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ABSTRACT: 42 

 43 

Ni-laterites from the Dominican Republic host rare but extremely platinum-group element (PGE)-rich 44 

chromitites (up to 17.5 ppm) without economic significance. These chromitites occur either included in 45 

saprolite (beneath the Mg discontinuity) or as ‘floating chromitites’ within limonite (above the Mg 46 

discontinuity). Both chromitite types have similar iridium-group PGE (IPGE)-enriched chondrite 47 

normalized patterns; however, chromitites included in limonite show a pronounced positive Pt anomaly. 48 

Investigation of heavy mineral concentrates, obtained via hydroseparation techniques, led to the 49 

discovery of multistage PGE grains: (i) Os-Ru-Fe-(Ir) grains of porous appearance are overgrown by (ii) 50 

Ni-Fe-Ir and Ir-Fe-Ni-(Pt) phases which are overgrown by (iii) Pt-Ir-Fe-Ni mineral phases. Whereas Ir-51 

dominated overgrowths prevail in chromitites from the saprolite, Pt-dominated overgrowths are 52 

observed within floating chromitites. The following formation model for multistage PGE grains is 53 

discussed: (i) hypogene platinum-group minerals (PGM) (e.g. laurite) are transformed to secondary 54 

PGM by desulphurization during serpentinization; (ii) at the stages of serpentinization and/or at the early 55 

stages of lateritization, Ir is mobilized and recrystallizes on porous surfaces of secondary PGM (serving 56 

as a natural catalyst) and (iii) at the late stages of lateritization, biogenic mediated neoformation (and 57 

accumulation) of Pt-Ir- Fe-Ni nanoparticles occurs. The evidence presented in this work demonstrates 58 

that in situ growth of Pt-Ir-Fe-Ni alloy nuggets of isometric symmetry is possible within Nilaterites from 59 

the Dominican Republic. 60 

 61 
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INTRODUCTION 71 

 72 

The platinum-group elements (PGE) are a group of precious metals consisting of Os, Ir, Ru, Rh, Pt and 73 

Pd. Due to their unique physical and chemical properties, the PGE are essential for a wide range of 74 

industrial applications (e.g. electronics, pollution control via catalytic converters); medicine (e.g. cancer 75 

treatment) and jewellery. Currently, ∼80 % of the global demand of PGE is provided by two major 76 

magmatic ore deposits: the Bushveld Complex in the Republic of South Africa and Noril’sk located in 77 

the Russian Federation (USGS 2015). Supergene ore deposits of platinum-group minerals (PGM) 78 

placers are historically important and include those found in the surroundings of Ural-Alaskan type 79 

complexes (Johan 2002). However, the origin of PGE nuggets found in surface environments is still a 80 

matter of scientific debate and two opposing genetic models exist: (i) PGM crystallize exclusively under 81 

hypogene conditions and are mechanically liberated at the surface by weathering of the source rock 82 

(Koen 1964; Cabri and Harris 1975; Hattori and Cabri 1992) and (ii) PGM can also form in situ after 83 

PGE mobilization during weathering and accretion within the supergene environments (Augusthitis 84 

1965; Ottemann and Augustithis 1967; Stumpfl 1974; Bowles 1986). 85 

The PGE are not ‘noble and inert’. They have long been known to be soluble under appropriate 86 

conditions and the formation of organo-metallic complexes with Pt were described by Zeise (1831). 87 

More recent experiments have shown that PGE can be mobilized under surface conditions (e.g. Bowles 88 

et al. 1994; Varajão et al. 2000; Azaroual et al. 2001; Colombo et al. 2008), but there are only a few 89 

descriptions from natural sites showing evidence for PGE mobilization and reprecipitation (e.g. 90 

Talovina and Lazarenkov 2001;Melcher et al. 2005; Cabral et al. 2007, 2009; Suárez et al. 2010; Garuti 91 

et al. 2012; Oberthür et al. 2003, 2014; Campbell et al. 2015). However, in a recent study, Reith et al. 92 

(2016) reported that Pt is mobile under surface conditions and can become bioavailable. The possibility 93 

of biogenic PGE cycling with subsequent biomineralization of PGM has opened a new approach to 94 

explain supergene PGM occurrences. Botryoidal PGM with strong biophilic element concentrations (i.e. 95 

iodine) were found in tropical soils from Brazil and the Dominican Republic (Cabral et al. 2011; 96 

