000. 

However, the number of trajectories carried out for comparing with experimental results was increased 

for some conditions. Thus, for simulating the hyperthermal experimental conditions of Paci et al. 5 a set 

of 60000 trajectories were performed while for simulating the experimental setup of Oh et al.3 batches 

of 400000 trajectories were run for each (v, j, Ecol, Tsurf) condition.  
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III. Analytical FPLEPS potential energy surface  

 

The complete expression used for describing the 6D potential V(RA,RB) of the two atoms (A, B) 

interacting with a rigid graphite surface (Figure 1) was defined as 9,10: 

  (1) 

where the positions of the two atoms A and B are given by the vectors RA(XA,YA,ZA) and 

RB(XB,YB,ZB), respectively. G1 and G2 are two Gaussian functions introduced to improve the 

description of the full potential in the entrance valley. The terms  and  represent respectively the 

Coulomb and exchange integrals for two-body systems and are associated with the atom-surface 

interaction (i = As, Bs) and with the molecular interaction (i = AB).  The full description of the 

expressions and the optimal PES parameters for O2/graphite system were reported previously 10. 

As commented in previous Section II.A, the analytical FPLEPS surface was checked for the O2(g) 

scattering channel by comparing with additional DFT data. Thus, a total of 423 molecular DFT 

configurations were calculated for a parallel approach of the O2 molecule (θ = 90°) with two f angles 

(0° and 60°, Figure 1) over a (3 ´ 3) unit cell, with the molecular centre of mass fixed over the bridge 

site (B1) and with perpendicular velocity to the surface (θv=0°) at several Zcm values between 1.3 Å and 

5.0 Å and for internuclear distances in the range 1.15 Å £ r £ 4.0 Å. The DFT contour plots (Figure 2) 

show that no molecular adsorption is present and that only molecular dissociative adsorption onto no 

consecutive bridge sites is observed. Thus, for f = 0°, the distance between the two bridge sites where 

the atomic adsorption occurs is 4.936 Å while for f = 60° the distance is shorter (2.468 Å). 

Nevertheless, the process is highly endothermic (5.22 eV). The comparison with the FPLEPS contour 

plots is also shown in Figure 2, where the agreement is quite good without the necessity of including 

V RA,RB( ) = UAs +UBs +UAB − QAB + QAs +QBs( )
2
−QAB ⋅ QAs +QBs( ) +G1 +G2

Ui Qi
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additional DFT points in the fitting procedure. The root mean square deviation (RMSD) for energy 

values lower than 1.0 eV (240 points) is 0.3 eV. This value is not too small but the reason is that O2 

dissociation energy value used in the FPLEPS PES is the one obtained from more accurate coupled-

cluster calculations 21 instead of the less accurate DFT ones, hence giving to the FPLEPS PES a good 

description for both asymptotes. The RMSD value without considering the O2 entrance valley 

diminishes until 0.12 eV.  

 

IV. QCT dynamical results 

 

A. State-specific initial conditions 

 

When O2 impinges the graphite surface three principal channels are available: molecular adsorption, 

reflection and dissociation, which can produce either gas or adsorbed species: O(g) + O(g), O(ad) + O(g), 

O(g) + O(ad). From all of these possible processes only molecular reflection is observed at all studied 

conditions. The effect of the initial collision energy (Figure 3) on the polar scattering angular 

distributions (I(θv'), where θv' is defined as the angle between the final centre of mass velocity and the 

positive Z-axis) of the molecules reflected has been investigated for a selected vibrorotational initial 

state of O2 (e.g., v = 0 and j = 1). Thus, for normal incidence, the molecules are scattered at low angles 

(θv' = 10° - 20°) while for off normal incidence (θv = 45°) the scattering angle distributions present a 

peak at around the specular value (θv' = 45°) for low collision energy (Ecol = 0.2 eV) with and without 

including surface temperature. The peaks become superspecular for higher collision energies when the 

surface temperature is included (i.e., θv' » 60° at Ecol = 1.2 eV and Tsurf  = 100, 900K). These results are 

similar to those obtained for the atomic reflection on a clean graphite surface (Figure 6 in Ref. 9) at low 
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collision energy (Ecol = 0.25 eV). Nevertheless, at higher collision energies (i.e., Ecol = 0.5 and 1.3 eV) 

the atomic reflection drove to wider scattering distributions not observed here for the molecular case. 

