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ABSTRACT 

The Maimón Formation (Cordillera Central, Dominican Republic) is formed of metamorphosed bi-

modal mafic-felsic volcanic rocks and sedimentary horizons of Early Cretaceous age deposited in 

the forearc of the nascent Caribbean island arc. Two structural-metamorphic zones depict an 

inverted metamorphic gradient: the Ozama shear zone, which records intense mylonitic and 

phyllonitic deformation and ubiquitous metamorphic recrystallization, tectonically overlies the 

much less deformed and variably recrystallized rocks of the El Altar zone. The presence of ferri-

winchite and high-Si phengite, first reported in this paper, in the peak metamorphic assemblage of 

rocks of the Ozama shear zone (actinolite + phengite + chlorite + epidote + quartz + albite ± ferri-

winchite ± stilpnomelane) point to subduction-related metamorphism. Pseudosection calculations 

and intersection of isopleths indicate peak metamorphic conditions of ~ 8.2 kbar at 380 ºC. These 

figures are consistent with metamorphism in the greenschist/blueschist facies transition, burial 

depths of ~ 25-29 km and a thermal gradient of ~ 13-16 ºC/km. Our new data dispute previous 

models pointing to metamorphism of Maimón rocks under a steep thermal gradient related to burial 

under a hot peridotite slice. Instead, we contextualize the metamorphism of the Maimón Formation 

in a subduction scenario in which a coherent slice of the (warm) Early Cretaceous forearc was 

engulfed due to intra-arc complexities and regional-scale-driven tectonic processes operating in the 

late Early Cretaceous. Integration of our findings with previous studies on metamorphic complexes 

in Hispaniola suggests that a major tectonic event affecting the whole arc system took place at c. 

120-110 Ma.  

Keywords: blueschist; HP/LT metamorphism; Maimón Formation; Dominican Republic; 

Caribbean; volcanic arc.  
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1. Introduction 

Intra-oceanic island arc systems represent locus of intense magmatism and seismic activity 

coupled to major metamorphic and tectonic processes framed in a rapidly evolving setting relative 

to other geological systems (Gerya, 2011; Gerya et al., 2002; Ichikawa et al., 2016; Maresch and 

Gerya, 2005). Despite having a simple crustal structure when compared to arcs developed on 

continental crust (e.g., Jicha and Jagoutz, 2015; Stern, 2010), intra-oceanic arcs ordinarily embrace 

complex, condensed in time and space, tectonic processes that may couple extension and 

compression along a single arc involving the trench, forearc, volcanic-magmatic arc and back-arc 

(Hawkins et al., 1984). Formed in dynamic subduction systems, these arcs are the loci for the 

development of high-pressure, low-temperature (HP/LT) metamorphism, whose study offers a 

priceless information on the evolution of convergent plate margins (e.g., Agard et al., 2009). In the 

Greater Antilles, in the northern margin of the Caribbean plate, several of these HP-LT 

metamorphic complexes have been studied in Cuba (e.g., Blanco-Quintero et al., 2010; Boiteau et 

al., 1972; Garcia-Casco et al., 2002, 2006, 2008a, b; Millán, 1996; Schneider et al., 2004; Stanek et 

al., 2006) and Jamaica (e.g., West et al., 2014; Willner et al., 2016). In Hispaniola (Haiti and 

Dominican Republic), HP/LT metamorphic complexes include Samaná (Escuder-Viruete et al., 

2011) and Río San Juan (Escuder-Viruete and Pérez-Estaún, 2013; Escuder-Viruete et al., 2013a, b; 

Krebs et al., 2008, 2011). Subduction/exhumation and associated prograde/retrograde 

metamorphism recorded on these Antillean complexes are dated as Cretaceous. In Cuba, 

serpentinite-matrix mélanges record subduction of MOR-derived material since the Early 

Cretaceous (e.g., Blanco-Quintero et al., 2011; Garcia-Casco et al., 2002, 2006; Lázaro et al., 2009). 

In the Río San Juan metamorphic complex, oceanic crust including MOR- and island-arc-derived 

materials begun to subduct in the Early Cretaceous (Escuder-Viruete et al., 2013b); therefore, initial 

intra-arc complexities during the first stages of subduction in the Hispaniola segment of the 

Caribbean island arc must be pondered on any model regarding initial subduction geometry below 
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the primitive, Hauterivian-Albian Caribbean island arc (cf. Lidiak and Anderson, 2015; Pindell et 

al., 2012). 

Uplift and unroofing after Neogene tectonics bountifully expose deformed and 

metamorphosed Early Cretaceous basement rocks along the Median Belt in Cordillera Central 

(sensu Lewis and Draper, 1990) of Hispaniola. Therefore, the Median Belt renders an exceptional 

opportunity to study deformation and metamorphic processes that affected geologic units during the 

first stages of the tectonic evolution of the Caribbean Island Arc. The study of the metamorphic 

units (including the Maimón and Amina Formations and the Río Verde and Duarte complexes) and 

the conspicuously complex structure has led to the construction of regional-scale tectonic models on 

the early evolution of the Caribbean island arc. Such models include, for example, the proposal of a 

paired metamorphic belt in Hispaniola unlike the rest of the Greater Antilles (Nagle, 1974) and an 

Aptian/Albian subduction polarity reversal event under the primitive arc (e.g., Draper and 

Gutiérrez-Alonso, 1997; Draper and Lewis, 1991; Draper et al., 1996; Lebrón and Perfit, 1994; 

Lewis et al., 2002). 

The metamorphic grade undergone by the Maimón Formation has been recurrently classified 

as of low-pressure greenschist facies on the basis of the petrographic study of its metamorphic 

mineral assemblages (Bowin, 1960, 1966; Draper and Gutiérrez-Alonso, 1997; Draper and Lewis, 

1991; Draper et al., 1996; Escuder-Viruete et al., 2002; Kesler et al., 1991a; Nagle, 1974); 

nevertheless, these studies largely lacked methodical mineral chemical analysis. In the course of a 

petrological and geochemical characterization of rocks from this formation, we found unexpected 

systematic high Si contents in white mica lepidoblasts and presence of the sodium-calcium 

amphibole ferri-winchite in rocks from the Ozama shear zone, suggestive of moderate pressures of 

crystallization. This article presents, for the first time, an exhaustive study on the petrology and 

mineral chemistry of metamorphic assemblages of rocks from the Maimón Formation. We offer 

isochemical P-T projections (pseudosection) in order to constrain the P-T evolution undergone by 
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the studied rocks and to discuss their meaning by comparison to previous work in the context of 

subduction-zone thermal gradients. In addition, we assert the influence of the intense pre-

metamorphic hydrothermal alteration of the rocks in the subsequent metamorphic assemblages and 

show that diagnostic high-P assemblages are expected to form only in the less intensely altered 

rocks. The existence of high-pressure subduction-related mineral assemblages in rocks of the 

Maimón Formation is not only of local interest, but has major implications for the interpretation of 

early geodynamic evolution of the Caribbean realm. 

2. Geological overview 

The island of Hispaniola is a collage of Early Cretaceous to Tertiary arc-, oceanic- and 

continental margin-derived units which resulted largely from the oblique convergence and 

underthrusting of the North American (Proto-Caribbean) Plate beneath the Greater Antilles island-

arc since c. 135 Ma (Pindell et al., 2012; Rojas-Agramonte et al., 2011). Mesozoic separation of 

North and South America allowed the progressive west to east insertion into the Proto-Caribbean 

(Atlantic) realm of the allochthonous (Pacific in origin) Caribbean plate and related arc and oceanic 

complexes (Boschman et al., 2014; Lidiak and Anderson, 2015 and references therein; Pindell and 

Kenan, 2009). West-dipping subduction of the Proto-Caribbean caused arc-continent collision in the 

northern leading edge of the Caribbean in the latest Cretaceous-earliest Tertiary and obduction of 

ophiolitic complexes onto continental margins in Guatemala, Cuba, Hispaniola and Puerto Rico 

(Garcia-Casco et al., 2008a; Lewis et al., 2006; Pindell et al., 2012; Solari et al., 2013). In 

Hispaniola, subduction and related arc-magmatism ceased after the collision with the Bahamas 

platform in Eocene time (Donnelly et al. 1990; Mann et al., 1991), and the plate margin evolved to 

the current left-lateral strike-slip tectonics (Mann et al., 2002; Vila et al., 1987).  