Aiglsperger et al. 2015, respectively). 97 

This work reports the discovery of multistage PGE grains found in Ni-laterites and aims to contribute to 98 

the ongoing debate on the genesis of PGM found in the supergene environment. Emphasis is given to (i) 99 

documenting new insights on lowtemperature PGE mobility, (ii) providing clear textural evidence for in 100 

situ PGM neoformation and (iii) discussing the possibility of ‘nugget growth’ in Ni-laterites. 101 

 102 

Sample provenance and methodology 103 

The study area is the ophiolite-related Loma Caribe peridotite located within the central part of the 104 

Dominican Republic which currently hosts one of the largest resources of Ni-laterite in the Greater 105 

Antilles (Redwood 2014) (Fig. 1). The weathering profile developed from the underlying serpentinized 106 

ultramafic rocks (harzburgite > dunite > lherzolite) and consists of a Feoxide(s)-dominated limonitic 107 



cover at the top and a thick Mgsilicate saprolite horizon beneath (for details, see Lewis et al. 2006; 108 

Tauler et al. 2009; Villanova-de-Benavent et al. 2014; Aiglsperger et al. 2016). Samples were taken in 109 

the Falcondo mining area: (i) from the Loma Peguera ore deposit which is characterized by the scarce 110 

incorporation of small-scale (approx. 2 m in diameter), PGE-rich (∼3 ppm) chromitite bodies in 111 

saprolite (Proenza et al. 2007; Aiglsperger et al. 2015) and (ii) from the Loma Larga ore deposit hosting 112 

a recently discovered, highly weathered chromitite body included in limonite (‘floating chromitite’) 113 

(Figs. 1 and 2). 114 

Whole rock PGE contents were obtained at Genalysis Ltd. (Maddington, Western Australia) by ICP-MS 115 

(detection limits: 1 ppb for Rh and 2 ppb for Os, Ir, Ru, Pt and Pd) after nickel sulphide fire assay 116 

collection, following the method described by Chan and Finch (2001). 117 

A total of 100 g of homogenized limonite-chromitite sample from Loma Larga was processed by means 118 

of hydroseparation techniques at the HS laboratory Barcelona (Aiglsperger et al. 2015 and reference 119 

therein). The resulting heavy mineral concentrates were mounted as polished monolayer resin blocks 120 

and subsequently investigated by reflected light microscopy and by scanning electron microscopy 121 

(SEM) using a Quanta 200 FEI XTE 325/D8395 with a tungsten filament as well as a field emission 122 

scanning electron microscope (FE-SEM) Jeol JSM-7100 at the Serveis Científics I Tecnòlogics, 123 

University of Barcelona, Spain. At the same institution, a selection of PGE grains were further 124 

investigated by wavelength-dispersive spectroscopy (WDS) element distribution maps using a JEOL 125 

JXA-8230 electron microprobe (EMP) with an accelerating voltage of 20 kV and a beam current of 126 

128.8 nA. Maps were collected by beam scanning with dwell times of 60 ms/pixel. For each element, 127 

the background map was subtracted from the corresponding peak map. Quantitative EMP analyses were 128 

obtained with the same instrument in WDS mode, operating with an accelerating voltage of 20 kV, a 129 

beam current of 10 nA and a beam diameter of 1 μm. Pure metals were used as standards for Os, Ir, Ru, 130 

Rh, Pt, Pd, Co, Sb and Vas well as chromite (Cr, Al, Fe), periclase (Mg), rhodonite (Mn), rutile (Ti), 131 

NiO (Ni) and S (S), CuFeS2 (Cu), GaAs (As) and wollastonite (Si). The following interferences RuLβ 132 

→ RhLα, IrLα → CuKα, RhLβ → PdLα, RuLβ → PdLα, CuKβ → OsLα and RhLα → PtLα were 133 

corrected online. A selection of PGM was investigated by xray diffraction (XRD) analysis at the Serveis 134 

Científics i Tecnòlogics (University of Barcelona). The x-ray intensity data were measured on a D8 135 

