Accepted Manuscript

A comprehensive characterization of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS)

Paola Quifer-Rada, Anna Vallverdú-Queralt, Miriam Martínez-Huélamo, Gemma Chiva-Blanch, Olga Jáuregui, Ramon Estruch, Rosa Lamuela-Raventós

PII:	S0308-8146(14)01220-5				
DOI:	http://dx.doi.org/10.1016/j.foodchem.2014.07.154				
Reference:	FOCH 16228				
To appear in:	Food Chemistry				
Received Date:	9 April 2014				
Revised Date:	20 June 2014				
Accepted Date:	21 July 2014				

Please cite this article as: Quifer-Rada, P., Vallverdú-Queralt, A., Martínez-Huélamo, M., Chiva-Blanch, G., Jáuregui, O., Estruch, R., Lamuela-Raventós, R., A comprehensive characterization of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS), *Food Chemistry* (2014), doi: http://dx.doi.org/10.1016/j.foodchem.2014.07.154

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Running title: Characterization of beer polyphenols by high resolution mass

2 spectrometry

- 3 Title: A comprehensive characterization of beer polyphenols by high resolution
- 4 mass spectrometry (LC-ESI-LTQ-Orbitrap-MS)
- 5 Paola Quifer-Rada^{1,2}, Anna Vallverdú-Queralt^{1,2}, Miriam Martínez-Huélamo^{1,2}, Gemma
- 6 Chiva-Blanch^{2,3}, Olga Jáuregui⁴, Ramon Estruch^{2,3}, Rosa Lamuela-Raventós^{1,2}*

7	¹ Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy,
8	Campus de l'Alimentació Torribera, University of Barcelona, Barcelona, Spain.
9	² CIBER Physiopathology of obesity and nutrition (CIBEROBN). Institute of Health
10	Carlos III, Spain. ³ Department of Internal Medicine, Hospital Clinic, Institute of
11	Biomedical Investigation August Pi i Sunyer (IDIBAPS), University of Barcelona,
12	Spain. ⁴ Scientific and Technological Centers of the University of Barcelona (CCiTUB),
13	Barcelona, Spain.
14	
15	* Corresponding author:

- 16 Dr. Rosa Maria Lamuela-Raventós
- 17 Department of Nutrition and Food Science,
- 18 School of Pharmacy, University of Barcelona
- 19 Avda. Joan XXIII s/n
- 20 08028 Barcelona, Spain
- 21 Tel: +34 934024508
- 22 Fax: +34 934035931
- 23 E-mail: <u>lamuela@ub.edu</u>

24 ABSTRACT

Beer is the second most consumed alcoholic beverage in Europe and shown by the 25 26 European Prospective Investigation into Cancer and Nutrition cohort study to be the main food contributor to hydroxybenzoic acid intake. About 70-80% of the total 27 polyphenol content in beer comes from malt, and the remaining 30-20% from hops. In 28 29 this work, liquid chromatography coupled with an electrospray ionization hybrid linear ion trap quadrupole Orbitrap mass spectrometry technique has been used for an accurate 30 31 identification of beer polyphenols. 47 phenolic compounds were identified using high mass accuracy and confirmed by MS² experiments, including simple phenolic acids, 32 33 hydroxycinnamoylquinics, flavanols, flavonols, flavones, alkylmethoxyphenols, alphaand iso-alpha-acids, hydroxyphenylacetic acids and prenylflavanoids. As far as we 34 know, 7 of these compounds have been recognized in beer for the first time: 35 feruloylquinic acid, caffeic acid-O-hexoside, coumaric acid-O-hexoside, sinapic acid-O-36 hexoside, catechin-O-dihexoside, kaempferol-O-hexoside, and apigenin-C-hexoside-37 38 pentoside.

39

CC

KEYWORDS: beer, polyphenols, LTQ-Orbitrap, phenolic acids, high resolution massspectrometry.

42 **1. Introduction**

43 Beer is the second most consumed alcoholic beverage in Europe, accounting for 37% of the total EU alcohol consumption, according to the European Spirits Organization. The 44 45 average beer consumption per capita in Europe in 2009-2011 was 72.8 L. Beer contains carbohydrates, minerals (potassium, magnesium), vitamins (niacin, riboflavin, folate, 46 cobalamin, pyridoxine) and amino acids. Additionally, beer contains polyphenols of 47 48 which about 70-80% come from malt, and the remaining 30-20% come from hops (De Keukeleire, 2000). The main phenolic compounds are hydroxybenzoic acids, cinnamic 49 50 acids, such as ferulic acid, and flavonols (Clarissa Gerhäuser, 2005). Hop polyphenol 51 content depends on the type of beer and the quantity of hops added during production. 52 Furthermore, during the brewing process and fermentation, some polyphenols undergo chemical changes, such as decarboxylation and isomerization. Beer constitutes a good 53 54 source of polyphenols and was found to be the main food contributor to hydroxybenzoic 55 acid intake in the European Prospective Investigation into Cancer and Nutrition cohort study (Zamora-Ros et al., 2013). 56

Although various phenolic compounds have been found in beer using different 57 58 detectors, such as the coulometric array (Floridi, Montanari, Marconi, & Fantozzi, 2003; Jandera et al., 2005; Rehová, Skeríková, & Jandera, 2004), electrochemical 59 (Madigan, McMurrough, & Smyth, 1994; Montanari, Perretti, Natella, Guidi, & 60 61 Fantozzi, 1999; Nardini & Ghiselli, 2004; Piazzon, Forte, & Nardini, 2010; 62 Vanbeneden, Delvaux, & Delvaux, 2006), photodiode array (Bartolomé, Peña-Neira, & 63 Gómez-Cordovés, 2000), ultraviolet-visible spectrophotometry (Arts, van de Putte, & 64 Hollman, 2000; McMurrough, Madigan, & Smyth, 1996) and low resolution mass spectrometry (Ceslova, Holcapek, Fidler, Drstickova, & Lisa, 2009; Vanhoenacker, De 65 66 Keukeleire, & Sandra, 2004), a comprehensive identification of its phenolic profile by

3

67 high resolution mass spectrometry has been lacking. High-resolution/accurate mass 68 measurement mass spectrometry techniques have proven to be a reliable tool for the 69 structural elucidation of unknown compounds in complex samples. In this context, linear ion trap quadrupole-Orbitrap-mass spectrometry (LTQ-Orbitrap-MS) provides 70 71 single-stage mass analysis that supplies molecular weight information, two-stage mass analysis (MS/MS) and multi-stage mass analysis (MSⁿ) that provides structural 72 information. Exact mass measurements and molecular formula assignment are 73 74 indispensable for the characterization of polyphenols. Moreover, accurate mass 75 measurement of the product ions facilitates the elucidation of unknown compounds.