The Early Cretaceous Maimón Formation is a 9 km wide and about 73 km long NW-SE 

trending belt that crops out along the Median Belt (Central Cordillera) of the Dominican Republic 

(Draper and Lewis, 1991; Kesler et al., 1991a). The Median belt is a composite of accreted oceanic 
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units affected by the left-lateral strike-slip Hispaniola (HFZ) and San Juan-Restauración (SJRFZ) 

fault zones (Fig. 1a) (Escuder-Viruete et al., 2008). The Maimón Formation is in steep fault contact 

with the Loma Caribe peridotite (Fig. 1b-c) (Escuder-Viruete et al., 2007a; Lewis et al., 2002). 

However, the Loma Caribe peridotite belt is locally separated from the Maimón Formation at their 

southern contact by the Peralvillo Sur Formation, a thin sequence of undeformed and 

unmetamorphosed arc-related volcanic and volcanosedimentary rocks of Late Cretaceous (?) age 

(Lewis et al., 2000; Martín and Draper, 1999). To the northeast, the Maimón Formation limits with 

the Los Ranchos Formation, a volcanic pile of bimodal volcanic, volcaniclastic and minor 

sedimentary rock units. The Early Cretaceous volcanic-arc Maimón and Los Ranchos formations 

are overlain by the late lower Albian shallow-water reefal Hatillo limestone (Kesler et al., 2005). 

Recent, post-Early Eocene (Draper et al., 1996) tectonics juxtaposed the Maimón Formation over 

the Hatillo limestone along the Hatillo Thrust (Fig. 1c). Both the Maimón and Hatillo Formations 

are intruded by diorite dykes and plugs of Paleocene (?) age (Bowin, 1966; Martín and Draper, 

1999). Rocks from the Maimón Formation are characterized by the development of syn-

metamorphic ductile fabrics and structures. As described by Draper et al. (1996) and Draper and 

Gutiérrez-Alonso (1997), the intensity of ductile deformation and metamorphic grade increases 

towards the SW of the Maimón belt, as observed particularly well in the Ozama shear zone (Fig. 

1b), which occupies the uppermost level of the structural sequence (Fig. 1c). Deformation and 

metamorphism is much less intense to the NE half of the Maimón belt (i.e., the so-called El Altar 

zone, to the NE of the Fátima thrust fault Figs. 1b-c). Although rocks in the El Altar zone vary from 

fully recrystallized to weakly metamorphosed and even slightly undeformed across this trend, a 

pronounced change in the intensity of metamorphic recrystallization and deformation is observed on 

each side of the Fátima thrust fault. 

The Maimón Formation is composed of bimodal mafic-felsic volcanic and volcaniclastic 

rocks and a thin belt of well-laminated rocks of sedimentary origin that is conformable with the 

volcanic sequence; the sedimentary rocks crop out in the north central part of the formation and 
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include well laminated fine-grained meta-tuffs, dark graphite-shales, cherts and limestones (Kesler 

et al., 1991a; Lewis et al., 2000). The volcanic rocks of the Maimón Formation are representative of 

the oldest and chemically most primitive island-arc volcanism in the Caribbean region (Escuder-

Viruete et al., 2007b, 2010; Lewis and Draper, 1990; Lewis et al., 2002), commonly referred to as 

Primitive Island Arc (PIA/IAT) series (e.g., Jolly et al., 2001 and references therein). Recently, 

Torró et al. (2016a, b) classified the basalts from the Maimón Formation as LREE-depleted low-Ti 

island arc tholeiites, boninites and less abundant low-Ti island-arc tholeiites (LOTI) and identified 

mantle-type (M-type), boninitic and tholeiitic signatures in the low-K felsic volcanic rocks. Similar 

lithotypes were described by Escuder-Viruete et al. (2007b) for the Amina Formation, which is 

considered a separate segment of the same igneous protoliths and metamorphic belt. On the basis of 

the lithogeochemistry and magmatic relations, these workers suggest that the formation of Maimón 

took place in a forearc environment just after the subduction initiation of the Proto-Caribbean 

oceanic basin in the Early Cretaceous (> 126 Ma) related to initial extensive regime in the fore-arc. 

3. Material and methods 

This study develops from a total of 182 drill core and surface field rock samples 

representative of the volcanosedimentary materials of the Maimón Formation in its south-central 

section (approx. from the Hatillo dam to the Ozama River near el Llano and la Majagua; Fig 1b). A 

petrographic study was carried out on 45 thin sections by means of optical microscopy with 

transmitted and reflected light and by electronic microscopy using an environmental SEM Quanta 

200 FEI, XTE 325/D8395 equipped with an INCA Energy 250 EDS microanalysis system 

equipment at the Serveis Científics i Tecnològics of the University of Barcelona and a Quanta 400 

FEI equipped with a Bruker xFLash 6/30EDS microanalysis system at the Centro de 

Instrumentación Científica of the University of Granada. Based on this study, 11 samples were 

selected for mineral chemical measurements.  
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Mineral analyses were performed using a JEOL JXA-8230 electron microprobe (EMP) at the 

Serveis Científics i Tecnològics of the University of Barcelona, operated at 20 kV acceleration 

voltage, 15 nA beam current and with a beam diameter of 5μm. Analytical standards and lines used 

for analyses were wollastonite (Si Kα; Ca Kα), corundum (Al Kα), AgCl (Cl Kα), fluorite (F Kα), 

albite (Na Kα), periclase (Mg Kα), Fe2O3 (Fe Kα), rhodonite (Mn Kα), orthoclase (K Kα), rutile (Ti 

Kα). The PAP correction procedure was used (Pouchou and Pichoir, 1985). The same instrument 

operated at 20 kV and 300 nA, with a focused beam, a step (pixel) size of 4 μm, and a counting time 

of 30 ms/pixel was used to obtain elemental (Si, Al, Ti, Fe, Mg, Mn, Ca, Na, K, Ba) X-ray maps. 

The X-ray maps were processed with software DWImager (Torres-Roldán and Garcia Casco, 

unpublished) and consist of the X-ray signals of the elements or element ratios (color-coded; 

expressed in counts/nA per s); voids, polish defects and mineral phases other than amphibole were 

masked out and overlain onto a grey-scale SEM-BSE image which contains the basic textural 

information of the scanned areas (see Garcia-Casco, 2007). Spot analyses were performed on points 

selected using the X-ray maps and in other significant samples (Tables 2-5). 

Mica and chlorite were normalized to 11 and 14 O, respectively, and Fetotal = Fe
2+

. Amphibole 

compositions were normalized to 23 O, H2O was determined by assuming (OH+F+Cl) = 2 a.p.f.u., 

and the distribution of cations in the A-, B-, C- and T-sites was carried out by stoichiometry 

following the scheme of Hawthorne et al. (2012); for amphiboles, Fe
3+

 was estimated for 

electroneutrality after cation normalization according to stoichiometric constraints proposed by 

Hawthorne et al. (2012). Epidote was normalized to 3 Si, and plagioclase to 8 O, both with Fetotal = 

Fe
3+

. Mineral and end-member abbreviations are after Whitney and Evans (2010), completed with 

those proposed by Hawthorne et al. (2012) for amphiboles, and abbreviations of end-members of 

phases are written entirely in lower case. The atomic concentration of elements per formula units is 

abbreviated a.p.f.u. The atomic ratio Mg/(Mg+Fe
2+

) is termed Mg#. 
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The triangular ACF, AKF and AFM, and the tetrahedral AFMN- and ACFN-deluxe diagrams 

were constructed after projection of chemical compositions from phases and exchange vectors 

following algebraic methods (Singular Value Decomposition, Fisher, 1989, 1993) using software 