Venture system equipped with a multilayer monochromator and a Mo microfocus (λ = 0.71073 Å) and a 136 

two-dimension detector. The sample was analysed at a distance of 34 mm. The angles of the goniometer 137 

were 2 theta = 0°, omega = 360° and chi = 90° and the sample was spun 360°. The measuring time was 138 

of 60 s per step. Subsequent results were processed with Bruker software (TOPAS), which was used to 139 

subtract the background of the patterns, to detect the peaks and to assign mineral phases and their 140 

corresponding dhkl to each peak. 141 
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RESULTS 143 
 144 
PGE geochemistry and the observation of multistage PGE grains 145 
Whole rock PGE analyses for the ‘floating chromitite’ revealed high total PGE concentrations of 17.5 146 
g/t (Table 1). Comparison of chondrite normalized patterns with chromitite samples from underlying 147 
saprolite shows a similar, characteristic iridium-group PGE (IPGE) (Os, Ir and Ru) enrichment relative 148 
to PPGE (Rh, Pt and Pd). However, Ir reveals a slight negative anomaly, Rh shows a much more 149 
pronounced negative anomaly and Pt has a clear positive anomaly (Fig. 3). Ratios of Pt/Pd change from 150 
51 in the chromitite from the saprolite to 163 in the ‘floating chromitite’, Pt/Ir from 0.51 to 0.66, Pt/Rh 151 
from 2.68 to 8.12, Pt/Ru from 0.29 to 0.35 and Pt/Os from 0.50 to 0.46, respectively (Table 1). 152 
Approximately 300 grains of PGMin the size range of <20 to 125 μm were detected and classified into 153 
three groups according to their textures and associations: 154 
(i) Primary PGM as inclusions in chromite (e.g. unaltered laurite). 155 
(ii) Secondary PGM after weathering (e.g. interpreted as having formed due to desulphurization during 156 
serpentinization). 157 
(iii) PGMwith delicate morphologies different to (i) and (ii), suggestive for neoformation processes (e.g. 158 
accumulation of nanoparticles within pores of Fe oxide(s)). 159 
The vast majority (>90 %) of detected PGM from the ‘floating chromitite’ of Loma Larga are complex 160 
Ru-Os-rich, Fe - bearing secondary PGMof group (ii) and are investigated separately. However, several 161 
grains of PGM show a characteristic zonation due to close spatial relationships of individual PGM, 162 
hence suggesting different stages of PGM formation: (a) Os-Ru-Fe-(Ir) grains with a porous appearance 163 
and occasional intact crystal shapes are overgrown by (b) finegrained Ni-Fe-Ir and Ir-Fe-Ni-(Pt) phases 164 
which are subsequently followed by (c) a layer of rounded shaped Pt-(Ir)-bearing minerals (Fig. 4). It is 165 
important to note that Ru-Osrich secondary PGM associated with Ir-dominated PGM have been reported 166 
from Loma Peguera previously (e.g. Zaccarini et al. 2009; McDonald et al. 2010). However, complete 167 
