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Abstract

We present a new method to determine the average propagation speed of avalanches using seismic techniques. Avalanche
propagation speeds can reach 70 m/s and more, depending on a wide range of factors, such as the characteristics of the avalanche
track (e.g. topography) and the snowpack properties (e.g. density). Since the damage produced by the avalanche depends primarily
on the size and on the speed of the avalanche, the knowledge of the latter is therefore crucial for estimating avalanche induced
hazard in inhabited mountain areas. However, our knowledge of this basic physical parameter is limited by the difficulty of
conducting various measurements in the harsh winter weather conditions that often accompany this natural phenomenon.

The method of avalanche speed determination presented in this paper is based on cross-correlation and time-frequency analysis
techniques. The data used in this study come from the Ryggfonn (Norway) avalanche experimental site operated by the Norwegian
Geotechnical Institute (NGI), and recorded by an array of 6 geophones buried along the main avalanche path during the 2003-2004
and 2004-2005 winter seasons. Specifically, we examine the speeds of 11 different events, characterized by size and snow type.
The results obtained are compared with independent speed estimates from CW-radar and pressure plate measurements. As a result
of these comparisons our method was validated and has proved to be successful and robust in all cases. We detected a systematic
behaviour in the speed evolution among different types of avalanches. Specifically, we found that whereas dry/mixed type flow
events display a complex type of speed evolution in the study area with a gradual acceleration and an abrupt deceleration, the speed
of the wet snow avalanches decreases with distance in an approximately linear fashion. This generalization holds for different size
events.

In terms of time duration and maximum speed of the studied events, dry/mixed type avalanches lasted between 8 to 18 s and
reached speeds up to 50 m/s, whereas the duration of wet avalanches ranged between 50 and 80 s and their maximum speeds were
10 m/s.
© 2006 Published by Elsevier B.V.
OKeywords: Seismic record; Snow avalanche; Time-frequency analysis; Speed
C

34

35

36

37
UN1. Introduction

Land use planning based on hazard mapping is the
most cost-effective way to mitigate avalanche risk in
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inhabited areas. This procedure usually involves
estimating the run-out distance of hypothetical ava-
lanches with long return periods and is usually achieved
with numerical models based on fluid dynamics
equations (Harbitz et al., 1998). One of the main output
parameters of these models is the avalanche speed. The
speeds obtained from the data analysis of large scale
determination using seismic methods, Cold Regions Science and
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experiments are compared with those obtained by the
models in order to calibrate them.

Avalanche speeds depend on a wide range of factors,
including the characteristics of the track (e.g. topogra-
phy) and of snowpack properties (e.g. grain/clod size
and density). Avalanches can reach speeds up to 70 m/s
and more. Since the damage produced by the avalanche
depends on its propagation speed, the knowledge of this
parameter is crucial for estimating avalanche induced
hazards in inhabited mountain areas. However, our
knowledge of this basic physical parameter is limited by
the difficulty of conducting measurements, which is
compounded by the harsh weather conditions that often
accompany snow avalanches and by the complexity of
the physical phenomenon itself.

Earlier studies of speed determination of snow
avalanches have been based on the processing of
video images (Granada et al., 1995; McElwaine,
2004), the determination of internal clod speeds using
LED-photocells (Dent et al., 1998), on the interpretation
of data from pressure load cells (Norem et al., 1985),
and Doppler-radar (Gubler, 1987) techniques among
others. The few studies of avalanche speed determina-
tion based on seismic methods include works by
Schaerer and Salway (1980), Nishimura et al. (1993),
and Nishimura and Izumi (1997), who used basic
picking techniques to obtain the arrival time of the
avalanche body over geophones installed along the
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Fig. 1. Detailed profile of the lowest part of the avalanche track in Ryggfon
corner shows the complete Ryggfonn avalanche path profile.
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avalanche path. However, none of these studies describe
in detail the criteria of the selection techniques used.

In this paper we present a new method for determining
the average propagation speed of snow avalanches from
seismic time series. Specifically, we present the averaged
speed values of the avalanche front obtained for different
avalanches, and their evolution with distance along the
main propagation path. The data are from the Ryggfonn
avalanche experimental site in Norway operated by the
Norwegian Geotechnical Institute (NGI) (Lied et al.,
2002). They were obtained from a set of 6 geophones and
from independent sources such as continuous wave
Doppler-radar (CW-Doppler radar) and pressure Load
Plates (LP) measurements (Gauer et al., 2004).