CSpace (Torres-Roldán et al., 2000). The diagrams contain the composition of analyzed minerals 

and bulk rocks and of representative end-members of solid solutions projected from phases and 

exchange vectors as indicated in Figs. 4, 5 and 12. In these diagrams, Fe is treated as Fe
2+

total since 

the amounts of Fe
2+

 and Fe
3+

 in micas and chlorite cannot be estimated by stoichiometry. The 

manipulation of the composition space by means of exchange vectors results in condensation that 

allows for consideration of all analyzed elements at once in the diagram. However, since the 

number of chemical components of the system is artificially reduced after algebraic constraining, 

the condensation process produces artificial degeneracy, making particular end-members of variable 

composition to plot in the same position in the diagram (i.e., for plotting purposes, they are 

indistinguishable). For the same reason, some chemical variations in the analyzed minerals cannot 

be resolved (e.g., K vs Na, Fe vs Mg in the ACFN diagram). In spite of these inconveniences, the 

AFMN- and AKFM-deluxe diagrams are nevertheless convenient for simultaneous inspection of 

mineral assemblages in a single rock sample and for important chemical variations of the coexisting 

minerals and rocks. 

The thermodynamic calculations (pseudosection) in the KNCFMASHO (K2O-Na2O-CaO-

FeO-MgO-Al2O3-SiO2-H2O-O2) system were performed using the Perple_X software (Connolly, 

1990, 2005). A fluid phase, assumed to be pure H2O, was considered in excess. The oxygen 

contents for transformations of ferrous to ferric iron was chosen (at 10 molar percent) after some 

preliminary calculations in order to reproduce the presence of epidote in key assemblages stable 

within the P-T window of interest and the calculated content of trivalent iron in most minerals. Our 

procedure (test-value calculations) follows that of Willner et al. (2016) and other workers. The 

solution models used for amphibole, feldspar, clinopyroxene, chlorite, white mica and epidote are 

those of Dale et al. (2005), Fuhrman and Lindsley (1988), Green et al. (2007), Holland et al. (1998), 
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Coggon and Holland (2002), and Holland and Powell (1998), respectively. Alternative solid 

solution models for amphibole (e.g., Massonne and Willner, 2008) were tested; however, they failed 

to reproduce the observed mineral assemblage of the studied samples (e.g., they indicate 

stabilization of clinopyroxene, which is not present in studied rocks, at all conditions in the P-T 

window of interest). 

4. Microstructures 

Rocks from the Maimón Formation are characterized by development of syn-metamorphic 

ductile fabrics and structures. However, and as described by Draper et al. (1996) and Draper and 

Gutiérrez-Alonso (1997), a trend towards increasing internal deformation and metamorphic grade is 

observed to the SW of the Maimón belt, particularly in the Ozama shear zone (Fig. 1b; i.e., in the 

uppermost levels of the structural sequence, Fig. 1c); deformation is much less intense to the NE 

half of the Maimón belt (i.e., the so-called El Altar zone, to the NE of the Fátima thrust fault). 

Although rocks vary from fully recrystallized to weakly metamorphosed and undeformed along this 

trend, a pronounced change in the metamorphic recrystallization and deformation degrees is 

observed on each side of the Fátima thrust fault and hence both zones are described separately. 

4.1. Ozama shear zone 

Rocks of the Ozama shear zone include greenschists and scarce gneissic low-K meta-

plagiorhyolites. The samples are pervasively deformed and recrystallized and lack magmatic 

remnants (Fig. 2). Though the abundance of minerals diverge as a function of bulk-rock 

composition (Fig. 5), in both types of rock the metamorphic parageneses are formed mostly by 

chlorite, muscovite (s.l.; phengite s.s., see below), epidote, amphibole (actinolite ± ferri-winchite, 

see below), albite, stilpnomelane and quartz. Opaque accessory minerals include disseminations of 

sulfides (mainly sub-euhedral pyrite) and trace minute (~ 10 μm in size) titanite and rutile grains. 

Recrystallization and deformation developed mylonitic structures and planar fabrics defined by 
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muscovite, muscovite-chlorite intergrowths, amphibole and a crenulation metamorphic 

compositional layering (Fig. 2). Meso- and micro-scale petrographic observations reveal three 

deformation events (Dp-1, Dp and Dp+1, where Dp refers to the principal deformation event). Dp-1 

resulted in the development of a Sp-1 foliation locally preserved in muscovite and 

muscovite±chlorite microlithons located in mm- to cm-scale domains between lepidoblastic 

muscovite sheets defining the main crenulation cleavage (Sp; Figs. 2e-f); they are also preserved in 

dm-scale fold hinges, mostly isoclinal, with extremely attenuated or inexistent limbs developed 

mostly in the most felsic (quartz bearing) lithologies and fold axis depicting a great circle parallel to 

the Sp foliation. Dp tectonic layering development corresponds with peak metamorphism 

(recrystallization) and involved the almost complete obliteration of the magmatic and previous 

deformation features. The associated schistosity (Sp) is planar (Figs. 2a) and locally, slightly 

anastomosed, often resulting in compositional layering (Figs. 2b,c,g). The orientation of this 

foliation is quite uniform, SW trending and dipping ~ 60º to the south. Foliation surfaces show 

occasionally a mineral stretching lineation plunging 25º-35º towards the S – SSW. Metamorphic 

compositional layering is defined by alternating centimeter- to submillimeter-wide albite-quartz, 

muscovite-chlorite- and actinolite-rich layers preserving previous Sp-1 in the crenulation hinges (Fig. 

2g). Poorly developed submillimeter-scale S-C and mica-fish fabrics are also observed in samples 

with higher phyllonitic character. Deformation stages and foliations Sp-1 and Sp may correspond to 

progressive deformation under the same deformation regime. Finally, a deformation stage Dp+1 

generated folding of the previous structures and development of an incipient Sp+1 foliation (Figs. 

2b-d). Dp+1 folds are mainly isoclinal and doubly verging (Fig. 2b), if more complex patterns 

embrace parasitic (second order) symmetric and asymmetric, disharmonic (Figs. 2b-c) or sheath 

folds (Fig. 2d) typical of ductile (mylonitic) shear zones (e.g., Carreras et al., 2005). Thin, 

millimeter- to centimeter-wide quartz veins are common in the Ozama shear zone, occurring mostly 

parallel and jointly folded with Sp foliation, and are affected by shearing, asymmetrical disharmonic 

folding and extension evidenced by boudinage parallel to the Sp (Figs. 2b,g). 
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Preferred orientation of quartz ribbons and of the variably elongated quartz, albite and epidote 

porphyroclasts is characteristic of the Ozama shear zone rocks, and define, along with the 

muscovite, chlorite and amphibole lepidoblasts, a planar-linear (Sp-Lp) fabric. Polycrystalline quartz 

porphyroclasts systematically develop asymmetric σ-type shear structures composed of very fine-

grained quartz and chlorite/muscovite wrapped by muscovite-chlorite-amphibole lepidoblasts of the 

Sp foliation (Fig. 2h). Quartz shows marked undulose extinction and internal stylolitic joints. 

Epidote concentrates in rocks of mafic protoliths (Torró et al., 2016a, b), with local concentrations 

higher than 50% modal constituting meta-epidosites. Even if most of epidote crystallization 

probably resulted from the spilitization of the basalts (cf. Gilgen et al., 2016), deformed epidote 

crystals displaying fan-like textures (Fig. 2i) and adjacent helical poikiloblastic zones (recalling 

snowball textures) and δ-type shear structures (Fig. 2j) suggest syntectonic rotational blastesis. 

Eventually, ultramylonites developed after the gneissic meta-rhyodacites close to the Fátima thrust, 

where monocrystalline, variably comminuted quartz porphyroclasts of millimetric to submillimetric 

diameter occur in a very fine-grained quartz-muscovite matrix.  