sequences of multistage PGE grains are only observed within the ‘floating chromitite’ from Loma 168 
Larga. 169 
In general, quantitative EMP analyses reveal that Fe and Pt are progressively enriched from interpreted 170 
early to late domains within multistage PGE grains (Fig. 5). Relatively high concentrations of Al (2.4 171 
wt%), Si (1.4 wt%) and S (0.3 wt%), most likely attributed to the presence of Fe-oxide(s) (Al), 172 
secondary silica (Si) and organic material (S), are measured within Pt-(Ir) - bearing mineral phases (Fig. 173 
5 and Table 2). Element distribution maps show the described zonation trends of individual PGM; 174 
however, micron-sized Ru-rich phases occur also within the Ir-Fe-Ni-(Pt) sequence (Fig. 6). It is worth 175 
mentioning that the highest Ni concentrations (∼37 wt%) are observed precisely at the top of the Ru-Os-176 
Fe-(Ir) grain with the porous appearance as seen in Figs. 5 and 6. 177 
FE-SEM BSE images from one well-preserved multistage PGE grain point to a close relationship 178 
between aqueous solutions and agglutination processes as matrix pores are clearly filled by Pt (+Ir) 179 
nanoparticles (Fig. 7). Moreover, element distribution maps of the same grain provide good evidence 180 
that Pt-dominated nanoparticles gradually replace the secondary Ru-Os-Fe grain (Fig. 8). Indeed, some 181 
multistage PGE grains show only small-scale, irregularly-formed remnants of secondary Ru-Os-Fe 182 
grains in their central parts (Fig. 9). Others do not show any visible signs of Ru-Os – bearing PGM and 183 
hence are considered entirely replaced by accumulations of Pt-Ir-Fe-Ni nanoparticles (Fig. 10). 184 
 185 
Composition of supergene Pt-Ir-Fe-Ni nanoparticles 186 
The fact that in situ neoformed Pt-Ir-Fe-Ni grains consist of accumulations of nanoscale particles makes 187 
EMP analyses challenging. However, representative results (n = 15) out of 60 analyses (16 grains) show 188 
low totals ranging from 82.63 to 95.22 wt% with an average of 90.00 wt% (Table 3). The average 189 
composition (and range in composition) (in wt%) of Pt-Ir-Fe-Ni grains is: Pt 12.73 (bdl–23.90), Ir 26.89 190 
(11.51–40.12), Fe 24.90 (18.77–30.02), Ni 23.12 (9.52–52.71), S 0.02 (bdl-0.09), As 0.05 (bdl-0.16), Os 191 
0.15 (bdl-0.54), Ru 0.46 (0.02–1.81), Rh 0.75 (0.14–1.80), Pd 0.03 (bdl-0.25), Fe 24.90 (18.77–30.02), 192 
Cu (n = 6) 0.71 (0.43–1.30), Co 0.23 (0.05–0.72), Si 0.24 (0.06–0.57), Al 0.12 (bdl-0.30), Mg 0.01 (bdl-193 
0.04) and Sb 0.01 (bdl-0.10). The absence of significant amounts of S, As and Sb as well as preliminary 194 
Raman spectroscopy analyses (flat signals) suggest that Pt-Ir-Fe-Ni grains are alloys with variable 195 
compositions. To assess possible solid solutions, compositions were plotted as atomic proportions in 196 
ternary diagrams (Fig. 11). In the Ir-Ni-Fe ternary diagram, a constant Ir and Fe enrichment relative to 197 