The analysis of QCT results shows that the collision time for all the conditions explored is very short 

with respect to the total maximum time  initially chosen for the integration (i.e., 2.5 ps). Specifically at 

normal incidence and without thermal bath the average collision time was 0.56 and 0.41 ps at Ecol  = 0.2 

and 1.2 eV, respectively, while for off normal incidence the average times were slightly higher: 1.02 

and 0.52 ps for the same collision energies, respectively. When the thermal bath is included, the 

collision time is nearly doubled for all the conditions explored. This fact supports that the scattering of 

the molecule with the surface is dominated essentially by a single collision event. 

The influence of the initial vibrational and rotational O2 excitation on the final polar scattering 

angular distribution has been also investigated for O2 (v = 0,1,2 and j = 1,17,25) showing a negligible 

effect.  

Figure 4 shows the different types of energy exchanged (i.e., ∆Ei = Ei' – Ei) during the molecular 

collision (i corresponds to translational, internal and total energy) for three initial collision energies, O2 

(v = 0, j = 1) with normal incidence and at two surface temperatures. In general, collision energy of 

impinging molecules is lost during the interaction process (Figures 4a and 4b) although at higher 

temperatures some intensity appears at positive values (i.e., some energy release from the surface to the 

molecule, Figure 4b). A fraction of the initial collision energy is going to molecular rotational 

excitation (no vibrational), as can be seen from the positive values of the internal energy exchanged 

(Figures 4c and 4d). This increment is slightly higher when the surface temperature is augmented. The 

major part of the initial collision energy lost is transferred to the surface (Figures 4e and 4f). Only at 

the highest Tsurf explored and for low collision energies (Ecol = 0.2 and 0.5 eV) some intensity is 

observed at positive values of total energy, showing some energy release from the surface to the 
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molecule. In general, the total energy transferred to the surface increases with the augment of collision 

energy as could be expected.  

 The initial O2 vibrational state is conserved during the collision with the surface, whereas an 

important rotational excitation is observed. For example, for Ecol = 0.2, 0.5 and 1.2 eV and normal 

incidence without thermal bath and with O2 at v = 0 and j = 1 state, the reflected O2 molecules appear 

also in their ground vibrational state (v’ = 0) but populating a great amount of rotational states   (i.e., 

<j’> = 16, 25 and 38, respectively). When the surface temperature is considered, the same trend is 

observed although the final rotational excitation is lower. For an initial excited vibrorotational state 

(e.g., O2 at v = 2 and j = 25), normal incidence and Ecol = 2.0 eV, the final scattered molecules also 

mainly appear at v’ = 2 state (88.1 %), although some of them are observed at lower or higher states: v’ 

=  0 (0.06 %), v’ = 1 (7.46 %), v’ = 3 (4.37 %) and v’ = 4 (0.01 %). 

Particular attention has been devoted in simulating the experimental conditions of Oh et al. 3 For 

each pair of initial collision energy and surface temperature, the polar scattering angular distribution is 

reported, taken into account that the incident (θv) and the final (θv') velocity angles, both relative here to 

the surface normal, must accomplish the relationship θv + θv' = 90°. This particular source-detector 

geometry setup makes that a great amount of QCT trajectories (i.e., 400000) must be integrated, since 

only those that verify the previous relationship (~1%) match the experimental conditions. Nevertheless, 

if no constraint is imposed between initial and final angles, for a particular incoming polar velocity 

angle (e.g., θv = 45°) the final scattering distribution achieved is very similar to those shown in Figures 

3d and 3f, depending on the surface temperature considered. Calculations where run at each specific 

experimental surface temperature (150 K £ Tsurf £ 500 K) and initial collision energy (0.291 eV £ Ecol £ 

0.614 eV), choosing randomly the initial polar velocity angle within the range 10° £ θv £ 70°. The 

angular tolerance in the final scattering angle (θv') was set to 1°. In the experimental conditions the 
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vibrational temperature should be almost the same as the nozzle temperature (i.e., 300 K for 0.291 eV 

and 700 K for 0.614 eV 16) and the rotational temperature is estimated to be very low after a free-jet 

expansion (i.e., 10 K for 0.291 eV and 55 K for 0.614 eV 16). Therefore, we assumed the lowest 

vibrorotational O2 state (i.e., v = 0 , j = 1) in QCT simulations. 