The methods for determining the avalanche speed
presented in this paper are based on cross-correlation
and time-frequency analyses of the data recorded by
seismic sensors.

For the last decade our group at the Universitat de
Barcelona (UB) has been studying the seismic signals
generated by avalanches at different sites in Europe. The
most important results obtained in these studies are
related to reproducibility, time evolution of the seismic
signal spectra, and identification of various sources of
seismic energy (e.g. Biescas et al., 2003; Suriñach et al.,
2000). The method of speed determination of ava-
lanches presented in this paper is a continuation of these
previous studies.
T

n including the installed instrumentation. The inset in the upper right
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Table 1 t1:1

List of studied events t1:2

t1:3No.
event

Date hh:mm Release Typea Sizeb

t1:4(local time)

t1:51 2003/12/15 16:35 Natural Dry/mixed Medium (3)
t1:62 2003/12/17 03:14 Natural Dry/mixed Medium (3)
t1:73a 2004/02/04 06:10 Natural Wet Medium (3.5)
t1:83b 2004/02/04 06:12 Natural Wet Medium (3.5)
t1:94 2004/02/24 08:50 Natural Dry/mixed Small (2)
t1:105a 2004/02/24 22:30 Natural Dry/mixed Medium (3)
t1:115b 2004/02/24 22:31 Natural Dry/mixed Medium (3)
t1:126 2004/02/28 15:22 Artificial Dry/mixed Medium (3.5)
t1:137 2000/02/17 13:55 Artificial Dry/mixed Large (4)
t1:148a 2005/01/07 04:17 Natural Dry/mixed Medium (3.5)
t1:158b 2005/01/07 04:18 Natural Wet Medium (3.5)

a Dry/mixed: formed by aerosol and dense parts. t1:16
b According to the Canadian avalanche size classification (McClung

and Schaerer, 1993). t1:17
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2. Experimental site and data

The Ryggfonn full-scale avalanche site, situated
500 km north-west of Oslo, Norway, was set up to
study snow avalanches by the NGI in 1980 (Lied et al.,
2002). Since then, approx. 2-3 avalanches per year have
been released at the site. The avalanche path at Ryggfonn
has a drop of 900 m and a horizontal length of 2100 m
(Fig. 1). The avalanches released at the site range in
volume between 10,000 m3 and 500,000 m3, reaching
maximum velocities of 60 m/s. In the lower part of the
avalanche path there is a retaining dam of unconsolidated
material, 16 m in height and 75 m in crown length. This
dam is equipped with different instruments (Fig. 1). Two
3D-load plates (LP1, LP2) are placed at the front. Three
1D-4.5 Hz vertical component geophones (GF4, GF5,
and GF6) are embedded in the dam. Two of these (GF4
and GF5) are placed beside each load plate. A 6.5 m steel
mast with a horizontal uni-axial geophone (HG1) located
on top of the dam completes the installation. In the
avalanche path, two more geophones, spaced 47.4 m
apart, are buried in the ground (GF2, GF3) (Fig. 1). A
4.5 m high concrete structure containing three load cells
(LC1, LC2, and LC3) is placed approx. 230 m up-slope
from the dam in the main avalanche path. A 5.5 m high
cylindrical steel tower equipped with twomore load cells
(LC4, LC5) and one geophone (GF1) with the same
characteristics as the others is placed 90 m above this
structure.

A shelter containing the control and recording
instruments is located in the valley 500 m east of the
dam, and is provided with power, telephone line and
ISDN connection. The recording system is triggered by
geophone GF1 when the avalanche front hits the steel
tower. All the measurements from the different instru-
ments are recorded at a sampling rate of 150 sps with a
local common base of time. The total length of the
records is 150 s including 25 s of pre-triggered data.

During the 2003-2004 winter season a frequency
modulated continuous wave Doppler radar (CW-Dopp-
ler radar) was also operational (Sigurðsson et al., 2004).