The aim of this work was to identify the full range of polyphenols found in beer. Therefore, a solid-phase extraction procedure was applied in order to increase sensitivity and lower the matrix effect. High mass accuracy was used to identify 47 phenolic compounds, confirmed by product ion scan experiments and high mass accuracy of the fragments. To our knowledge, 7 phenolic compounds are reported as being in beer for the first time.

- 82 2. Materials and methods
- 83 2.1. Chemicals and reagents

Gallic, caffeic, protocatechuic, ferulic, chlorogenic, sinapic, p-coumaric, vanillic and 84 85 protocatechnic acids, quercetin-3-O-glucoside, catechin and epicatechin (97-99% purity, 86 all) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Isoxanthohumol, 8-87 prenylnaringenin and xanthohumol (97-99% purity) were purchased from Enzo Life 88 Science (Lausen, Switzerland). Methanol (MeOH) and acetonitrile (MeCN) of HPLC 89 grade were obtained from Sigma-Aldrich (St. Louis, MO, USA). HPLC grade acetic 90 acid, formic acid and sodium acetate were purchased from Panreac Quimica S.A (Barcelona, Spain). Ultrapure water (MilliQ) was generated by the Millipore System 91

- 92 (Bedford, USA). SPE cartridges and Oasis MAX 96-well plate 30 µm (30 mg) were
- 93 obtained from Waters (Milford, MA, USA).
- 94 *2.2. Samples*

95 Four types of beer were used for the identification of the phenolic compounds present in

- 96 beer: lager, Pilsen, Märzenbier and non-alcoholic beer. All beers were produced in
- 97 Spain and were obtained from the market.
- 98 2.3. Sample preparation

99 Samples were prepared in a darkened room with a red safety light to avoid analyte oxidation. Beer foam was removed by ultrasonication and agitation using a magnetic 100 101 stirrer. Then, in order to improve sensitivity, a solid-phase extraction step was applied 102 following the method developed by Medina-Remón et al. for urine samples (Medina-Remon et al., 2009) and then used and validated in tomato samples (Vallverdu-Queralt, 103 Jauregui, Medina-Remon, & Lamuela-Raventos, 2012) with minor modifications. 104 Briefly, beer ethanol was evaporated under nitrogen flow. Oasis® MAX cartridges were 105 activated with 1 ml of methanol and subsequently 1 ml of sodium acetate 50 mM pH 7. 106 Then 1 ml of dealcoholized beer acidified with 34 µl of hydrochloric acid at 35% was 107 loaded into the cartridges. Cartridges were rinsed with sodium acetate 50 mM pH 7.0 108 containing 5% methanol. Polyphenols were eluted with 1800 µl of methanol with 2% 109 110 formic acid. The eluted fractions were evaporated under nitrogen flow, and the residue was reconstituted with water (0.1% formic acid) up to 100 μ l and filtered through a 13 111 112 mm, 0.45 µm PTFE filter into an insert-amber vial for HPLC analysis. Samples were 113 stored at -20 °C until analysis. In order to prove that the beer matrix did not influence recovery of the analytes, a recovery assay was performed using 12 representative beer 114 115 polyphenols (4-hydroxybenzoic, caffeic acid, catechin, epicatechin, chlorogenic, ferulic acid, kaempferol-O-glucoside, p-coumaric acid, protocatechuic acid, quercetin-3-O-116

117 glucoside, sinapic and vanillic acids). The recoveries of the polyphenols in beer ranged

118 from $78.3\% \pm 6.6\%$ and $113.5\% \pm 8.6\%$.

119 2.4. LC-High resolution mass spectrometry and experimental conditions

An LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, Hemel Hempstead, UK) 120 equipped with an ESI source working in negative mode was used for accurate mass 121 measurements. Mass spectra were acquired in profile mode with a setting of 30,000 122 resolution at m/z 400. Operation parameters were as follows: source voltage, 4 kV; 123 124 sheath gas, 20 (arbitrary units); auxiliary gas, 10 (arbitrary units); sweep gas, 2 (arbitrary units); and capillary temperature, 275 °C. Default values were used for most 125 other acquisition parameters (FT Automatic gain control (AGC) target 5.10⁵ for MS 126 mode and $5 \cdot 10^4$ for MSⁿ mode). Beer samples were analyzed in full scan mode at a 127 resolving power of 30,000 at m/z 400 and data-dependent MS/MS events acquired at a 128 resolving power of 15,000. The most intense ions detected during full scan MS 129 triggered data-dependent scanning. Data-dependent scanning was carried out without 130 the use of a parent ion list. Ions that were not intense enough for a data-dependent scan 131 were analyzed in MS^n mode with the Orbitrap resolution also set at 15,000 at m/z 400. 132 133 An isolation width of 100 amu was used and precursors were fragmented by collisioninduced dissociation C-trap (CID) with a normalized collision energy of 35 V and an 134 activation time of 10 ms. The mass range in FTMS mode was from m/z 100 to 1000. 135 136 The data analysis was achieved using XCalibur software v2.0.7 (Thermo Fisher 137 Scientific). An external calibration for mass accuracy was carried out before the 138 analysis.

Liquid chromatography analysis was performed using an Accela chromatograph (Thermo Scientific, Hemel Hempstead, UK) equipped with a quaternary pump, a photodiode array detector (PDA) and a thermostated autosampler. Chromatographic

6

142 separation was accomplished with a Phenomenex Luna C_{18} column 50 x 2.0 mm i.d, 3 143 µm (Phenomenex, Torrance, CA, USA). Gradient elution of analytes was carried out 144 with water/0.1 % formic acid (solvent A) and acetonitrile/0.1 % formic acid (solvent B) 145 at a constant flow rate of 0.4 l/min, and the injection volume was 5 µl. A non-linear 146 gradient was applied: 0 min, 2% B; 0-2 min, 8% B; 2-12 min, 20% B; 12-13 min, 30% 147 B; 13-14 min, 100% B; 14-17 min, 100% B; 17-18 min, 2% B and the column was 148 equilibrated for 7 min to initial conditions.