Ni is observed (Fig. 11a). Interestingly, our data suggest a linear trend from awaruite (Ni3Fe) towards 198 
the Fe-dominated compositional field, previously defined as ‘hexaferrum’ (e.g. McDonald et al. 2010 199 
and reference therein). However, some data points of the trend plot within the Ni-dominated 200 
compositional field of garutiite (McDonald et al. 2010). In the Pt-Ni-Fe ternary, no Pt enrichment is 201 
observed for high Ni compositions; hence, data points follow along the Pt baseline from awaruite 202 
towards Fe-dominated compositions (Fig. 11b). However, at a composition of approximately 60 at.% 203 
Fe, Pt enrichment is observed which supports a late-stage formation of Pt-dominated alloys within the 204 
limonite. The (Pt + Ir)-Ni-Fe ternary reveals a preferential composition close to (Pt, Ir)0.3Ni0.25Fe0.45 205 
(Fig. 11c). Overall, a general Pt + Ir enrichment with concurrent loss of Ni + Fe is strongly supported by 206 
a clear inverse correlation (Fig. 12).  207 
 208 
Crystallographic data of supergene Pt-Ir-Fe-Ni alloys 209 
Grain selection 210 
One representative Pt-Ir-Fe-Ni alloy of approximately 50 × 90 μm in diameter was separated from the 211 
heavy mineral concentrate and fist investigated as a loose grain without polishing. Under the 212 
stereomicroscope, the grain shows a rounded shape and metallic luster (Fig. 13a). A detailed 213 
examination of the same grain via FE-SEM revealed that it consists of accumulations of Pt-Ir-Fe-Ni 214 
nanoparticles (Fig. 13b, c). EMP analyses gave an average composition of (Pt, Ir)0.28Ni0.27Fe0.45 for 215 
this grain. Moreover, BSE images of the polished grain show zones of bright and densely packed Pt-Ir-216 
Fe-Ni nanoparticles as well as darker occurring zones with micro- and nanochannels indicative for the 217 
growing front (Fig. 13d-f). 218 
 219 
Diffraction 220 
The same grain was studied using a single-crystal x-ray diffractometer. The obtained diffraction pattern 221 
displayed characteristic concentric, well defined and homogeneous Debye rings, indicating that the grain 222 
is constituted by a randomly oriented polycrystalline assemblage (insert in Fig. 14). Integration of the 223 
intensity data at constant steps of 2ϴ gives a conventional one dimensional powder diffraction pattern 224 
(Fig. 14). A careful comparison with literature data for chemically related mineral phases revealed that 225 
the supergene Pt-Ir- Fe-Ni alloy has similar x-ray line intensities and observed dspacings as awaruite 226 
(Table 4). Neither similarities with hexaferrum nor garutiite were observed in terms of x-ray powder 227 
pattern. As a consequence, the neoformed Pt-Ir-Fe-Ni alloy most likely represents a new intermetallic 228 
member in the isometric system which crystallizes in the space group Fm3m. On this basis, x-ray 229 
powder pattern for the Pt-Ir-Fe- 230 
Ni alloy was indexed, leading to the refined unit cell dimensions: a=3.6403 (17) Å,V=48.240 (69) Å3, Z 231 
= 4. (Table 5). 232 
 233 
 234 
 235 
 236 
  237 