In this study we analysed the data from 11 avalanches
that occurred during the winter seasons 2003-2004 and
2004-2005 and one from 2000 (Table 1). The ava-
lanches differed in size and type of snow. All the
avalanches with the exception of events 6 and 7 were
triggered naturally. Unfortunately, the availability of
complementary information including field observa-
tions and video images is limited. Seismic and load plate
data analyses indicated that in avalanche 2 the dense
body did not reach the dam although the aerosol passed
over the dam. Avalanche 4 did not reach the dam (field
Please cite this article as: I. Vilajosana et al., Snow avalanche speed
Technology (2006), doi:10.1016/j.coldregions.2006.09.007
TE
D
PRobservation). The two natural events at 02/04/2004

triggered the data acquisition system at an interval of
160 s. Given that the generated seismic signal of these
events is continuous without interruption for 230 s, it is
difficult to ascertain whether these correspond to two
independent avalanches or to one avalanche with two
parts. In our study we regard them as independent wet
flow avalanches, denoted as events 3a and 3b to ease the
subsequent processing. During the night of the 02/24/
2004 two triggers (5a and 5b) occurred within an
interval of 40 s. We treated them as independent ava-
lanches because the events were clearly separated by a
period of very low signals in the time series. In the
afternoon of 01/07/2005 two consecutive triggers re-
corded a naturally released avalanche. After studying
the signals it is reasonable to assume that the avalanche
consists of two different parts (dry/mixed part and wet/
dense flow).

3. Data analysis

The main principle of the presented method of
avalanche speed determination is based on the differ-
ence in the arrival times of the avalanche over two
separate seismic sensors. To this end, we applied the
procedure described below based on the characteristics
of the seismic wave propagation. In our approach, it is
assumed that at least the front of the avalanche reaches
the geophone.

The running spectrum (RS) of the signal is studied
prior to determining the avalanche arrival time over a
sensor in the time series. In the RS, a selection of the
time interval corresponding to the first window showing
the highest amplitudes in the high frequency content of
determination using seismic methods, Cold Regions Science and
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the spectra is performed as presented in Fig. 2b. We
attribute this time interval to the arrival of the avalanche
front over the sensor. The increase in the amplitude in
the RS with time is produced by the reduction of the
distance source-receiver as the avalanche front
approaches the sensor (Suriñach et al., 2005). This is
physically supported by the anelastic attenuation of
seismic waves with distance (Aki and Richards, 1980),
and is corroborated by the results of earlier studies. In
these studies we demonstrated that the peaks of
maximum seismic energy in the high frequency content
of the time series are related to snow erosion over the
UN
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RR
EC

Fig. 2. a) GF2 time series of the avalanche released on 2004/02/28. b) Running
the arrival of the avalanche front over GF2. c) Detail of the time series windo
arrival over GF2.

Please cite this article as: I. Vilajosana et al., Snow avalanche speed
Technology (2006), doi:10.1016/j.coldregions.2006.09.007
F

geophone. These results were obtained from the
correlation of data from FMCW radar and from seismic
sensors placed together in the avalanche path at the
Vallée de la Sionne experimental site in Switzerland
(Biescas, 2003; Biescas et al., 2002).

The selection of the window is performed by means
of 1) computation of the running spectrum (RS) of the
seismic time series based on short time Fast Fourier
Transform (FFT) (Brigham, 1974). We used a Hanning
window and an FFT length of 128 samples (0.85 s) with
a 50% overlapping window taking into account the data
sampling rate (150 sps) and the trade-off between time
TE
D
PR

OO

spectra, the arrow indicates the selected time window corresponding to
w pre-selected in the RS, the arrow indicates the time of the avalanche

determination using seismic methods, Cold Regions Science and
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and frequency resolutions (Flandrin, 2002); and 2)
selection of the first time window showing maximum
amplitudes at the highest frequencies in the RS (Fig. 2b).

The arrival time in the seismic time series is
performed by picking a discontinuity in the amplitude
or/and frequency of the time series in the selected
window using the standard seismological technique
(PK) (Fig. 2c). However, there are no characteristic
features to identify the arrival of the front.