149 **3. Results and discussion**

150 *3.1. General*

The data-dependent scan experiment was very useful for the identification of unknown 151 phenolic compounds since it provides high resolution and accurate mass product ion 152 spectra from precursor ions that are unknown beforehand within a single run. 153 Combining data-dependent scan and MSⁿ experiments, 47 phenolic compounds were 154 tentatively identified in beer including simple phenolic acids, hydroxycinnamoylquinic 155 acids, flavanols, flavonols, flavones, alkylmethoxyphenols, alpha- and iso-alpha-acids, 156 hydroxyphenylacetic acids and prenylflavanoids. As far as we know, 7 of these have 157 never been deteremined before in beer: feruloylquinic acid, caffeic acid-O-hexoside, 158 159 coumaric acid-O-hexoside, sinapic acid-O-hexoside, catechin-O-dihexoside, 160 kaempferol-O-hexoside, and apigenin-C-hexoside-pentoside.

161 Phenolic compounds were identified by generating the molecular formula using 162 accurate mass with some restrictions (C=30, H=100, O=15), and matching with the 163 isotopic pattern. This molecular formula was then identified using the Dictionary of 164 Natural Products (Chapman & Hall/CRC). Lastly, analytes were confirmed using 165 MS/MS data and comparing the fragments found with the literature.

- 166 Table 1 shows the list of 47 phenolic compounds tentatively identified using LC-ESI-
- 167 LTQ-Orbitrap, along with their retention time, accurate mass molecular formula and
- 168 error (mDa). No differences in the phenolic profile were observed among the 4 types of
- 169 beer, except for Märzenbier, which lacked catechin-O-hexoside.
- 170 Figure 1 shows an FTMS chromatogram of a beer sample.
- 171 *3.2. Phenolic acids*
- 172 *3.2.1. Hydroxybenzoic acids and derivatives*

Hydroxybenzoic acids have a C_6 - C_1 chemical structure and show a characteristic loss of 173 CO₂ [M-H-44]⁻ in MS² experiments (Vallverdú-Queralt, de Alvarenga, Estruch, & 174 175 Lamuela-Raventos, 2013). The examination of the chromatograms in FTMS mode and the data-dependent scan revealed the presence of gallic acid (m/z 169.3014, 0.6 mDa) 176 protocatechuic acid (m/z 153.0193, 0.06 mDa), 4-hydroxybenzoic acid (m/z 137.0241, 177 0.20 mDa), vanillic acid (m/z 167.0349, 0.07 mDa) and dihydroxybenzoic acid (m/z178 153.0187, 0.60 mDa). All ions showed a loss of 44 u in the MS² spectra, and vanillic 179 acid showed an extra fragmentation due to the loss of the methyl group [M-H-15]. 180 Moreover, protocatechuic acid-O-hexoside was also identified (m/z 315.0710, 1.10 181

- mDa) and confirmed by MS^2 experiments, which showed the loss of the intact sugar
- 183 $[M-H-162]^{-}$ with an error below 0.30 mDa.
- 184 *3.2.2. Hydroxycinnamic acids and derivatives*

Hydroxycinnamic acids have a C₆-C₃ structure with a double bond in the side chain in *cis* or *trans* configuration. Hydroxycinnamic acids are secondary metabolites generated from phenylalanine and tyrosine and are the precursors of the other polyphenol classes in plant biosynthetic pathways (El-Seedi et al., 2012). The examination of the chromatograms led to the identification of a few hydroxycinnamic acids: caffeic acid (m/z 179.0349, 0.06 mDa), *p*-coumaric acid (m/z 163.0400, 0.05 mDa), ferulic acid (m/z 163.0400, 0.05 mDa)

193.0506, 0.06 mDa) and sinapic acid (m/z 223.0611, 0.08 mDa). The typical loss of 191 CO_2 [M-H-44]⁻ was observed for all hydroxycinnamic acids with an error below 0.40 192 193 mDa. Loss of a methyl group [M-H-15]⁻ was also shown in ferulic and sinapic acid with an error of 0.1 mDa. Moreover, ferulic, *p*-coumaric and sinapic acid were confirmed 194 comparing the retention time and the MS^2 spectrum with pure standards. 195 Hydroxycinnamic acid derivatives were also identified in beer samples. The MS^2 196 spectra showed the characteristic fragmentation involving cleavage of the sugar moiety 197 198 [M-H-162]⁻. Accurate mass measurement revealed the presence of two caffeic acid-Ohexosides (m/z 341.0877, 0.43 mDa), one coumaric acid-O-hexoside (m/z 325.0928, 199 0.10 mDa), one ferulic acid-O-hexoside (m/z 355.1034, 0.10 mDa), and two sinapic 200 acid-O-hexosides (m/z385.1139, 0.12 mDa). While caffeic acid, coumaric acid and 201 sinapic acid have been described in beer elsewhere (Bartolomé et al., 2000; Floridi et 202 al., 2003; Jandera et al., 2005; Montanari et al., 1999; Nardini & Ghiselli, 2004; Rehová 203 et al., 2004), as far as we know, this is the first time that these hexoside 204 hydroxycinnamic acid derivatives have been reported in beer. 205

A peak showing m/z 353.0877 revealed the presence of four caffeoylquinic acids with an error below 0.13 mDa: neochlorogenic, chlorogenic, cryptochlorogenic and 1caffeoylquinic acids. It was possible to differentiate the four isomers by their relative intensities in MS² spectra according to the method cited by other authors using mass spectrometry (Clifford, Johnston, Knight, & Kuhnert, 2003; Parejo et al., 2004). All caffeoylquinic acid isomers show a characteristic fragment of m/z 191.0561 with a 0.60 mDa of error which corresponds to the quinic acid.