Sulfides in the volcanogenic massive sulfide lenses hosted in the Ozama shear zone also 

record intense mylonitic deformation. In the outer limits of the sulfide lenses, rotated pyrite 

porphyroclasts develop asymmetrical pressure shadows composed of feather-shaped quartz crystals 

and envelopes of extremely elongated chalcopyrite-sphalerite crystals. For a detailed description of 

the deformation/recovery textures recorded in the Cerro de Maimón VMS sulfides, the reader is 

referred to Torró et al. (2016a). 

According to the observed kinematic criteria in the observed porphyroclasts and the study of 

the quartz <c> axis orientations (CPOs, Draper and Gutiérrez-Alonso, 1997) in the Sp quartz 

ribbons described above, the shear sense obtained indicates a top to the N-NE sense of movement in 

agreement with a thrusting-transpressional deformation regime. 

4.2. El Altar zone 
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Northeast of the Fátima thrust, at its footwall, rocks from the El Altar zone are characterized 

by remarkably less intense ductile deformation and penetrative foliation than rocks from the Ozama 

shear zone, and by limited metamorphic recrystallization (Fig. 3); a continuous spectrum of 

deformation and metamorphic recrystallization is distinguished from the incipient protomylonites 

identified near the Fátima thrust to the undeformed and metamorphically unaffected rocks from the 

far NW section of the Maimón Formation (Fig. 3a). The prevalence of meta-plagiorhyolites over 

meta-basalts and the occurrence of a metasedimentary sequence some tens of meters thick are also 

distinctive features of this zone. Phengite and chlorite are the main metamorphic phases along with 

less abundant epidote and paragonite. Minor and trace proportions of magnetite, hematite, apatite, 

rutile and titanite (not present in all samples) are observed. 

Incipient protomylonitic fabrics developed in meta-basalts and meta-plagiorhyolites show 

penetrative anastomosed to planar foliation defined by muscovite and minor chlorite lepidoblasts 

that crudely adapts around igneous/hydrothermal(?) plagioclase (Figs. 3f-g) and quartz (Figs. 3b, h-

i) porphyroclasts describing symmetric (Figs. 3f-g) to locally weakly asymmetrical (Fig. 3h) 

ribbons. The orientation of the rough cleavage present in this zone is parallel to the shear foliation 

of the Ozama zone. The development of symmetric pressure shadows composed of very fine-

grained quartz adjacent to quartz porphyroclasts is limited (Fig. 3i). Mineral or stretching lineation 

in the protomylonites of the el Altar zone is broadly absent (Figs. 3f-g, i).  

CPO´s in the quartz-rich rocks of the Altar zone, close to the Fátima thrust (Draper and 

Gutiérrez-Alonso, 1997) depict girdles compatible with pure-shear deformation, in contrast with 

those in the Ozama zone, revealing different deformation mechanisms in both zones. 

General preservation of the protolith magmatic textures and mineralogy allows their 

classification as fine plagioclase- and pyroxene-phyric, massive basalts (Figs. 3d, f-g, j-k) and 

highly fine to medium-grained quartz-phyric massive plagiorhyolites (Figs. 3b-c, h-i). Plagioclase 

porphyroclasts are elongated and develop local asymmetric pressure shadows; breaking apart and 
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subtle antithetical bookshelf rotation of plagioclase fragments is common. Flow layering (with 

alternating pale siliceous and partially recrystallized and chloritized glassy matrix layers) adapting 

around rounded quartz porphyroclasts is locally preserved (Fig. 3c). In undeformed 

metamorphically unaffected porphyritic basalts, the matrix is observed to be made up of chloritized 

volcanic glass along with fine-grained plagioclase laths (Figs. 3d, j). Chloritized volcanic glass is 

also detected in moderately amygdaloidal clasts of the less abundant meta-hyaloclastites; these 

rocks display jigsaw-fit and clast-in-matrix textures suggesting in situ quench fragmentation. 

Sedimentary rocks in the El Altar zone of the Maimón Formation include breccias and 

conglomerates along with well laminated fine-grained meta-tuffs, dark graphite-shales (Fig. 3e), 

cherts and limestones. 

5. Bulk composition and mineral assemblages 

Previous to metamorphism, the oceanic volcanic rocks of the Maimón Formation underwent 

seafloor metamorphism (forming keratophyres and spilites) and an intense hydrothermal alteration 

associated with the formation of volcanogenic massive sulfide mineralization (Torró et al., 2016a). 

The latter involved silicification, propylitization, sericitization and sulfiditization of the hosting 

rocks, which were much more intense in the footwall of the massive lenses than in the hanging wall 

rocks. Compared to major element composition of pristine basalts from the nearby Los Ranchos 

Formation (which includes island arc tholeiites and boninites; Escuder-Viruete et al., 2006) and the 

Izu-Bonin-Mariana forearc (which includes forearc basalts and boninites; Reagan et al., 2010), most 

metabasites from the Maimón Formation are enriched in Al2O3 and depleted in CaO (Fig. 4; Table 

1). As a result, most Maimón metabasites plot in the field of peraluminous rocks whereas basalts 

from the Los Ranchos Formation and IBM forearc, as expected, lie in the metaluminous field (Fig. 

4a). Although most plagiorhyolites from the Los Ranchos Formation and IBM forearc (data of 

Reagan et al., 2008) are only weakly peraluminous, metaplagiorhyolites from Maimón are strongly 

peraluminous. The strong mobilization of elements is further evidenced in the chemographic 
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diagram of Figure 4b, in which bulk compositions of basalts from the Los Ranchos Formation are 

compatible with magmatic phases (olivine, orto- and clino-pyroxene and plagioclase), as described 

by Escuder-Viruete et al. (2006), whereas most Maimón metabasites are not. Instead, the latter are 

compatible with a hydrothermal alteration assemblage formed by muscovite (sericite), albite-

epidote-chlorite (propylitic alteration) and quartz ascribed to the formation of volcanogenic massive 

sulfide mineralization (e.g., Galley et al., 2007). 

The generalized major element mobility due to seafloor metamorphism and hydrothermal 

alteration processes, added to the initial diversity of the lavas, conferred a marked pre-metamorphic 

geochemical heterogeneity to the Maimón protoliths. Major element composition of the protoliths 

determined the metamorphic mineral assemblages and hence studied rocks are grouped into 7 

groups described separately below based on chemographic diagrams (Fig. 5). Discrimination of 

mafic (basalts and basaltic andesites) from felsic (rhyodacites) protoliths was carried out on the 

basis of immobile elements (HFSE, REE and transition metals) in Torró et al. (2016a, b). 

5.1. Metabasites of the Ozama shear zone 

In the Ozama shear zone, mafic meta-volcanic rocks are prevalent. Torró et al. (2016a, b) 

determined, on the basis of immobile elements, that the basaltic suite included boninites and low-Ti 

tholeiites. According to metamorphic assemblages (and defining major element bulk rock 

compositions) these rocks are grouped into three main groups herein (Figs. 5a-b).  

Group O1 lithotype comprises metabasites with bulk compositions typical of pristine island 

arc basalts (including tholeiites and boninites) in terms of major elements (e.g., samples CM-2-1 

and CM-2-2). These rocks have the lowest Al2O3 values among the studied basalts, Mg# varies 

from 58 to 63, and CaO > Na2O and >> K2O. The metamorphic assemblage is composed of 

amphibole-chlorite-epidote-albite, along with less abundant quartz and phengite. In the ACF and 

AFM diagrams of Figs. 5a-b, Group O1 basalts match the compositions of unaltered boninites from 
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the Los Ranchos Formation (Escuder-Viruete et al., 2006) and from the Marianas forearc (Reagan 

et al., 2010), and have characteristic lower C (i.e., CaO) and higher F (FeO*+MgO+MnO) than 

most unaltered forearc basalts from Marianas forearc and tholeiites from the Los Ranchos 

Formation.  