DISCUSSION 238 
 239 
Genesis of multistage PGE grains 240 
It is widely accepted that primary PGM formed during the magmatic stage can be affected by 241 
subsequent weathering processes. For example, serpentinization is believed to lead to desulphurization 242 
of primary laurite and erlichmanite, thus causing a transformation into Ru-Os mineral phases with 243 
porous appearance which are frequently reported as Bsecondary PGM^ (Stockman and Hlava 1984; 244 
González-Jiménez et al. 2014 and references therein). Detailed investigation of several free grains of 245 
secondary PGM from the saprolitic horizon of Loma Peguera has shown that some exhibit well-246 
preserved rims ofMg silicates as well as fine-grained intergrowths of nanoscale Ru-Os alloys with Mg 247 
silicates (see Fig. 7b–d in Aiglsperger et al. 2015). These observations suggest a close relationship 248 
between formation of secondary PGM and serpentinization. However, incorporated Mg silicates are not 249 
stable at higher levels in the lateritic profile (above the Mg discontinuity) which leads to weathering of 250 
Mg silicates and hence to formation of highly porous secondaryPGM. It is proposed that their surface, 251 
characterized by a high specific area, serves as a natural catalyst promoting formation processes. With 252 
respect to multistage PGE grains, Ni-, Ir- and Fe - enriched fluids, believed to be mobilized during 253 
serpentinization and/or earlier stages of lateritization, have apparently crystallized on such secondary, 254 
porous Ru-Os-Fe minerals. Such grain associations were observed by Ahmed and Bevan (1981) who 255 
reported on the formation of Ir-rich (up to 10 at.%) awaruite on crystals of Ru-Os-Ir-Fe-Ni alloys during 256 
serpentinization. This is in good agreement with our quantitative data which show a clear solid solution 257 
trend between awaruite and Ir-rich Pt-Ir-Fe-Ni alloys (Fig. 12). In addition, Zhmodik et al. (2004) 258 
performed experiments on the iridium distribution in hydrothermally synthesized sulphides and found 259 
that a characteristic enrichment of Ir along the external surface of individual large crystals occurs. These 260 
authors concluded that this observation is explained by adsorption equilibrium. 261 
However, multistage PGE grains from the highest levels of the Ni-laterite show an overgrowth of Pt-262 
dominated Pt-Ir-Fe- Ni alloys. This indicates that Pt mobilization and subsequent in situ neoformation 263 
occurs within the so-called critical zone, characterized by complex interactions of rock, soil, water, air, 264 
plants, organic acids and (micro-)organisms (Chorover et al. 2007). It is suggested that Pt (+Ir) are 265 
mobilized in the form of chloride complexes under low pH and high Eh conditions prevailing close to 266 
the surface of Ni-laterites (Bowles et al. 1994; Azaroual et al. 2001). 267 
 268 
PGE nugget formation in Ni-laterites: from hypogene to supergene 269 
The observed positive Pt anomaly in chondrite normalized patterns in the chromitite from the limonite, 270 
absent in the underlying chromitite from the saprolite (Fig. 3), together with the observations of Pt-271 
bearing mineral overgrowths (Fig. 4) and complete replacement of secondary Ru-Os-Fe grains by 272 
supergene Pt-Ir-Fe-Ni alloys (Figs. 8, 9 and 10), are strong arguments that Pt-dominated PGE nugget 273 
formation in lateritic soils is possible. Laboratory experiments demonstrate bioreductive deposition of Pt 274 
nanoparticles on bacteria (e.g. Konishi et al. 2007). Hence, in situ neoformation of Pt-Ir-Fe-Ni alloys 275 
observed in the present study is thought to be linked to detoxifying biofilms within a porous matrix of 276 
secondary Fe oxide(s). Although conditions and processes favouring biogenic growth of alloys in Ni-277 
laterites are subjects of ongoing research, it can be speculated that enzymes play a key role in PGE 278 
biomineralization at the nanoscale (Sharma et al. 2013). Supergene processes have been successfully 279 
simulated in a laboratory model for in vitro ‘growth’ of millimetresized gold grains (Shuster and 280 
Southam 2014) which reveal similar textures as unpolished Pt-Ir-Fe-Ni grains of this study (Fig. 10i). 281 
However, Brugger et al. (2013) investigated the contrasting behaviour of platinum and gold in surface 282 
environments and concluded that Au has a higher cell-toxicity compared to Pt-complexes, resulting in 283 
Au-detoxifying biofilms and subsequent formation of spheroidal nanoparticles. Such features were not 284 
observed for Pt and can be explained by its lower toxicity. However, Le et al. (2006) assessed 285 
bioleaching of weathered saprolite nickel ore by using heavy metal tolerant fungi (Aspergillus foetidus) 286 
and observed that the presence of multi-metals (e.g. Ni, Fe, Co, Al, Cr, Cu, Mg, Mn, Zn) led to greater 287 
toxic response to the growth behaviour of the microorganism relative to single metals. This could 288 
explain a sufficient toxicity for the formation of Pt (+Ir)-detoxifying biofilms in the case of Ni-laterites, 289 
promoting in situ Pt-Ir-Fe-Ni alloy neoformation. Our observations also indicate a close spatial 290 
relationship between hypogene (Os- and Ru-dominated) and supergene PGM (Pt- and Ir-dominated) 291 
(Fig. 8). Continuous precipitation of nano-scaled Pt-Ir-Fe-Ni alloys within and around porous secondary 292 