Figure 5 shows the comparison between experimental 3 and QCT polar scattering angular 

distributions of the reflected oxygen molecules at all the explored experimental conditions. The angular 

distributions consisted of single broad peaks with the most probable intensity occurring at an angle 

slightly larger than the specular position. Increasing the surface temperature, the maximum intensity 

decreases and the width increases. As Oh et al. 3 suggested, this behaviour is indicative of a single 

scattering collision that can be described by classical mechanics where the collision involves short 

times, large energy transfers and exchange of large numbers of phonons or electronic excitations 22 in 

the same manner that our QCT results state. An additional analysis of a sample of trajectories confirms 

a direct scattering mode for several collision energies and surface temperatures. 

From these panels it is important to note that the shape of the QCT distributions are essentially 

coincident with experimental distributions although the QCT peaks are slightly shifted to lower angles 

mainly for Ecol £ 0.5 eV. From Table I it is easy to see that the value of this shift at the maximum of the 

distributions oscillates within the interval 5.0° - 1.8°. The maximum deviation is obtained for low 

surface temperatures (i.e., Tsurf = 200 - 250 K) at Ecol = 0.291 eV, and the best agreement is reached for 

the highest collision energy (i.e., Ecol  = 0.614 eV and Tsurf  = 150 K).  

In spite of the QCT distribution are normalized to the maximum to enable an easy comparison with 

the experimental distributions, the unnormalized QCT distributions show also the same intensity trends 

as the experimental ones. Thus, the peak intensities increase when Ecol does and also when Tsurf 

decreases, in agreement with the experimental behaviour.  
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Table I also presents the full width at half-maximum (fwhm) for each distribution. The agreement in 

fwhm values is quite good for almost all the cases studied and excellent for some particular cases. For 

example, at Tsurf  = 150 K when Ecol increases, the fwhm value diminishes experimentally. This trend is 

in good agreement with QCT values although a slight increase is observed at Ecol  = 0.371 eV. The 

difference between QCT and experimental 3 fwhm values (hereafter Dfwhm) is -0.1°, 1.5°, 2.0°, 2.5° 

and 2.8° for 0.291, 0.371, 0.456, 0.534 and 0.614 eV, respectively, at Tsurf  = 150 K. The same tendency 

is observed at Tsurf  = 500 K for QCT and experimental fwhm values. In this case, when the initial Ecol 

increases, the fwhm value decreases experimentally. The Dfwhm values are  -2.1°, -0.5°, 0.7°, 1.0° and 

1.5° for 0.291, 0.371, 0.456, 0.534 and 0.614 eV, respectively, at Tsurf  = 500 K. 

The application of a hard cube model (HCM with an effective mass of 108 amu) fitting the 

experimental peak positions allow to explain the aforementioned experimental trends 3 although with 

less accuracy than the present QCT results, which are only based on first principles. The introduction of 

the internal modes of O2 on the scattering through a smooth surface model 3 or by using classical rigid 

molecular scattering calculations 4 (both with an effective mass of 129.6 amu) improve the agreement 

with the experiment. However, the authors conclude that the small differences still observed between 

the theoretical and experimental distributions could be originated by other possible mechanisms caused 

by the presence of surface defects 4, neither included in present QCT calculations. 

Oh et al. 3,4 stated by using a HCM that the translational energy of the molecules should be reduced 

by the collision with the graphite surface, in a similar manner as QCT results show (Figures 4a and 4b). 

In addition, they observed that the collision energy loss becomes smaller at higher surface 

temperatures. The amount of Ecol loss has been also calculated from QCT results at the peaks of the 

polar scattering angular distributions (Figure 5). Results are listed in Table I together with the 

theoretical results obtained by means of HCM results 3,4, showing a quite good agreement. In the HCM 
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model the tangential component of momentum of the colliding species is assumed as conserved during 

the single collision event with the surface. We have checked through the QCT calculations the validity 

of this hypothesis. Thus, for instance for Tsurf  = 150 K and two collision energies (0.291 and 0.614 

eV), the distribution of , for the trajectories corresponding at the peak of the 

polar scattering angular distributions (Figures 5a and 5i), presents a curve with a maximum around zero 

in both cases, although slightly asymmetric and shifted to the negative values, confirming a reasonable 

agreement with this approximation. When we take into account not only the final trajectories that fulfils 

the experimental θv + θv' = 90° restriction but also the other ones, this approximation becomes worse, 

indicating a major loss of the initial parallel collision energy. The analysis of the perpendicular 

collision energy changes ( ) shows clearly that the loss of the initial collision 

energy is mainly due to its perpendicular component. We have also calculated the final collision energy 

distributions (Ecol') of the trajectories at the peaks of θv' distributions, which also show a maximum. 