Also found was feruloylquinic acid (m/z 367.1034, 0.10 mDa), which is the first time it has been detected in beer, to our knowledge. MS² spectra of feruloylquinic acid showed

- the fragment of quinic acid (m/z 191.0506, 0.20 mDa) and ferulic acid (m/z 193.0506, 0.20 mDa)
- 216 0.40 mDa).
- 217 *3.2.3. Hydroxyphenylacetic acids*
- Hydrophenylacetic acids have a C_6 - C_2 carbon structure and are characterized by loss of
- a molecule of CO_2 in MS^2 experiments. Beer is one of the major sources of
- 220 hydroxyphenylacetic acids in European diets, along with olives, cider and wine
- 221 (Zamora-Ros et al., 2013).
- 222 Three peaks were identified in FTMS corresponding to three hydroxyphenylacetic acid
- isomers (*m*/z151.0395, 0.05 mDa) confirmed by the exact mass. One isomer is expected
- to be 4-hydroxyphenylacetic acid since this has been reported in beer previously
- 225 (Nardini, Natella, Scaccini, & Ghiselli, 2006).
- 226 3.3. Flavonoids

Flavonoids are a large family of compounds with a common chemical structure: a 227 diphenylpropane skeleton bearing two benzene rings (A and B) connected by a pyran 228 229 ring attached to the A ring. Flavonoids are further divided into subclasses chalcones, (anthocyanidins, flavanols, flavanones, flavonols, 230 flavones and isoflavonoids). Many biological effects and health benefits have been associated with 231 flavonoid consumption, although these effects may be related to their ability to 232 233 modulate cell-signaling rather than their antioxidant activity (Williams, Spencer, & 234 Rice-Evans, 2004).

235 *3.3.1. Flavanols and derivatives*

Using LTQ-Orbitrap in FTMS and MS^2 modes, the comprehensive fragmentation pathways of (+)-catechin and (-)-epicatechin (m/z 289.0717, 0.12 mDa) was unambiguously determined. Additionally, (+)-catechin and (-)-epicatechin were confirmed with pure standards.

240 Two types of hexoside derivatives were found in beer samples: catechin-O-hexoside

241 (*m/z* 451.1245, 0.13 mDa) and catechin-O-dihexoside (*m/z*613.1773, 0.12 mDa). Both

derivatives showed the loss of the sugar moiety in MS^2 spectra. Catechin-O-hexoside

- has been found in beer previously (C. Gerhäuser et al., 2002) but, to our knowledge, this
- is the first report of catechin-O-dihexoside in beer.
- 245 *3.3.2. Flavonol derivatives*
- 246 Kaempferol-3-O-glucoside (*m/z* 447.0932, 0.05 mDa) and quercetin-3-O-glucoside (*m/z*
- 247 463.088, 0.12 mDa) were found in beer by analyzing the chromatograms in FTMS, for which both analytes showed the loss of 162 u due to the sugar moiety. Quercetin-3-O-248 249 glucoside and kaempferol-3-O-glucoside were further confirmed by comparing the chromatograms with pure standards. Kaempferol-3-O-rhamnoside, quercetin-3-O-250 rhamnoside, quercetin-3-O-rutinoside, quercetin-3-O-arabinoside and quercetin-3-O-251 glucoside have been previously reported in beer (Clarissa Gerhäuser, 2005; Jandera et 252 2005; Rehová et al., 2004), but not kaempferol-3-O-glucoside. 3,7-253 al., dimethylquercetin (m/z 329.0666, 0.09 mDa) was also found and confirmed by MS² 254 spectra showing the loss of the methyl groups [M-H-15]⁻. 255

256 *3.3.3. Flavones*

The examination of the chromatograms in FTMS mode and dependent scan led to the identification of three apigenin derivatives. Apigenin-*C*-hexoside (m/z 431.0983, 0.20 mDa) showed a loss of 120 and 90 u in the MS² spectra characteristic of the cross-ring fissions in the sugar unit, as reported previously in apigenin-6,8-di-*C*-hexoside (Marín, Ferreres, Tomás-Barberán, & Gil, 2004; Parejo et al., 2004). Apigenin-*C*-hexoside-*O*hexoside (m/z 593.1511, 0.30 mDa) was also detected and showed the two different fragmentation patterns of *C*-glycosides and *O*-glycosides in MS² experiments: [M-H-

²⁶⁴ 120]⁻ and [M-H-90]⁻ which corresponds to the loss of *C*-glycosides, and [M-H-162]⁻

which agrees with the loss of the intact *O*-glycoside.

266 Also found was apigenin-C-hexoside-C-pentoside (m/z 563.1406, 0.23 mDa), which showed an extra loss of 90, 120 and 60 u in MS² spectra characteristic of cross-ring 267 cleavage of the C-pentoside unit as shown in Figure 2 and also reported previously 268 (Marín et al., 2004; Vallverdú-Queralt, Jáuregui, Di Lecce, Andrés-Lacueva, & 269 Lamuela-Raventós, 2011). Apigenin-C-glucoside and apigenin-C-diglucoside have been 270 271 reported in beer previously (C. Gerhäuser et al., 2002), but as far as we know, this works demonstrates for the first time that apigenin-C-hexoside-C-pentoside is also 272 273 present.

274 *3.4. Bitter acids*

Bitter acids are characteristic compounds of beer since they are synthesized in the 275 lupulin glands of the hop plant. Bitter acids have a prenylated polyketide structure and 276 there are two main subclasses: α -acids (humulones) and β -acids (lupulones). α -acids (n-, 277 co-, and ad-humulone) undergo thermal isomerization during wort boiling and are 278 transformed into iso-a-acids (isohumulone, isocohumulone and isoadhumulone) via an 279 280 acyloin-type ring contraction (De Keukeleire, 2000). Iso- α -acids play an important role in beer organoleptic properties, since they contribute to its bitter flavour (Huvaere, 281 282 Sinnaeve, Van Bocxlaer, & De Keukeleire, 2004) and the stability of the foam (Ferreira, 283 Jorge, Nogueira, Silva, & Trugo, 2005; Kunimune & Shellhammer, 2008).