As a result of this procedure the arrival time of the
avalanche front at each geophone is obtained. Subse-
quently, using the distance between the geophones the
average propagation speed of the avalanche between the
pairs of geophones is obtained. When the PK procedure
is not easy due to the lack of clarity of the wave arrival
as in the case of small avalanches which generate weak
vibrations or in the case of signals produced by slow
dense avalanches recorded in the sensors located in the
dam (GF4 and GF5) (further discussion is presented
below) an alternative, cross-correlation procedure (XC)
is applied.

The XC procedure consists of determining the lag
time between the previously selected seismic time series
windows corresponding to two separate geophones. The
lag time, which indicates the time shift between the two
time series, yields the difference in arrival time of the
UN
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RR
EC

Fig. 3. a) and b) Time series windows of the avalanche released on 2004/02/28
indicates the selected lag time.
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avalanche front needed to obtain the average propagation
speed of the avalanche between the two points (Fig. 3).
The XC method assumes that signals generated by the
same source must be comparable. Earlier studies
demonstrate that the main sources of the seismic signals
are snow erosion, changes in the slope and impacts with
obstacles (Suriñach et al., 2001). In our case, the signals
to be identified are mostly produced by snow erosion,
which is assumed to occur mainly near the front of the
avalanche (Gauer and Issler, 2004).

The cross-correlation was performed on a windowed
subset of the seismic time series. The time windows to be
correlated are selected considering 5-10 s prior to the
selected time in the RS. This window includes the length
of the total time scale of the vortex inside the avalanche
front (McElwaine, in press) and the signal before the
arrival of the avalanche front over the sensor. Correlation
of a longer time series provides no information on the
propagation of the avalanche front. Rather, it reflects the
specifics of the propagation path and the whole event. The
selection of the window demands a prior detailed analysis
of the signal, taking into account the shape of each time
series to identify the part of the signal produced by the
approaching avalanche and not by distant impacts, which
are easily identifiable because they are observed almost
simultaneously in all the time series. Correlations with
TE

for cross-correlation. c) Cross-correlation of the time series. The arrow

determination using seismic methods, Cold Regions Science and
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positive lag times are excluded since these would imply
an upward propagation of the avalanche. Also excluded
are the lag times that give unrealistic speeds (b1 and
N70 m/s, for the Ryggfonn path), which can be attributed
UN
CO
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EC

Fig. 4. Comparison of the speeds of 11 avalanches released at Ryggfonn obta
plates). Continuous lines shows the path profile and dots indicate the position
between adjacent instrument locations.

Please cite this article as: I. Vilajosana et al., Snow avalanche speed
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to the propagation of sound and/or ground vibrations
rather than the snow avalanche.

The XC method involves pairs of seismic time series.
As a consequence, we were able to obtain the differences
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ined from the data of various instruments (CW-radar, geophones, load
of the measuring instruments. The speeds are presented at the midpoint

determination using seismic methods, Cold Regions Science and
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between the arrival times for four pairs of sensors (GF1-
GF2, GF2-GF3, GF3-GF4 and GF4-GF5). This is not the
case with the PK method with which we obtain an
estimate of the avalanche arrival time at each geophone.
Avalanche average speed estimates are obtained using the
distances involved. Data from GF-6, located on top of the
dam (Fig. 1) were of no use because of the spatial
distribution of the geophones and the ground character-
istics of the dam (formed by loose gravel with poor
vibration transmission).

4. Results and discussion

Using the methods described in the previous section
(PK and XC) we estimated the speeds for the 11 ava-
lanches at Ryggfonn listed in Table 1. The estimates of the
average avalanche propagation speeds using bothmethods
are shown in Fig. 4. To assess the reliability of our me-
thods, we compared our results with the speed measure-
ments from a CW-Doppler radar (Sigurðsson et al., 2004)
and with estimates from the arrival time at the load plates
(Gauer et al., 2004). In Fig. 4 the average avalanche
propagation speeds are represented as a function of the
horizontal distance, the steel tower being the origin of the
distances. The average avalanche propagation speed
between two adjacent geophones is depicted midway
between the two sensors to show the evolution of the
avalanche along the path. The positions of the sensors are
indicated by dots on the path profile in Fig. 4. Averaged
speeds obtained from the load plates (steel tower, concrete
structure and dam) are plotted midway between the load
plates, and speeds from the radar (obtained by averaging
the corresponding values from Sigurðsson et al. (2004))
are also indicated in Fig. 4.