Thus, for Tsurf = 150 K and two collision energies (0.291 and 0.614 eV) the Ecol' peaks are located 

around 0.24 and 0.36 eV, which are quite close to the values estimated by using classical rigid 

molecular scattering calculations 4 at the same conditions (i.e., around 0.17 and 0.37 eV). 

 

B. Hyperthermal initial conditions 

 

Some simulations were also run at hyperthermal conditions for Tsurf   = 503 K and θv  = 45° in order 

to compare with the experimental polar scattering angular distributions of O2 over highly oriented 

graphite5. A large number of trajectories (60000) were calculated simulating exactly the experimental 

hyperthermal O2 velocity distribution, whose average translational energy corresponds to 10.46 eV, 

assuming that at these conditions the O2 molecule is at v = 0 and j = 1 vibrorotional state. 
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The calculated distribution is shown in Figure 6. It presents a maximum centred at θv' = 73°, a bit 

larger than the experimental one 5, which is peaked at θv' = 63°. However, the width of the distribution 

is in good agreement with the experimental one. Since the experimental initial hyperthermal flux 

consisted of a mixture of both O2 and O species (with a O2/O ratio of 0.48 and with an average 

translational energy for atomic oxygen of 5.2 eV and for molecular oxygen of 10.46 eV) these 

distributions should not directly compared without taking into account some observations. In previous 

works 9,10 we reported the scattering distribution of the atomic O impinging a clean surface and an O-

precovered surface. In the case of a hyperthermal O beam colliding with a clean graphite surface, the 

QCT 9 and the experimental 5 distributions practically matched the maximum position (θv' = 65° and 

62°, respectively) and also the distribution shape. Moreover, O2 molecules formed by Eley-Rideal 

reaction were also calculated by using QCT at the same hyperthermal atomic conditions 10. These Eley-

Rideal formed O2 molecules could contribute to the final experimental observed O2 polar scattering 

angular distribution together with the reflected O2 molecules. This possible contribution is also plotted 

in Figure 6, which is peaked at much lower angles (θv'  = 37°). However, in spite of the Eley-Rideal 

probability is high (i.e., 0.489) when an oxygen atom is preadsorbed over the unit cell at these 

hyperthermal conditions 9, the necessary previous O adsorption step over a clean surface has a low 

probability (i.e., 0.0016). Therefore, the intensity of the Eley-Rideal contribution to the total polar 

scattering angular distribution should be in principle very small compared with that originated only by 

the scattered O2 molecules from the initial beam. This simple analysis assumes a previous clean and 

pristine graphite surface. However, in the experiments the steady-state oxygen coverage seems to be 

very high. Highly oriented graphite surface exposed to a flux of hyperthermal oxygen atoms becomes 

functionalized with epoxides to a concentration between 1 or 2 oxygen atoms per 6 surface C atoms, as 

some direct dynamics calculations also support 5. The high final flux intensity of O2/O ratio observed in 
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the experiments respect to the initial low value of 0.48 is interpreted as the Eley-Rideal mechanism 

should contribute highly to the final O2 measured distribution. In such case, the addition of this Eley-

Rideal contribution to the final QCT total polar scattering angular distribution would produce a curve 

peaked at lower angles and even much closer to the experimental one. 

 

V. Summary and conclusions 

 

The study of the collisions of molecular oxygen over graphite surface has been carried out over our 

recent published analytical flexible periodic LEPS potential energy surface based on DFT data. This 

surface was previously used for studying the atomic oxygen collisions over a clean and an O-

preadsorbed graphite surface with good results in comparison with experimental data.  

Only O2 reflection is observed even at high collision energies and vibrational excitation, in 

agreement with the low expected molecular dissociation for a free of defects surface, supported by 

previous studies 2.  

Polar scattering angular distributions of molecular oxygen are in agreement with experimental 

results at several collision energies and surface temperatures. The reflected molecules lose mainly 

collision energy, which is primarily transferred to the surface. This energy is mostly lost from the 

perpendicular component of the collision energy, being the parallel one quite conserved, in reasonable 

agreement with the usual hard cube model assumption. The vibrational level is maintained during the 

collision and there is a high rotational excitation in all conditions. 

The short average collision times along with the analysis of several plots support a single collision 

dynamics mechanism as was concluded in earlier theoretical studies.  

The study at hyperthermal conditions shows a good agreement with the experimental polar 
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scattering angular distributions, which would be even better with the inclusion of the calculated O2 

Eley-Rideal contribution to the final total distribution. 