Three α -acids were identified in FTMS mode and dependent scan spectra: co-humulone (*m/z* 347.1864, 0.30 mDa), n-humulone and ad-humulone (*m/z* 361.2020, 1.11 mDa). All α -acids showed the same fragmentation pattern in MS² spectra: the loss of 69 u, which corresponds to the scission of the prenyl chain (3-methyl-but-2-en-1-yl, C₅H₉) with an error below 0.30 mDa. A fragment of 235.1335 (error of 0.30 mDa) was also

observed in some peaks, which might be related to ring fission. Ad-humulone and nhumulone were distinguished according to the intensity of the m/z 292.1312 fragment, as reported previously (Hofte & Van Der Hoeven, 1998), the peak with a greater intensity of the mass fragment being matched to n-humulone. A co-humulone isomer was also detected, although the two compounds could not be discriminated based on their mass fragment intensities.

Three iso- α -acids were also found in beer: iso- α -cohumulone, iso- α -adhuhulone and iso- α -humulone. Although iso- α -acids have the same molecular weight as α -acids, they could be distinguished by the different fragmentation pattern. Iso- α -acids showed a characteristic loss of 96 u, which corresponds to the scission of the side chain (4methyl-pent-3-en-1-oxo, C₆H₈O) instead of 69 u (C₅H₉). Iso- α -acids were identified with an error below 0.40 mDa. Iso- α -adhumulone and iso- α -humulone could not be distinguished since both peaks had the same fragmentation pattern and intensities.

302 *3.5. Prenylflavanoids*

Prenylflavanoids are a sub-class of flavonoids, mainly found in hops, characterized by
having a prenyl group attached in the flavanoid backbone (ring A). Female
inflorescences of hops used in brewing are particularly rich in xanthohumol, although
during the brewing process, xanthohumol isomerizes into isoxanthohumol (Stevens,
Taylor, Clawson, & Deinzer, 1999). Other important hop flavanoids previously found in
beer are desmethylxanthohumol, 6-prenylnaringenin 8-prenylnarigenin and 6geranylnaringenin (Stevens, Taylor, & Deinzer, 1999).

All prenylflavanoids follow the same fragmentation pattern and show ions corresponding to retro-Diels Alder fragmentation in the C-ring, involving 1,3 scission in MS² spectra, as described previously in other flavonoids like naringenin (Vallverdu-Queralt, Jauregui, Medina-Remon, Andres-Lacueva, & Lamuela-Raventos, 2010).

13

Isoxanthohumol (m/z 353.1394, 0.07 mDa), 8-prenylnaringenin and 6-prenylnaringenin (m/z 339.1237, 0.22 mDa and 0.13 mDa, respectively) were found in beer samples and confirmed using MS² data. Isoxanthohumol and 8-prenylnaringenin were further confirmed by comparison with pure standards.

318 *3.6. Alkylmethoxyphenols*

Flavour-active volatile phenols, such as vanillin, acetovanillone, 4-vinylsyringol, 4-319 vinylguaiacol and 4-vinylphenol, have been described in beer previously (Vanbeneden, 320 321 Gils, Delvaux, & Delvaux, 2008). In particular, ferulic acid releases 4-vinylguaicol through decarboxylation by thermal decomposition during the wort boiling 322 323 (McMurrough, Madigan, Donnelly, et al., 1996) and by enzymatic reaction during fermentation and brewing (Coghe, Benoot, Delvaux, Vanderhaegen, & Delvaux, 2004) 324 The higher sensitivity of the LTQ-Orbitrap system enabled the identification of low-325 intensity signals, such as 4-vinylguaicol (m/z 149.0607, 0.80 mDa). MS² spectrum 326 confirmed the presence of this compound, showing a loss of the methyl group [M-H-327 328 15]

329 3.7. Indole-based compounds

Indole-3-carboxylic acid (m/z 174.0560, 0.06 mDa) was also found in beer samples. MS² spectra showed a loss of CO₂ [M-H-44]⁻. Indole-3-carboxylic acid is a product of the biotransformation of the indole alkaloid gramine, which is found in barley (Digenis, 1969).

334 4. Conclusion

Using an LTQ-Orbitrap high resolution mass spectrometer, we were able to identify 47 phenolic compounds in beer, seven of which, as far as we know, are reported for the first time. Most of these polyphenols are hexosides, dihexosides, pentosides and quinic conjugates, such as feruloylquinic acid, caffeic acid-*O*-hexoside, coumaric acid-*O*-

- hexoside, sinapic acid-*O*-hexoside, catechin-*O*-dihexoside, kaempferol-*O*-hexoside, and apigenin-*C*-hexoside-pentoside. LC-ESI-LTQ-Orbitrap-MS allowed the characterization of the polyphenols present in beer, based on the accurate mass measurement with a low error (<1.1 mDa) and the MS² spectra data. The phenolic compounds were further confirmed by comparisons with pure standards whenever possible as well as with the literature.
- 345 This study broadens knowledge of beer polyphenols, which might be helpful for further
- 346 research on the health and sensory properties of beer.

347 Acknowledgement

- 348 This study was supported by The European Foundation for Alcohol Research (ERAB)
- 349 EA 1117 and EA 1324 and CIBEROBN. Paola Quifer-Rada is grateful for the
- 350 predoctoral fellowships awarded by the Generalitat de Catalunya (FI-DRG). Miriam
- 351 Martínez-Huélamo thanks the predoctoral programme of MICINN.
- 352 All authors have read and approved the final manuscript.

353 Author disclosures

354 Dr. Estruch reports serving on the board of and receiving lecture fees from the Research Wine 355 Foundation on and Nutrition (FIVIN); serving on the boards 356 of the Beer and Health Foundation and the European Foundation for Alcohol Research (ERAB); receiving lecture fees from Cerveceros de España and 357 Sanofi-Aventis; and receiving grant support through his 358 institution from Novartis. Dr. Lamuela-Raventos reports serving on the board of and receiving 359 lecture fees from FIVIN; receiving lecture fees from Cerveceros de España; 360 and receiving lecture fees and travel support from PepsiCo. Nevertheless, 361 these foundations had no involvement in the study design, the collection, 362 363 analysis and interpretation of data, the writing of the manuscript or the decision to submit the manuscript for publication. The other authors declare 364 365 no conflict of interest.