In general, there is a reasonable agreement between
the different speed estimates. However, the different
sensitivity of the different types of equipments used to
detect the avalanche, which is reflected in the results,
should be pointed out. As regards the LP sensors, the
values are obtained from the arrival time of the
avalanche at the load cells. This determination is usually
easy and unambiguous because of a sudden increase in
pressure observed in the record of the LP. Nevertheless,
although the strong peaks which are probably produced
by the saltation layer or by the dense part of the
avalanche are easy to detect, it is much harder to detect
the signals generated by the small powder part, which in
some cases precedes the dense core. The impacts
produced by the saltation layer on the LP are of slightly
lower amplitude and higher frequency than that
produced by the dense part. The impacts of the powder
part are only detected when the LP is not covered by
Please cite this article as: I. Vilajosana et al., Snow avalanche speed
Technology (2006), doi:10.1016/j.coldregions.2006.09.007
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snow. As for the radar, it is also difficult to detect the
powder part of small avalanches because of the poor
reflectivity of the powder cloud of a low density.
Moreover, the estimated speeds obtained by radar are
not directly comparable to the front speeds determined
by the other methods given that the radar signal is
composed of the reflections from many parts of the
avalanche body. This is a consequence of the wide angle
range from which the radar data are obtained (Gubler,
1987).

As regards the seismic method, previous studies
allow us to determine the origin (source) of the seismic
signals associated with snow avalanches. It has been
confirmed that the powder part is detected despite the
low signal amplitude (Suriñach et al., 2001). One of the
problems of using seismic sensors to study avalanches is
that the origin of the signal, unlike earthquakes is not
punctual, but rather it is produced by unlocalized
multiple moving sources. As a result the recorded signal
from the moving front is contaminated by signals from
other parts of the avalanche. These parts also act as
sources generating signals that hinder the selection of
the arrival times; in our case, the contaminant signals are
associated with impacts with the dam and changes in the
slope of the path (Suriñach et al., 2001). The application
of the RS and an analysis of the seismic time series help
us to select (discriminate) the signals associated with the
erosion produced by the avalanche front.

When comparing the results obtained by the different
methods in Fig. 4 it should be borne in mind that the
average speeds are plotted midway between the pair of
considered sensors. Overall, the agreement between the
results is satisfactory. The speeds estimated using the
two seismic approaches (PK and XC) in most of the
cases are compatible within the error in the determina-
tion of the arrival time over the sensor (0.4 s which
corresponds to the time resolution of the RS) (Fig. 4). In
general, when the wave arrival is clear the PK method is
more precise than the XC method. However, for small
avalanches and slow wet/dense flows near the dam it
was not possible to apply the PK method because of the
difficulty of selecting the correct wave arrival by
picking. We attribute this difficulty to 1) the presence
of the dam, which generates noise in the signal; 2) the
low amplitude of the seismic signal detected in the
geophones in the dam, probably caused by the large
amount of snow covering the geophones which
attenuates the signal, and 3) to the low speed or small
size of the avalanche, generating little seismic energy. In
this case the XC method is more appropriate. Never-
theless, this method may also be unreliable in the
presence of very noisy signals.
determination using seismic methods, Cold Regions Science and
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As regards the load plates, the speed values are in
general consistent with those obtained from the seismic
data. The original measurements obtained by radar yield
the avalanche speed as a function of time in intervals
ranging from 1.5 to 4.5 s. In order to assign a horizontal
distance to the radar speed values between two given
sensors, these speeds were averaged between the arrival
times of the avalanche front over the sensors. These
arrival times were extracted from the RS calculations
and LP data analysis. The speed values from the radar
show differences in relation to the LP and geophones
measurements. This was expected given that the
geophones and the load plates measure the front
speed, whereas the radar records a composite signal
proceeding from all the moving parts of the avalanche
within the range of the radar. We believed that the
averaged speeds correspond to two different parts of the
avalanche. Whereas the high speed values from the
radar at approx. 100 m in event 1 (Fig. 4) correspond to
the aerosol front of the avalanche (simultaneous
pressure measurements show low values (Sigurðsson
et al., 2004)), the lower values of the speed obtained
from the load plates and seismic sensors correspond to
the dense body. In cases where the dense and aerosol
parts coexist, geophones detect the former preferentially
because of the higher vibrations produced; the same
behaviour is observed for the load cells. This is the case
for event 2, which is a dry/mixed avalanche with a large
aerosol part and a reduced dense body.