 The very good agreement obtained with the two different experimental studies for a wide range of 

conditions allows to conclude that the present FPLEPS PES is accurate enough to provide good results 

on the dynamics for several processes involving atomic and molecular oxygen over graphite surface 

(i.e., O + graphite, O2 + graphite or O + O-graphite) although the inclusion of some defects and a large 

oxygen coverage on the graphite surface would be possibly necessary to obtain better results. 
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TABLES 
 
 
 
 

 

 

Table I. Fwhm and maximum peak value of the polar scattering angular distributions along with the 
estimated collision energy loss of oxygen molecules for several initial collision energies and surface 
temperatures. 
 
 

Ecol / eV Tsurf / K fwhm / ° θv ’ (max) / ° Ecol loss / % b 
Exp.3 QCT Exp.3 QCT HCM 3 QCT 

0.291 

150 12.0 11.9 52.4 47.8 41 35 
200 12.9a 12.2 51.9 46.9 39 34 
250 13.8a 12.5 51.6 46.7 37 33 
300 14.4a 12.8 51.4 46.7 36 32 
400 15.5a 13.0 50.8 46.6 34 30 
500 16.4 14.3 50.0 46.5 30 28 

0.371 150 10.6 12.1 52.3 48.5 40 37 
500 14.8 14.3 50.4 47.0 32 32 

0.456 150 9.8 11.8 52.3 49.2 40 40 
500 13.6 14.3 51.1 47.9 35 35 

0.534 150 9.1 11.6 52.4 49.9 41 42 
500 12.4 13.4 51.3 48.4 36 38 

0.614 150 8.5 11.3 52.4 50.6 41 43 
500 11.9 13.4 51.7 49.0 38 40 

 

a data obtained from Figures 2b and 2c of Ref. 3. 

b the percentage of energy loss is calculated by , where Ecol and Ecol' stand for initial (incident) and final 

(scattered) collision energies, respectively. 
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FIGURE CAPTIONS 
 

Figure 1. Coordinate system for O2 molecule interacting with a graphite (0001) surface.  The internal 

coordinates (r, q, f) define the molecular oxygen orientation while (qv, fv) define the angle of incoming 

centre of mass velocity vector ( ).  

 

Figure 2 DFT (upper panels) and FPLEPS (bottom panels) equipotential energy contour plots for two f 

angles (f = 0º and 60º, left and right panels, respectively) for parallel approach (q = 90º) of incoming 

O2 with a perpendicular velocity to the surface (qv = 0º). The contour plots are depicted in increments 

of 0.5 eV, and the zero of energy is taken as [O(g) + O(g)]. The value of 0 eV of energy is labelled and 

corresponds to the nearest solid line. 

 

Figure 3 QCT polar scattering angular distributions (θv') of the reflected O2 molecules for θv = 0º (left 

panels) and 45º (right panels) without thermal bath (a, b) and considering two surface temperatures 

(Tsurf = 100 K (c, d) and 900 K (e, f)) for several initial collision energies (Ecol = 0.2, 0.5 and 1.2 eV 

using solid, dashed and dotted lines, respectively). The impinging O2 molecules were in v = 0 and j = 1 

vibrorotational states. The distributions are normalized to unit area. 

 

Figure 4 Transfer energy analysis (collision, internal and total energy in the upper, medium and bottom 

panels, respectively) at two surface temperatures: Tsurf = 100 K (left panels) and 900 K (right panels) 

for several initial collision energies: Ecol = 0.2 (solid line), 0.5 (dashed line) and 1.2 (dotted line) eV 

and normal incidence. The values in parentheses correspond to the maximum of the distribution for 

each value of initial collision energy. 


v
cm



 

 19 

 

Figure 5 Initial collision energy (Tsurf = 150 K, left panels) and surface temperature (Ecol = 0.291 eV, 

right panels) dependency of the QCT polar scattering angular distributions (θv') of the reflected O2 

molecules scattered from the graphite surface (solid circles) and the comparison with the experimental 

data 3,4 (solid lines) for θv + θv' = 90° restriction. Right axes correspond to right panels. The QCT 

distributions are normalized at each corresponding experimental peak. 

 

Figure 6 QCT Polar scattering angular distributions (θv') of O2 for initial experimental hyperthermal 

conditions (<Ecol> = 10.46 eV) with (v = 0, j = 1), qv = 45° and Tsurf = 503 K. Reflected O2 molecules 

(solid line), O2 molecules formed via Eley-Rideal reaction on an O-precovered surface 10: O(g) + O(ad) 

® O2(g) (dashed line) and the experimental data (dotted line 5). All curves are normalized to unit at the 

maximum. 
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