366 **References**

367	Arts, I. C. W., van de Putte, B., & Hollman, P. C. H. (2000). Catechin Contents of
368	Foods Commonly Consumed in The Netherlands. 2. Tea, Wine, Fruit Juices, and
369	Chocolate Milk. <i>Journal of Agricultural and Food Chemistry</i> , 48(5), 1752–1757.
370	Bartolomé, B., Peña-Neira, A., & Gómez-Cordovés, C. (2000). Phenolics and related
371	substances in alcohol-free beers. <i>European Food Research and Technology</i> ,
372	210(6), 419–423.
373	Ceslova, L., Holcapek, M., Fidler, M., Drstickova, J., & Lisa, M. (2009).
374	Characterization of prenylflavonoids and hop bitter acids in various classes of
375	Czech beers and hop extracts using high-performance liquid chromatography-mass
376	spectrometry. <i>Journal of chromatography</i> . <i>A</i> , <i>1216</i> (43), 7249–7257.
377	Clifford, M. N., Johnston, K. L., Knight, S., & Kuhnert, N. (2003). Hierarchical scheme
378	for LC-MSn identification of chlorogenic acids. <i>Journal of Agricultural and Food</i>
379	<i>Chemistry</i> , <i>51</i> (10), 2900–11.
380 381 382 383	Coghe, S., Benoot, K., Delvaux, F., Vanderhaegen, B., & Delvaux, F. R. (2004). Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. <i>Journal of Agricultural and Food Chemistry</i> , 52(3), 602–8.
384 385	De Keukeleire, D. (2000). Fundamentals of beer and hop chemistry. <i>Química Nova</i> , 23(1), 108–112.
386 387 388	Digenis, G. A. (1969). Metabolic fates of gramine in barley II: Biotransformation of gramine into indole-3-carbinol and indole-3-carboxylic acid in barley. <i>Journal of Pharmaceutical Sciences</i> , 58(1), 42–44.
389	El-Seedi, H. R., El-Said, A. M. A., Khalifa, S. A. M., Göransson, U., Bohlin, L., Borg-
390	Karlson, AK., & Verpoorte, R. (2012). Biosynthesis, natural sources, dietary
391	intake, pharmacokinetic properties, and biological activities of hydroxycinnamic
392	acids. <i>Journal of Agricultural and Food Chemistry</i> , 60(44), 10877–95.
393 394 395 396	Ferreira, I. M. P. L. V. O., Jorge, K., Nogueira, L. C., Silva, F., & Trugo, L. C. (2005). Effects of the combination of hydrophobic polypeptides, iso-alpha acids, and malto-oligosaccharides on beer foam stability. <i>Journal of Agricultural and Food Chemistry</i> , <i>53</i> (12), 4976–81.
397	Floridi, S., Montanari, L., Marconi, O., & Fantozzi, P. (2003). Determination of free
398	phenolic acids in wort and beer by coulometric array detection. <i>Journal of</i>
399	<i>Agricultural and Food Chemistry</i> , 51(6), 1548–54.
400	Gerhäuser, C. (2005). Beer constituents as potential cancer chemopreventive agents.
401	<i>European Journal of Cancer (Oxford, England : 1990)</i> , 41(13), 1941–54.

402 403	Gerhäuser, C., Alt, A. P., Klimo, K., Knauft, J., Frank, N., & Becker, H. (2002). Isolation and potential cancer chemopreventive activities of phenolic compounds
404	of beer. Phytochemistry Reviews, 1(3), 369–377.
405	Hofte A I P & Van Der Hoeven R A M (1998) Characterization of Hop Acids by
406	Liquid Chromatography with Negative Electrospray Ionization Mass
407	Spectrometry Journal of the American Society of Brewing Chemist 56(3) 118–
408	122.
400	Huwara K. Sinnaaya P. Van Poaylaar, I. & Da Kaukalaira D. (2004)
409	Deteovidative degradation of beer bittering principles: product englysis with
410	respect to lightetruck flavour formation. <i>Photochamical & Photobiological</i>
411	Sciences : Official Journal of the European Photochemistry Association and the
412	European Society for Photobiology 3(0) 854–8
415	European society jor 1 holobiology, 5(9), 854–8.
414	Jandera, P., Skeifíková, V., Rehová, L., Hájek, T., Baldriánová, L., Skopová, G.,
415	Horna, A. (2005), RP-HPLC analysis of phenolic compounds and flavonoids in
416	beverages and plant extracts using a CoulArray detector. <i>Journal of Separation</i>
417	<i>Science</i> , 28(9-10), 1005–22.
418	Kunimune, T., & Shellhammer, T. H. (2008). Foam-stabilizing effects and cling
419	formation patterns of iso-alpha-acids and reduced iso-alpha-acids in lager beer.
420	Journal of Agricultural and Food Chemistry, 56(18), 8629–34.
421	Madigan D McMurrough I & Smyth M R (1994) Determination of
422	proanthocyanidins and catechins in beer and barley by high-performance liquid
423	chromatography with dual-electrode electrochemical detection. <i>The Analyst.</i>
424	119(5), 863–8.
425	Marín, A., Ferreres, F., Tomás-Barberán, F. A., & Gil, M. I. (2004). Characterization
426	and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum
427	L.). Journal of Agricultural and Food Chemistry, 52(12), 3861–9.
428	McMurrough, I., Madigan, D., Donnelly, D., Hurley, J., Doyle, AM., Hennigan, G.,
429	Smyth, M. R. (1996a). Control of ferulic acid and 4-vinyl guaiacol in brewing.
430	Journal of the Institute of Brewing, 102(5), 327–332.
431	McMurrough, I., Madigan, D., & Smyth, M. R. (1996b), Semipreparative
432	Chromatographic Procedure for the Isolation of Dimeric and Trimeric
433	Proanthocyanidins from Barley. Journal of Agricultural and Food Chemistry.
434	44(7), 1731–1735.
V	
435	Medina-Remon, A., Barrionuevo-Gonzalez, A., Zamora-Ros, R., Andres-Lacueva, C.,
436	Estruch, R., Martinez-Gonzalez, M. A., Lamuela-Raventos, R. M. (2009). Rapid
437	Folin-Ciocalteu method using microtiter 96-well plate cartridges for solid phase
438	extraction to assess urinary total phenolic compounds, as a biomarker of total
439	polyphenols intake. Analytica Chimica Acta, 634(1), 54–60.
110	Montanari I. Perretti G. Natella F. Guidi A. & Fantozzi P. (1000). Organia and
440 ДД1	Phenolic Acids in Beer IWT - Food Science and Technology 32(8) 535-530
- T - T - L	\mathbf{I} include in Door , \mathbf{L} is \mathbf{I} and \mathbf{U} in \mathbf{U} in \mathbf{U} in \mathbf{U} in \mathbf{U} in \mathbf{U} is \mathbf{U} .