Group O2 lithotype comprises metabasites (e.g., CM-30 and CM-31) enriched in Al2O3 to 

pristine basalts, and have Mg# between 50 and 58. Calcium is enriched relative to Group O1 and 

CaO > (Na2O + K2O). Metamorphic assemblage in these rocks is composed of dominant chlorite-

epidote-albite-phengite-quartz, lacking amphibole. In the ACF and AFM diagrams of Figs. 5a-b, A 

(Al2O3) is enriched relative to most boninites and forearc basalts from the Marianas forearc and is 

similar to the bulk of island arc tholeiites (including basalts to andesites) of the Los Ranchos 

Formation.  

Group O3 lithotype has characteristic very low CaO (< 2.8 wt. %) values, lower than Na2O 

and similar to K2O; Al2O3 contents are comparable to Group O2, and Mg# has a wide range 

between 50 and 70 (e.g., CM-26, CM-2-10 and CM-2-12). Chlorite, phengite and albite are the 

dominant metamorphic phases along with minor epidote and quartz. In the ACF diagram (Fig. 5a), 

these rocks clearly differentiate of basalts from the Los Ranchos Formation and the Marianas 

forearc. Inasmuch as Group O3 rocks classify as basalts (Torró et al., 2016a, b), this set stands out 

for the most hydrothermally altered basalts previously to metamorphism. 

5.2. Metabasites and metaplagiorhyolites of the El Altar zone 

In the El Altar zone, felsic meta-volcanic rocks are, by far, prevalent over mafic ones. Group 

A1 is defined by the analyzed metabasite sample (CM-2-6). Group A1 metabasite has similar major 

element composition equivalent to Group O3, and hence is representative of hydrothermally altered 

basalts. The metamorphic mineral assemblage is defined by dominant chlorite-albite-quartz, less 

abundant phengite and epidote and trace paragonite (Figs. 5c-d).  
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According to major element bulk rock compositions and metamorphic assemblages, felsic 

meta-volcanic rocks from the el Altar zone are grouped into three main groups. 

Group A2 comprises a metaplagiorhyolite sample (CM-15) with Na2O > K2O and >> CaO. Its 

metamorphic assemblage is composed of albite, phengite, paragonite, quartz, epidote and minor 

chlorite. In the AKF diagram of Fig. 5c, its composition matches that of felsic volcanics from the 

Los Ranchos Formation (Escuder-Viruete et al., 2006) and IBM (Reagan et al., 2008), whereas its 

depletion in CaO relative to these rocks is evident in the ACF diagram of Fig. 5d.  

Group A3 comprises a metaplagiorhyolite sample (CM-24) with Na2O >> K2O and CaO. Its 

metamorphic assemblage is composed of phengite, chlorite, paragonite, quartz and trace epidote 

and preserves scarce phenocrysts of albite and quartz. Its depletion in K2O and CaO relative to 

unaltered felsic volcanics from the Los Ranchos Formation and IBM is evident in the AKF and 

ACF diagrams (Figs. 5c-d). 

Group A4 is composed of two metaplagiorhyolites (CM-16 and CM-2-7) with CaO > K2O 

and >> Na2O. Their metamorphic assemblage is composed of phengite chlorite, quartz and epidote. 

In the AKF diagram in Fig. 5c, K (i.e., K2O and Na2O) is clearly depleted relative to felsic 

volcanics from Los Ranchos and IBM, whereas CaO contents are broadly equivalent (Fig. 5d).  

6. Mineral chemistry  

6.1. Amphibole 

This mineral is present only in rocks of the Group O1 of the Ozama shear zone and occurs as 

zoned, folded crystals along compositional layers interspersed with albite (Fig. 6). Amphiboles 

belong to the calcium and sodium-calcium subgroups (Fig. 7a) according with the classification 

scheme of Hawthorne et al. (2012). Analyses yielded very low Ti (<0.05 a.p.f.u.), Mn (<0.06) and 

K (<0.16) concentrations, and the contents of F (<0.07) and Cl (<0.05) are almost negligible. 
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Calcium amphiboles (CaB = 1.50-1.91 a.p.f.u.; NaB = 0.01-0.40) classify as actinolite and very 

seldom magnesio-ferri-hornblende, with a continuous compositional spectrum between the two 

species (Fig. 7c-d; Table 2). Calcium amphiboles have variable Si (7.46-7.99 a.p.f.u.), Altot (0.09-

0.73), Mg (2.73-3.77), Fetot (1.13-2.11), Ca (1.50-1.91) and Na (0.07-0.66) contents. The vacancy in 

position A is of 0.67 to 1.00 p.f.u. Calculated Fe
3+

 is <0.39 a.p.f.u. Mg# ranges from 0.60 to 0.78.  

Sodium-calcium amphiboles (CaB between 1.17 and 1.38 a.p.f.u.; NaB between 0.53 and 0.71) 

classify as ferri-winchite (Fig. 7b; Table 2). Ferri-winchite crystals yielded relatively homogeneous 

Si (7.81-7.87 a.p.f.u.), Altot (0.35-0.46) and Fetot (1.93-2.11), and antipathetic values of Ca (1.17-

1.38) and Na (0.63-0.88). The vacancy in position A ranges from 1.83 to 1.90 p.f.u. Calculated Fe
3+

 

is < 0.44 and Mg# ranges between 0.60 and 0.65. 

Amphibole crystals show marked compositional, roughly concentric, zoning in terms of Si, 

Al, Mg, Fe, Ca and Na (Fig. 6). Changes in Si, Mg and Ca are inversely compensated by changes in 

the Al, Fe and Na content, therefore following the cationic exchange between actinolite and ferri-

winchite end-members. The ferri-winchite compositions appear at the rim of actinolite grains (Figs. 

6c-d) 

6.2. White micas (phengite and paragonite) 

White mica occurs in most rocks from both the Ozama and El Altar zones; it is, in general, 

very fine grained (< 1µm wide), which prevented the appropriated chemical analysis in most 

samples. White micas classify as phengite and paragonite. Phengite is broadly submicroscopically 

intergrown with chlorite, and in rocks of groups A2 and A3 of the El Altar zone, in addition, is 

intergrown with paragonite (Fig. 8). Hence, most EMP analyses of white mica in rocks from the El 

Altar zone represent mixed analysis of phengite-paragonite. In rocks of the Ozama shear zone, 

systematic variations in the chemical composition of phengites from Sp-1 and Sp foliations were not 
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observed as a consequence of rotation (by means of crenulation and shear deformation) of Sp-1 

grains into Sp.  

The analyzed white mica (phengite and paragonite) lepidoblasts from the Maimón Formation 

display a continuous relatively wide compositional spectrum (Table 3; Fig. 9 and 10). Remarkably 

high Si contents (3.16-3.54 a.p.f.u.) of phengite grains from the Ozama shear zone are distinctive to 

those from the El Altar zone (3.01-3.27). Phengite grains from the Ozama shear zone are richer in 

Mg (0.13-0.51) and Fe (0.12-0.54) relative to those from the el Altar zone (0.03-0.37 and 0.02-0.20, 

respectively). Phengite records an increase in 
iv

Al (0.46-0.84) and 
vi

Al (1.19-1.80) from the Ozama 

shear zone to the El Altar zone (0.73-0.99 and 1.65-2.03, respectively). Titanium contents are 

steadily low (below detection limit) in grains from el Altar, and up to 0.1 a.p.f.u. in samples from 

the Ozama shear zone. In general, grains from the Ozama shear zone present higher K (0.78-0.97) 

and lower Na (to 0.05) concentrations than those from el Altar (0.22-0.92 and to 0.52, respectively). 

Fluorine is up to 0.24 and Cl is systematically under its detection limit. 