Two different distance evolution profiles of the speed
along the path are observed in Fig. 4, which corresponds
to the two distinct types of avalanche (dry/mixed and
wet). Interestingly, the character of the profile is
relatively independent of the size of the avalanche.
Dry/mixed avalanches have higher speeds than wet
avalanches. If we consider the slope profile in Fig. 4 as a
reference curve, all speed values for dry/mixed
avalanches are above this curve, whereas the speeds of
the wet avalanches are below the curve. Dry/mixed
avalanches even seem to accelerate along this part of the
path in some cases: The average seismic speed values
for the GF2-GF3 interval appear slightly higher than for
the GF1-GF2 interval for events 1 and 4, although this is
not the case for the radar derived speed values for these
events nor for the LP derived speeds for event 1. Nor is
this the case for the wet avalanches where an
approximately linear decrease in velocity with distance
is observed. The speed values deduced from load plates
are also consistent with the observations. Note that the
velocity profile of event 7, which corresponds to the
largest dry/mixed avalanche, has a shape similar to that
of the other dry/mixed avalanches, but with higher
Please cite this article as: I. Vilajosana et al., Snow avalanche speed
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velocities. Similar behaviour is also present in the two
different parts of avalanche 8. The velocity profile
corresponding to the first part of the avalanche (8a)
displays the behaviour of a dry/mixed avalanche
whereas the second part shows a velocity profile of a
wet avalanche, as deduced from the analysis of the
seismic and LP signals and corroborated by the
subsequent field observations. The duration of the wet
avalanches in the area of the geophones ranges between
50 and 80 s. The dry/mixed avalanches are shorter and
their duration in the area ranges between 8 and 18 s.

5. Conclusions

The determination of the speed of an avalanche using
the generated seismic signals is possible although a prior
detailed seismic analysis is warranted. The complexity
of the ground propagation of the energy generated by
the avalanche, which may be simulated as a non-
punctual moving source, complicates the seismic time
series characteristics. Unlike N air pressure waves or P
waves, the arrival of the avalanche front does not
produce a characteristic, easily identifiable pattern
which complicates the picking procedure. The pre-
selection of windows with high amplitudes in the high
frequency content of the signal, prior to the determina-
tion of the arrival time, proves to be a good tool for
seismic phase discrimination. Propagation speed can be
obtained from the application of picking (PK) or/and
cross-correlation (XC) techniques to the seismic time
series. Moreover, these methods are not exclusive, but
rather complementary depending on the type of the
signal.

The averaged speeds for 11 avalanches at Ryggfonn
calculated by applying the PK and XC methods to the
seismic time series were compared with speed estimates
obtained from load plates and CW-Doppler radar
located at the site. In general, a good agreement is
found. The discrepancies are mainly related to the
different sensitivity of the various instruments. Velocity
profiles along the avalanche path were analysed. The
two types of avalanches dry/mixed and wet display two
different types of profiles regardless of the size of the
avalanche. The dry/mixed avalanches propagate faster
than the wet avalanches. In two cases, their speed seems
to accelerate slightly before sharply decreasing. For the
wet avalanches, the velocity decreases approximately
linearly with distance. As regards time duration, dry/
mixed type avalanches are as expected shorter. Their
duration between the steel tower and the dam ranges
between 8 and 18 s, whereas the duration of the wet
avalanches in the same area ranges between 50 and 80 s.
determination using seismic methods, Cold Regions Science and
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No difference in the behaviour of natural and artificially
released avalanches was observed.

In conclusion, the study of seismic signals enables us
to obtain information on the size and type of avalanches.
Seismic analysis helps us to classify the avalanches and
their flow regime. Seismic methods are useful to detect
avalanches and to determine their average propagation
speed, although in dry/mixed avalanches with aerosol
and dense parts, the dense part is more readily detected.
In such cases, the speed obtained corresponds to the
dense part.
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