442 443	Nardini, M., & Ghiselli, A. (2004). Determination of free and bound phenolic acids in beer. <i>Food Chemistry</i> , 84(1), 137–143.
444	Nardini, M., Natella, F., Scaccini, C., & Ghiselli, A. (2006). Phenolic acids from beer
445 446	Biochemistry, 17(1), 14–22.
447	Parejo, I., Jauregui, O., Sánchez-Rabaneda, F., Viladomat, F., Bastida, J., & Codina, C.
448	(2004). Separation and characterization of phenolic compounds in fennel
449	(Foeniculum vulgare) using liquid chromatography-negative electrospray
450 451	ionization tandem mass spectrometry. <i>Journal of Agricultural and Food Chemistry</i> , 52(12), 3679–87.
452	Piazzon, A., Forte, M., & Nardini, M. (2010). Characterization of phenolics content and
453	antioxidant activity of different beer types. Journal of Agricultural and Food
454	<i>Chemistry</i> , 58(19), 10677–83.
455	Rehová, L., Skeríková, V., & Jandera, P. (2004). Optimisation of gradient HPLC
456	analysis of phenolic compounds and flavonoids in beer using a coularray detector.
457	Journal of Separation Science, 27(15-16), 1345–59.
458	Stevens, J. F., Taylor, A. W., & Deinzer, M. L. (1999a). Quantitative analysis of
459	xanthohumol and related prenylflavonoids in hops and beer by liquid
460	chromatography-tandem mass spectrometry. Journal of chromatography.A, 832 (1-
461	2), 97–107.
462	Stevens, J. F., Taylor, A. W., Clawson, J. E., & Deinzer, M. L. (1999b). Fate of
463	xanthohumol and related prenylflavonoids from hops to beer. Journal of
464	Agricultural and Food Chemistry, 47(6), 2421–2428.
465	Vallverdu-Queralt, A., Jauregui, O., Medina-Remon, A., Andres-Lacueva, C., &
466	Lamuela-Raventos, R. M. (2010). Improved characterization of tomato
467	polyphenols using liquid chromatography/electrospray ionization linear ion trap
468	quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray
469	ionization tandem mass spectrometry. Rapid Communications in Mass
470	<i>Spectrometry : RCM</i> , 24(20), 2986–2992.
471	Vallverdú-Queralt, A., Jáuregui, O., Di Lecce, G., Andrés-Lacueva, C., & Lamuela-
472	Raventós, R. M. (2011). Screening of the polyphenol content of tomato-based
473	products through accurate-mass spectrometry (HPLC-ESI-QTOF). Food
474	<i>Chemistry</i> , 129(3), 877–883.
475	Vallverdu-Queralt, A., Jauregui, O., Medina-Remon, A., & Lamuela-Raventos, R. M.
476	(2012). Evaluation of a method to characterize the phenolic profile of organic and
477	conventional tomatoes. Journal of Agricultural and Food Chemistry, 60(13),
478	3373–3380.
479	Vallverdú-Queralt, A., de Alvarenga, J. F. R., Estruch, R., & Lamuela-Raventos, R. M.
480	(2013). Bioactive compounds present in the Mediterranean sofrito. <i>Food</i>
481	Chemistry, 141(4), 3365–3372.

482 483 484 485	Vanhoenacker, G., De Keukeleire, D., & Sandra, P. (2004). Analysis of iso-α-acids and reduced iso-α-acids in beer by direct injection and liquid chromatography with ultraviolet absorbance detection or with mass spectrometry. <i>Journal of Chromatography A</i> , <i>1035</i> (1), 53–61.
486 487 488 489	Vanbeneden, N., Delvaux, F., & Delvaux, F. R. (2006). Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection. <i>Journal of Chromatography</i> . <i>A</i> , <i>1136</i> (2), 237–42.
490 491 492 493	Vanbeneden, N., Gils, F., Delvaux, F., & Delvaux, F. R. (2008). Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. <i>Food Chemistry</i> , <i>107</i> (1), 221–230.
494 495	Williams, R. J., Spencer, J. P. E., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? <i>Free Radical Biology & Medicine</i> , 36(7), 838–49.
496 497 498 499	Zamora-Ros, R., Rothwell, J. A., Scalbert, A., Knaze, V., Romieu, I., Slimani, N., González, C. A. (2013). Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. <i>The</i> <i>British Journal of Nutrition</i> , 110(8), 1500–11.
500	
P	

Figure captions 501

- Figure 1. Beer FTMS chromatogram. 502
- Figure 2.MS² spectra of apigenin-*C*-hexoside-*O*-hexoside (A) and apigenin-*C*-Accepter 503
 - hexoside-C-pentoside (B). 504