Phengite exhibits a marked Tschermak (Si(Mg,Fe)Al-2) exchange along the dioctahedral mica 

series, which relates muscovite (KAl2AlSi3O10(OH)2) to the celadonite (K(Mg,Fe)AlSi4O10(OH)2) 

end-members (Fig. 9). The Tschermak exchange component is extreme in analyzed phengite 

crystals from the Ozama shear zone whereas those from the el Altar zone approximate the 

composition of muscovite/paragonite. A slight but progressive increase in the trioctahedral contents 

occurs as the composition of phengite deviates from the muscovite end-member. This trioctahedral 

component may be spurious if, at least in part, it is the result of higher Fe
3+

/Fe
2+

 ratios (normalizing 

to 22 negative charges with Fe
3+

 unaccounted for results in an overestimation of all cations in the 

structural formula, thus increasing the calculated octahedral occupancies; e.g., Garcia-Casco et al., 

1993). Although a paragonitic (NaK-1) exchange apparently operates in phengite from the El Altar 

zone (Fig. 10), antipathetically to the Tschermak exchange (as expected; Guidotti, 1984), these 

values represent mixed analyses of phengite/paragonite to a large extent. 
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6.3. Chlorite 

Chlorite crystals from the El Altar and Ozama shear zones present higher Mg (2.61-3.01 and 

2.21-2.85 a.p.f.u., respectively) than Fe (1.25-2.00 and 1.74-2.38) and Al
vi

 (1.19-1.72 and 0.76-

1.64) contents (Table 4). Manganese contents are systematically low (0.02-0.05). Although most of 

the analyses plot near the fully octahedral occupancy line (Fig. 11a), a chlorite crystals from the 

Ozama shear zone returned up to 0.29 octahedral vacancies p.f.u. In the tetrahedral position of 

chlorite from the El Altar and the Ozama shear zones, Si (2.71-2.80 and 2.70-3.14,) broadly doubles 

and triples, respectively, the content in Al
iv

 (1.20-1.29 and 0.86-1.30). Fluorine and Cl contents are 

almost negligible. According to these data, the chlorites are tri-trioctahedral and belong to the 

clinochlore-chamosite series (Wiewióra and Weiss, 1990). Mg# is in the range of 0.57-0.70 in the 

El Altar and of 0.50 to 0.59 in the Ozama shear zones and hence the studied chlorites classify as 

clinochlore. The compositional deviation from the clinochlore-chamosite binary can be largely 

described by the Tschermak exchange (Si(Mg,Fe)Al-2) (Fig. 11b). 

6.4. Plagioclase 

In the Ozama and El Altar zones, plagioclase feldspar is virtually pure albite (Ab96-100; Table 

5), with very low orthoclase (Or ≤ 2.27); nevertheless, K is systematically higher in plagioclase 

crystals from the Ozama shear zone (Or0.24-2.27) to those of the El Altar zone (Or0.06-0.13).  

6.5. Epidote 

Epidote group minerals in both the Ozama and the El Altar zones yielded comparable 

compositions and a very limited compositional range that allows their classification as epidote 

(sensu stricto; Franz and Liebscher, 2004). The content of Fe
3+

 (0.45-0.66 a.p.f.u.) is remarkably 

higher than that of Al(M3) (up to 0.29) and Mn (up to 0.02). 

7. P-T estimates of metamorphic conditions  
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Isochemical P-T projection (pseudosection) was calculated for sample CM-2-2, representative 

of the bulk-rock composition of the Group O1 rocks from the Ozama shear zone. This sample was 

selected because of its most diverse metamorphic mineral assemblage (i.e., lower variance; Fig. 12), 

larger mineral grain sizes (suggesting metamorphic equilibration of the minerals) and presence of 

ferri-winchite (suggesting higher P-T peak conditions). 

The pseudosection for sample CM-2-2 shows a field with the association Ca-

Amp+Chl+Ep+Ph+Ab+Qz+Hem consistent with the observed mineral assemblage in the sample 

(Fig. 13a). Close to and at higher P of this field, Na-Ca-Amp occurs, suggesting that the P-T path 

crosscut the winchite-in line. To further constrain the P-T conditions, mineral composition isopleths 

for phengite (Si) and chlorite (Mg#) were calculated (Fig. 13b). The distribution of isopleth 

confirms the Ca-Amp+Chl+Ep+Ph+Ab+Qz+Hem field and fixes the conditions to ~ 8.2 kbar and 

380 ºC. The obtained temperature is also in agreement with the low temperature nature of the quartz 

CPOs (~ 350º; Blacic, 1975) from the Ozama shear zone (Draper and Gutiérrez-Alonso, 1997) 

where they exhibit monoclinic, small circle girdle (SG) fabrics and monoclinic type 1 crossed girdle 

(CG) fabrics (Lister, 1977; Schmid and Casey, 1986), consistent with a simple shear context and 

indicate <a> directed basal slip. 

The aforementioned conditions are representative of low temperature and moderate pressure 

during metamorphism, in the greenschist to blueschist facies transition (e.g., Spear, 1993; Liou et 

al., 2004) and suggest that our rocks were dragged down in the lithosphere to approximately ~ 29 

km, which corresponds to an apparent geothermal gradient of 13.2 ºC/km, compatible with 

subduction gradients along the slab-mantle interface.  

The construction of a pseudosection from a sample from the El Altar zone was declined from 

the start since the samples from this zone systematically contain magmatic/hydrothermal remnants 

suggesting that metamorphic re-equilibration was not completely achieved. In addition, these 

samples present a conspicuously fine grained nature (including very fine Chl-Ph-Pg intergrowths) 
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that largely prevented the chemical measurement of pure phases, as aforesaid. As a proxy for the 

estimation of the pressure undergone by rocks of the El Altar zone during metamorphism, we used 

Si contents of phengite. The tschermak and paragonitic substitutions are known to be strongly 

influenced by intensive and extensive parameters and to display an antipathetic behavior in 

muscovite solid solution (cf. Guidotti, 1984; García-Casco et al., 1993). For a given system, a 

consistent increase in the Si content of phengite occurs with increasing P (and, to a lesser extent, 

decreasing T). Analyzed phengites from the Maimón Formation have relatively high Si contents, 

higher in the Ozama shear zone (up to 3.54 a.pf.u) than in the El Altar zone (up to 3.36 a.p.f.u); 

these values are suggestive of a cold metamorphic gradient during metamorphic recrystallization. 

Assuming T in the range between 300 and 350 ºC, lower than the Ozama zone, the calibrations of 

the phengite geobarometer by Massonne and Szpurka (1997) and Simpson et al. (2000) yield 

minimum metamorphic pressure estimates for phengites from the El Altar zone of ~ 3.5 and 3 kbar, 

respectively (minimum P of ~ 6 and 5.5 kbar, respectively, for phengites of the Ozama shear zone). 

It should be noted that the lack of biotite/phlogopite and K-feldspar in the coexisting assemblages 

actually makes the calculated pressures to be minimum estimates (Massonne and Schreyer, 1987). 

In addition, for the El Altar samples, mixed analyses (phengite±paragonite) may dilute the Si 

concentration, which would result also in lower P estimates. 

8. Discussion  

8.1. Metamorphic conditions 

Rocks of the Maimón Formation record an inverted metamorphic gradient with a sharp jump 

in recrystallization at the Fátima thrust fault, which separates the lower grade footwall (i.e., El Altar 

zone) from the higher grade hanging wall (i.e., Ozama shear zone), where intense syn-metamorphic 

mylonitic and phyllonitic deformation occurs. Since the early work by Bowin (1960, 1966), the 

metamorphic assemblage of the Maimón Formation has been considered representative of low-P 

greenschist facies. This assignation has been recurrently recalled by many authors (Draper and 
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Gutiérrez-Alonso, 1997; Draper and Lewis, 1991; Draper et al., 1996; Escuder-Viruete et al., 2002; 

Kesler et al., 1991a; Nagle, 1974). Thus, Kesler et al. (1991a) suggested temperatures of about 400 

ºC and pressures not higher than 3 kbar. On the basis of mineral assemblages in metabasic rocks, 

Escuder-Viruete et al. (2002) distinguished two metamorphic zones: zone I in the prehnite – 

pumpellyite facies, with prehnite, pumpellyite, chlorite, epidote, albite, white mica, quartz and 

calcite; and zone II in the low-pressure greenschist facies, with chlorite, actinolite, epidote, albite, 

white mica and quartz (in both cases, less than 3 kbar). These authors noted that at least part of the 

assemblages was pre-kinematic (i.e., pre-tectonic) and produced by spilitization during sea-floor 

metamorphism. Identical conclusions were reached by Escuder-Viruete et al. (2007b) for the Amina 

Formation, widely accepted to be a separate segment of the same magmatic and metamorphic belt 

(i.e., the Maimón-Amina-Tortue Island belt; Draper and Lewis, 1991; Escuder-Viruete et al., 2007b; 

Kesler et al., 1991a; Lewis and Draper, 1990). Nevertheless, systematic and detailed analyses of 

minerals and quantitative determinations of pressure and temperature of metamorphism in the 

Maimón Formation had not hitherto been reported. Only a few analyses of actinolite and albite are 

given by Escuder-Viruete et al. (2002) in a general study including the Duarte and Río Verde 

Complexes, and of actinolite in the Amina Formation by Escuder-Viruete et al. (2007b). Paragonite 

and ferri-winchite have not been reported previously. 