PGM leads to porosity reduction, replacement of host minerals (Fig. 9) and ultimately growing of 293 
densely packed, mechanically stable Pt-Ir-Fe-Ni alloys (Fig. 13). It is clear that only these grains, having 294 
a cubic symmetry (Table 4), are suitable for subsequent transportation and deposition in e.g. stream 295 
sediments. 296 
In summary, Fig. 15 shows a simplified model for the proposed formation of multistage PGE grains 297 
together with examples of representative PGM at different (trans-)formation stages: (i) formation of 298 
primary PGM included in chromian spinel at the magmatic stage; (ii) formation of secondary PGM due 299 
to desulphurization of primary PGM during serpentinization (involving Mg silicates); (iii) neoformation 300 
of Ir-rich Fe-Ni alloys (awaruite?) on the surface of highly porous secondary PGM during 301 
serpentinization and/or at the early stages of lateritization; (iv) continuous neoformation of Pt-Ir-Fe-Ni 302 
nanoparticles around (and within) secondary PGM and layers of Ir-rich Fe-Ni alloys, close to the surface 303 
at the late stages of lateritization, resulting in in situ growth of densely packed Pt-Ir-Fe-Ni nuggets (Fig. 304 
16). 305 
 306 
.  307 



CONCLUSIONS 308 

 309 

Considering the constantly growing number of experimental laboratory studies confirming that PGE are 310 

mobilized and can re-crystallize in low-temperature environments, surprisingly little mineralogical 311 

evidence from field sites is currently available. Hence, multistage PGE grains found in the uppermost 312 

levels of Ni-laterites are good objects to investigate PGM (trans-) formations from hypogene to 313 

supergene environments. 314 

In this work, we present evidence suggesting that (i) in situ neoformation of Pt-Ir-Fe-Ni alloys occurs in 315 

Ni-laterites and that (ii) accumulation of most likely biogenically mediated Pt-Ir-Fe-Ni nanoparticles can 316 

result in nugget formation of cubic symmetry. 317 

Whereas strong evidence for solely hypogene nugget formation may exist in other environments, the 318 

discovery of multistage PGE grains in Ni-laterites suggest that evidence for hypogene and supergene 319 

processes can also occur closely linked to each other. 320 
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Legends to figures 464 

 465 

Figure. 1. a The location of the Loma Caribe peridotite and orthophotograph of the Falcondo mining 466 

area highlighting the Loma Larga and Loma Peguera ore deposits. b Simplified geological map of the 467 

central section of the Loma Caribe peridotite (modified from Bowin 1966; Escuder-Viruete et al. 2007) 468 

 469 

Figure. 2 Idealized Ni-laterite soil profile from the Falcondo mining area and field observations of 470 

PGE-rich chromitites within saprolite (beneath the Mg discontinuity) and limonite (above the Mg 471 

discontinuity) 472 

 473 

Figure. 3 Comparison of chondrite normalized PGE patterns of chromitites included in saprolite and 474 

limonite showing a clear positive Pt anomaly for the chromitite included in limonite. Normalization 475 

values from Naldrett and Duke (1980) 476 

 477 

Figure. 4 Secondary electron image of a multistage PGE grain with three characteristic stages of 478 

formation (from early to late): (i) Ru- and Os-rich, (ii) Ir-rich, and (iii) Pt-rich. 479 

 480 

Figure. 5 EMP analytical profile of relevant elements through the multistage PGE grain of Fig. 4. Note 481 

the positive correlation of Fe and Pt through the formation sequence. The neoformed Pt-rich layer 482 

appears dark in the reflected light microphotograph at the bottom of the figure. 483 

 484 

Figure. 6 Element distribution maps of the multistage PGE grain of Fig. 4. Note the zonation of Ru, Os,  485 

Fe and Ir in the lower part of the grain, the visual correlation of Fe and Ni with Pt and Ir enrichment 486 

towards the top as well as micron-sized Ru phases at the boundary between Ir-Fe-Ni-(Pt) and Pt-(Ir) 487 

sequences 488 

 489 

Figure. 7 a Microphotograph of a well-preserved multistage PGE grain obtained by reflected light 490 

microscopy showing Os-Ru-rich alloy with a purple appearance, a white band of Ir-rich alloy and white 491 

spots of Pt- and Ir-rich nanoparticle accumulations within a reddish matrix of secondary Fe-oxide(s). 492 

Note that the microprobe electron beam has left brownish marks on the grain surface. b BSE image of 493 

the same grain. c FE-SEM BSE close-up image showing Os-Ru-Fe alloy, Ir-rich layer and Pt-Ir-Fe-Ni 494 

nanoparticles. Note that Pt-Ir-Fe-Ni nanoparticles are accumulating around pores (black) within 495 

secondary Fe-oxide(s) indicating a close relationship between fluid infill and in situ PGM crystallization  496 

 497 



Figure. 8 Element distribution maps of the multistage PGE grain of Fig. 7. Note the advanced stage of 498 

supergene Pt incorporation into the secondary PGM (replacement of hypogene PGM by supergene 499 

PGM) 500 

  501 

Figure. 9 a BSE microphotograph of an unpolished multistage PGE grain showing complete covering of 502 

Pt-Ir-Fe-Ni nanoparticles. b FE-SEM BSE close - up image revealing micro- and nanochannels closely 503 

linked to Pt-Ir-Fe-Ni nanoparticles. c BSE microphotograph of the same, but polished multistage PGE 504 

grain (a) containing a remnant of secondary Ru-Os-Fe alloy with porous appearance in its central part. d 505 