TABLES

Compound	Rt	Accurate mass	Example m/r (0/ intersition)	Error	Molecular
Compound	(min)	[M-H-] ⁻	r ragments m/2 (76 intensities)	(mDa)	Formula
Gallic acid*	1.16	169.0142	125.0241 (100)	0.60	C ₇ H ₆ O ₅
4-vinylguaiacol	1.46	149.0607	134.0362 (100)	0.80	$C_9H_{10}O_2$
Caffeic acid-O-hexoside I	1.55	341.0877	179.0345 (100), 135.0400 (10)	0.40	$C_{15}H_{18}O_9$
Caffeic acid-O-hexosideII	2.23	341.0877	179.0344 (100), 135.0400 (10)	0.43	$C_{15}H_{18}O_9$
Protocatechuic acid-O-hexoside	2.3	315.0710	153.0190 (100), 109.0291 (10)	1.10	$C_{13}H_{16}O_9$
Protocatechuic acid*	2.45	153.0193	109.0292 (100)	0.06	$C_7H_6O_4$
Catechin*	2.96	289.0717	245.0814 (100), 205.0502 (50),179.0345 (20)	0.12	$C_{15}H_{14}O_{6}$
Catechin-O-hexoside I	3.06	451.1245	289.0710, (100) 245.0817(10)	0.13	$C_{21}H_{24}O_{11}$
Neochlorogenic acid 3-caffeoylquinic acid	3.24	353.0877	191.0557 (100), 179.0349 (40), 135.0448 (10)	0.13	$C_{16}H_{18}O_9$
Hydroxyphenyl acetic acid I	3.29	151.0395	107.0499 (100)	0.05	$C_8H_8O_3$
Catechin-O-dihexoside	3.33	613.1773	451.1242 (100) 289.0714 (50)	0.12	$C_{27}H_{34}O_{16}$
Coumaric acid-O-hexoside	3.5	325.0928	163.0402 (100)	0.10	C15H18O8
4-Hydroxybenzoic acid*	3.54	137.0241	93.0343 (100)	0.20	$C_7H_6O_3$
Hydroxyphenyl acetic acid II	3.82	151.0395	107.0498 (100)	0.05	$C_8H_8O_3$
Epicatechin*	4.19	289.0717	245.0814 (100), 205.0502 (50),179.0345 (20)	0.12	$C_{15}H_{14}O_{6}$
1-caffeoylquinic acid	4.27	353.0877	191.0555 (100), 179.0343 (10)	0.11	$C_{16}H_{18}O_9$
Vanillic acid*	4.5	167.0349	152.0108 (100), 123.0447 (90), 108.0211 (30)	0.07	$C_8H_8O_4$
Chlorogenic acid 5-caffeoylquinic acid*	4.53	353.0877	191.0557 (100), 179.0346 (10), 135.0448 (1)	0.09	$C_{16}H_{18}O_9$
Catechin-O-hexoside II	4.56	451.1245	289.0710, (100) 245.0816 (10)	0.12	$C_{21}H_{24}O_{11}$
Caffeic acid*	4.6	179.0349	134.9875 (100)	0.06	$C_9H_8O_4$
Feruloylquinic acid	4.91	367.1034	193.0502 (100), 191.0557 (5)	0.10	$C_{17}H_{20}O_{15}$
Cryptochlorogenic acid (4- caffeoylquinic acid)	4.91	353.0877	191.0557 (100), 179.0344, 173	0.11	$C_{16}H_{18}O_{9}$
Hydroxyphenyl acetic acid III	5.61	151.0395	107.0498 (100)	0.05	$C_8H_8O_3$
p-coumaric acid*	5.94	163.0400	119.0498 (100)	0.05	C9H8O3
Sinapic acid-O-hexoside I	6.29	385.1139	223.0610 (100), 208.0400 (20), 179.0698 (10)	0.11	$C_{17}H_{22}O_{10}$
Ferulic acid-O-hexoside	6.42	355.1034	193.0507 (100), 178.0280 (10)	0.10	$C_{16}H_{20}O_9$
Indole-3-carboxylic acid	6.8	174.056	130,0657 (100)	0.06	$C_{10}H_9NO_2$
Sinapic acid-O-hexoside II	6.89	385.1139	223.0610 (100), 208.0403 (20), 179.0698 (10)	0.12	C ₁₇ H ₂₂ O ₁₀
Ferulic acid*	7.03	193.0506	149.0604 (100), 178.0267 (70), 134.0370 (40)	0.06	$C_{10}H_{10}O_4$
Apigenin-C-hexoside-O-hexoside	7.39	593.1511	311.0556 (100), 431.0980 (80), 473.1086 (50), 341.0662 (20), 297.0401 (10) 443.0982 (100), 473.1087 (80), 353.0564	0.30	$C_{27}H_{30}O_{15}$
Apigenin-C-hexoside-C-pentoside	7.93	563.1406	(40), 383.0769 (30), 503.1192 (30), 545.1300(20)	0.23	$C_{26}H_{28}O_{14}$

 Table 1. Phenolic acids tentatively identified in beer.

Sinapic acid*	8.37	223.0611	208.0371 (100), 179.0708 (40), 164.0474 (20)	0.08	$C_{11}H_{12}O_5$
Apigenin-C-hexoside	9.29	431.0983	311.0551 (100), 341.0658 (40), 413.0871 (10)	0.2	$C_{21}H_{20}O_{10}$
Quercetin-3-O-glucoside*	9.57	463.0881	301.0348 (100)	0.12	$C_{21}H_{20}O_{12}$
Kaempferol-3-O-glucoside*	11.1	447.0932	285.0403 (100)	0.05	C ₂₁ H ₂₀ O ₁₁
3,7-dimethylquercetin	14.3	329.0666	314.0422 (100), 299.0200 (10)	0.09	C17H14O7
lsoxanthohumol*	14.4	353.1394	233.0814 (100), 119.0499 (10)	0.07	C ₂₁ H ₂₂ O ₅
8-prenylnaringenin*	14.6	339.1237	219.0655 (100), 245.0811(10)	0.22	$C_{20}H_{20}O_5$
6-prenylnaringenin	14.7	339.1237	219.0656 (100), 245.0812(10)	0.13	$C_{20}H_{20}O_5$
Cohumulone I	14.8	347.1864	235.1337 (100)	0.3	$C_{20}H_{28}O_5$
ad-Humulone	14.9	361.2020	235.1337 (100), 292.1313 (10)	1	$C_{21}H_{30}O_5$
Cohumulone II	15.3	347.1864	278.1158(100)	0.14	$C_{20}H_{28}O_5$
n-Humulone	15.5	361.2020	292.1312 (100), 343.1910 (10)	1.11	$C_{21}H_{30}O_5$
iso-α-cohumulone	16	347.1864	251.1286(100), 329.1754(30)	0.3	C ₂₀ H ₂₈ O ₇
iso-α-ad/n-humulone	16.2	361.2020	265.1445 (100), 343.1916 (40), 235.1339 (10)	0.1	$C_{21}H_{30}O_7$
iso-α-ad/n-humulone	16.4	361.2020	265.1442(100), 343.1910(40), 235.1336(10)	0.2	$C_{21}H_{30}O_8$

, ure si *Analytes confirmed by comparing with pure standards.

513 HIGHLIGHTS

- Phenolic profile of 4 types of beer has been analyzed by high resolution mass spectrometry 514
- 515 -Phenolic profile among the four types of beers was very similar.
- ur. - 47 phenolic compounds were identified, 7 of them are described in beer for the first time. 516