Our pseudosection calculations indicate that the high grade rocks of the Ozama shear zone 

of the Maimón Formation reached peak temperature and pressure of ~ 8.2 kbar; 380 ºC, close to the 

greenschist to blueschists facies transition (see Fig. 14). Hence, the low-P conditions of 

metamorphism commonly attributed to the Maimón Formation and the derived tectonic constraints 

require reconsideration.  

The reason why the high metamorphic peak pressures have been unnoticed in previous 

studies has most probably to do with the hydrothermally modified bulk-rock geochemistry before 

metamorphism, as discussed above. Peak metamorphic assemblages of studied rocks do not match 
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the mineralogy expected for blueschists (or greenschist/blueschist transition), but rather recall that 

of greenschist facies bearing abundant epidote, feldspar and chlorite, but scarce amphibole. Only in 

those few metabasites (the exception) with compositions close to pristine basalts (Group O1), peak 

ferri-winchite is present (Figs. 5a-b and 12). The rest of metabasites are enriched in Al2O3 and, in 

those most pervasively altered, strongly depleted in CaO and Na2O relative to pristine basalts; in 

these compositions, Ca- and Ca-Na- amphiboles do not form (Fig. 5). Glaucophane was not 

detected in Maimón metabasites in spite of intensive search. In the blueschist facies, Fe-rich 

glaucophane would first grow in metabasite rocks with low Mg#, and the assemblage 

Gl+Chl+Ca/Na-Ca Amph would develop in Mg#-richer compositions upon increasing temperature 

and pressure (Figure 11-34 in Spear, 1993; Fig. 5b herein). Hence, at the peak conditions calculated 

for our rocks, only metabasites abnormally enriched in FeO relative to MgO would be expected to 

form Fe-glaucophane. In Group O1 metabasites, MgO is steadily enriched relative to FeO (i.e., Mg# 

> 50) and in the AFM diagram of Fig. 5b their bulk composition plot out of the stability field of 

glaucophane. Accordingly, metabasites from the Ozama shear zone are hereinafter to be considered 

greenschists s.s. that underwent peak metamorphism in the limit greenschist/blueschists facies 

conditions. 

8.2. Tectonic interpretation 

Deformation and structural relations of the Maimón and Los Ranchos Formations were 

studied by Draper et al. (1996) and Draper and Gutiérrez-Alonso (1997) who assessed a top-to-the-

north thrust sense of shear in the Ozama zone. These authors invoked the northward obduction of 

the adjacent Loma Caribe peridotite during the late Albian over the Maimón Formation and the 

structurally underlying Los Ranchos Formation as the ultimate cause for the major thrust 

deformation event. According to these authors, obduction and related transfer of heat from the hot 

peridotite slice to the underlying Ozama shear zone caused the inverted metamorphic-deformation 

gradient observed from the Ozama shear zone through the El Altar zone of the Maimón Formation 
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to the Los Ranchos Formation, i.e., toward the N-NNE. The low-P (3 kbar) peak conditions and 

high thermal gradient (45 ºC/km) proposed by Escuder-Viurete et al. (2002; Fig 14 herein) would 

apparently agree with the peridotite obduction scenario. However, 3 kbar peak pressure translates 

into ~ 9 km depth below peridotite (assuming a mean density of 3.3 g/cm
3
), which largely exceeds 

the thickness of the Loma Caribe peridotite tectonic slice (of barely 4 km maximum thickness in the 

Bonao-Maimón area; see Fig. 2 in Escuder-Viruete et al., 2010). Also, in the lack of a detailed 

thermal modeling, such a steep geothermal gradient is considered too high for a conductive scenario 

at shallow depths involving a thick volcanic-arc sequence. 

With the data obtained in this study, the calculated pressure of ~ 8.2 kbar (i.e., 25.36 km -3.3 

g/cm
3
-, or 28.85 km - in perhaps more realistic scenario of 2.9 g/cm

3
 average density in order to 

account for overriding arc crust plus mantle) at ~ 380 ºC in Ozama shear zone metabasites 

corresponds to a thermal gradients in the range of 15.99 ºC/km (3.3 g/cm
3
) to 13.17 ºC/km (2.9 

g/cm
3
), in any case much lower than inferred by Escuder-Viruete et al. (2002) (Fig. 14). According 

to these data, the relative high pressures and corresponding relatively cold thermal gradient 

undergone by rocks of the Maimón Formation cannot be easily conceptualized within the 

framework of overthrusting of a shallow hot peridotite slice over the volcanic-arc formation, as 

proposed by Draper and Gutiérrez-Alonso (1997), Draper et al. (1996) and Escuder-Viruete et al. 

(2002). The inferred depth of 25-29 km during metamorphism cannot be accounted for by the 

thickness of the Loma Caribe peridotite sheet. Instead, such thermal gradient and metamorphic 

depth is consistent with subduction of warm lithosphere (Peacock and Wang, 1999; Fig. 14), as 

expected for a young oceanic island-arc environment developed in the Early Cretaceous (c. 125-110 

Ma for the Los Ranchos Formation: Cumming and Kesler, 1987; Cumming et al., 1982; Escuder-

Viruete et al., 2006, 2007c; Kesler et al., 1991b, 2005; Kirk et al., 2014; Nelson et al., 2015; Torró 

et al., submitted; slightly older age inferred for the Maimón Formation: Horan, 1995; Torró et al., 

2016a, b). The aforementioned gradient is also consistent with the conditions of other Cretaceous 

volcanic arc formations subducted during the Cretaceous-Early Tertiary in the Caribbean realm, 
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such as the Villa del Cura complex, Venezuela (Smith et al., 1999), the Purial complex, Cuba 

(Garcia-Casco et al., 2008b and references therein), and the Blue Mountains, Jamaica (West et al., 

2014 and references therein) (Fig. 14), and with the thermal conditions during syn-subduction 

exhumation of eclogite and blueschist facies rocks, as for example those of the Northern Dominican 

Republic Río San Juan complex (Escuder-Viruete and Pérez-Estaún, 2013; Escuder-Viruete et al., 

2013a, b; Krebs et al., 2008, 2011) (Fig. 14). Recently, Willner et al. (2016) have studied blueschist 

and greenschist rocks from Mt. Hibernia, Jamaica, both formed in a subduction-related accretionary 

complex. The peak conditions calculated by these authors for the greenschists rocks are very similar 

to those calculated here for the Ozama zone of the Maimón Formation (Fig. 14), further reinforcing 

our interpretation of subduction-related metamorphism in the Maimón Formation.  

Subduction of both active and quiescent oceanic arcs into the mantle is broadly described, 

for instance, in the western part of the Philippine Sea plate, where immature small arcs smoothly 

subduct beneath the Eurasian plate (Ichikawa et al., 2016, and references therein). As it has been 

argumented, we discard the Ozama shear zone of the Maimón Formation being a metamorphic sole 

associated with peridotite obduction since 1) the thickness of the Ozama shear zone (~ 3.5 km) 

amply exceeds the average thicknesses (<500 m) of described soles and 2) its thermal gradient (~ 

13-16 ºC/km) is markedly lower than the 26-30 ºC/km that characterizes soles (e.g., Wakabayashi 

and Dilek, 2000). 