FE-SEM BSE close – up image showing the central part of the grain with surrounding Pt-Ir-Fe-Ni 506 

nanoparticles within secondary Fe-oxide(s)  507 

 508 

Figure. 10 a–h FE-SEM BSE images of characteristic grains of supergene Pt-Ir-Fe-Ni formed by 509 

agglutination of nanoparticles. i FE-SEM secondary electron image of one unpolished supergene Pt-Ir-510 

Fe-Ni grain 511 

 512 

Figure. 11 Ternary diagrams showing chemical variations for supergene Pt-Ir-Fe-Ni grains. a In the 513 

system Ir-Ni-Fe, the data plots suggest Ir and Fe incorporation in awaruite (solid solution). b In the 514 

system Pt-Ni-Fe, the data plots suggest Pt incorporation at approx. 60 at.% Fe whereas no correlation 515 

with awaruite is observed. c In the system (Pt + Ir)-Ni-Fe a 516 

preference for a composition close to (Pt, Ir)0.3Ni0.25Fe0.45 is noted 517 

 518 

Figure. 12 Inverse correlation of Ni + Fe vs. Pt + Ir suggesting a solid solution for supergene Pt-Ir-Fe-519 

Ni grains with awaruite 520 

 521 

Figure. 13 Observations of the Pt-Ir-Fe-Ni grain selected for XRD analyses. a Stereomicroscope image 522 

of the unpolished grain showing metallic luster. b FE-SEM BSE image of the unpolished grain. c FE-523 

SEM BSE close-up image showing accumulations of Pt-Ir-Fe-Ni nanoparticles d FE-SEM BSE image of 524 

the polished grain. e FE-SEM BSE close-up image showing densely packed accumulations of Pt-Ir-Fe-525 

Ni nanoparticles. f FE-SEM BSE close-up image showing the growing front with characteristic nano- 526 

and microchannels 527 

 528 

Figure. 14 Rietveld refinement of the obtained one dimensional conventional diffractogram (TOPAS) 529 

and resulting XRD pattern for the Pt-Ir-Fe-Ni alloy. Black observed; red total calculated profile 530 

(including background); blue calculated profile for the crystalline phase; grey difference between 531 

observed and calculated. Insert shows Debye rings for the Pt-Ir-Fe-Ni alloy, observed on the two-532 

dimensional detector 533 

 534 



Figure. 15 A genetic model for the formation of multistage PGE grains: Top row of images (denoted by 535 

capital letters) shows idealized cartoons, whereas bottom row of images (denoted by lower case letters) 536 

shows examples of actual PGM in the size range of 10-50 μm. A, a Primary PGM included in chromian 537 

spinel. B, b Serpentinization and subsequent formation of secondary Ru-Os alloys (bright) with a porous 538 

appearance intergrown with Mg silicates (dark). C, c Grain liberation during serpentinization and/or 539 

within the saprolite and subsequent formation of Ir-rich Fe-Ni alloys around secondary, highly porous 540 

Ru-Os-Fe alloys; D, d Neoformation of Pt-Ir-Fe-Ni nanoparticles in situ within limonite close to the 541 

surface around and within secondary Ru-Os-Fe alloys and layers of Ir-Fe-Ni alloys (‘growing of PGE 542 

nugget’) 543 

 544 

Figure. 16 BSE image of a larger Pt-Ir-Fe-Ni grain (approximately 50 × 30 μm in diameter). General 545 

porosity reduction (e.g. upper right part of the grain) due to particle agglutination 546 

547 
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FIGURE 11. 620 
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FIGURE 12. 669 
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FIGURE 13. 676 
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FIGURE 14. 685 
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FIGURE 15. 693 
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FIGURE 16. 699 
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Table 1 Comparison of the whole rock PGE geochemistry of chromitite included in saprolite from 707 

Loma Peguera (Aiglsperger et al. 2015) and chromitite included in limonite from Loma Larga (this 708 

study) 709 

 710 

  711 



Table 2 EMP analyses of the analysed points displayed in Fig. 5. The low totals result from the fine-712 
grained nature of grains and/or high porosities of surfaces 713 
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Table 4 Powder x-ray data for the Pt-Ir-Fe-Ni alloy and comparison with chemically related phases 729 
 730 
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Table 5 Comparative data for chemically related alloys including Pt-Ir-Fe-Ni 735 
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