8.3. Constraints on tectonic models 

All our attempts to date the metamorphic event that affected the Maimón rocks by using 

radiogenic isotopic techniques have been futile because of the very fine grained nature of 

metamorphic sheet silicates and the extremely low K2O contents of amphibole. In order to constrain 

the timing of the metamorphism and deformation, we will follow the structural and stratigraphic 

framework of Draper and Gutiérrez-Alonso (1997), Draper et al. (1996) and Lewis et al. (2002). 

According to these workers, metamorphism and shear deformation in the Maimón and, to a lesser 
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extent, the Los Ranchos formations developed previous to the deposition of the Albian Hatillo 

limestone, which unconformably overlies the Los Ranchos Formation and is not penetratively 

deformed. Invertebrate fauna at the base of the Hatillo Formation was dated as late Lower Albian 

by Myczynski and Iturralde-Vinent (2005). Hence, the Maimón Formation subducted and exhumed 

previous to c. 110 Ma. An onset of the subduction of the Proto-Caribbean at c. 135 Ma (Pindell et 

al., 2012), or even c. 126 Ma for the Hispaniola arc segment (Escuder-Viruete et al., 2014), would 

result in a minimum time lapse of 10-15 m.y. (e.g., from 126 to 110 Ma) which satisfactorily allows 

metamorphism in the greenschist and blueschist facies conditions to be developed (e.g., Maresch 

and Gerya, 2005) and the subsequent exhumation of the HP/LT metamorphic complexes (e.g., 

Baldwin et al., 2008). 

Subduction of the Maimón Formation in the Early Cretaceous is coeval with subduction of 

MOR- and island arc-related units of the Río San Juan metamorphic complex (Escuder-Viruete and 

Pérez-Estaún, 2013; Escuder-Viruete et al., 2013a, b, 2016; Krebs et al., 2008, 2011). In this 

complex, arc-related units with coherent internal structure and high-pressure metamorphism include 

El Guineal (metarhyolite) and Puerca Gorda (metabasite) schists of the Morrito nappe and the 

Guaconejo subunit of the Cuaba unit; mega-blocks of metamorphosed rocks of basaltic protolith 

with arc-related signatures embedded in mélanges includes the Hicotea schists (see Table 1 in 

Escuder-Viruete et al., 2013a for the precise references on each unit). Rocks of the Morrito nappe 

reached blueschist and upper greenschist facies, similar to the studied rocks from the Ozama shear 

zone, while Guaconejo subunit rocks reached high-P garnet epidote amphibolite to eclogite facies. 

Geochemically, the protoliths of these units are classified as boninites, low-Ti IAT (variably 

depleted in LREE) and IAT, and hence they are broadly comparable to the geochemical affinities of 

the Maimón mafic volcanic rocks (Torró et al., 2016a, b). Escuder-Viruete et al. (2013a, b) pointed 

out the manifest similarity of the mafic protoliths of the Morrito nappe and the Hicotea schists with 

the Early Cretaceous Caribbean volcanic rocks. Escuder-Viruete et al. (2013b) proposed that the arc 

protoliths of the la Cuaba unit began to subduct at c. 120-115 Ma, underwent prograde 
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metamorphism at c. 110-95 Ma, reached peak conditions at 90-89 Ma and exhumed between 89-83 

Ma following a clockwise P-T path (Fig. 14). Therefore, although arc-like rocks in the Río San Juan 

complex would have begun to subduct coeval to the Maimón Formation, their exhumation 

postdated that of the Maimón Formation. In Albian time (110-100 Ma), the rocks of the Río Verde 

complex in Cordillera Central of the Dominican Republic underwent metamorphism to the 

amphibolite facies shortly after formation in an Aptian-Albian rifted arc or back-arc basin setting 

(Escuder-Viruete et al., 2010) coeval with the Los Ranchos Formation magmatic front (Escuder-

Viruete et al., 2006). Accordingly, Early Cretaceous metamorphism of arc-related volcanic units in 

the Hispaniola segment of the Caribbean island arc was not restricted to the Maimón Formation but 

represented a large-scale, regional event that affected the whole island arc section.  

Upon these three following premises: 1) generation of the Maimón Formation in a forearc 

setting at c. 126 Ma (Lewis et al., 2000, 2002; Torró et al., 2016a, b); 2) metamorphism and 

deformation at 120-110 Ma linked to a subduction scenario (this work) and subsequent exhumation 

in the Early Cretaceous, shortly before c. 110 Ma (Draper and Gutiérrez-Alonso, 1997; Draper et 

al., 1996; Lewis et al., 2002); and 3) a regional-scale metamorphic event operating in the Hispaniola 

segment of the Caribbean arc, we envisage three possible scenarios. These scenarios correspond to 

tectonic models widely found in the literature for the subduction geometry of the western Proto-

Caribbean margin during the Early Cretaceous: 1) subduction polarity reversal from E-dipping 

subduction of Farallon to W-dipping subduction of the Proto-Caribbean as a result of the collision 

of the Caribbean-Colombian Oceanic Plateau (CCOP) with the Greater Antilles arc (Kerr et al., 

1999, 2003; Lidiak and Anderson, 2015), 2) initial (c. 135 Ma) W-dipping subduction of the Proto-

Caribbean after the inception of a sinistral ‗inter-American transform‘ that would have connected 

the E-dipping subduction zones fringing the western margins of North and South America (cf. 

Pindell et al., 2012) and 3) total consumption of the oceanic Mezcalera plate with two opposite 

dipping subduction zones below the Pacific Farallon plate and the Proto-Caribbean realm 

(Dickinson and Lawton, 2001; Escuder-Viruete et al., 2013a; Mann, 2007; Mann, et al., 2007).  
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The polarity reversal hypothesis was embraced by Draper and Gutiérrez-Alonso (1997), 

Draper et al. (1996) and Lewis et al. (2002) to explain the tectonic event causing the obduction of 

the Loma Caribe peridotite over the volcanic arc units (i.e., Maimón and Los Ranchos formations). 

In this framework, a coherent slice of the Early Cretaceous forearc could be dragged down in a new 

subduction zone developed after the collision of a Pacific plateau (Duarte Formation?) with the 

Pacific trench of the early Caribbean arc. Trench-plateau collision, and the ensuing break-off of the 

Pacific slab, would have allowed the flip of subduction, whose inception took place in the 

convergence front. Subduction of the new forearc at this early stage would have formed the Ozama 

zone of the Maimón Formation in the high-pressure greenschist/blueschist facies at shallow mantle 

depths, while only very shallow subduction, or crustal imbrications, affected the lower-grade and 

less intensely deformed the El Altar zone. The coeval arc-proximal Los Ranchos Formation did not 

subduct, but was affected by the associated tectonic event causing shallow, mostly brittle 

deformation. In this model, heating from an emplacing peridotite sheet is not needed. However, the 

model basically conforms to and re-interprets the structural relations described by Draper et al. 

(1996) and Draper and Gutiérrez-Alonso (1997) in the light of the new metamorphic data. 

According to these authors, once the west directed subduction/plateau collision took place, 

convergence between the Pacific and Proto-Caribbean lithospheres shifted towards the E-NE, i.e., 

towards the former back-arc, causing a subduction polarity reversal where a new more stable east 

directed subduction zone was established and steadily consumed Proto-Caribbean (i.e., Atlantic) 

lithosphere during the Late Cretaceous. 

A major weakness against this scenario is indeed the timing of the polarity reversal. The 

polarity reversal event postulated by some authors to occur below the Greater Antilles island arc is 

placed in the Late Cretaceous (Lidiak and Anderson, 2015, and references therein); to fulfill the 

premises above described (and assumed by Draper et al., 1996), an unlikely different, c. 40 m.y. 

older reversal event should be invoked. The Duarte complex in Cordillera Central hosts the oldest 

CCOP rocks dated in the Greater Antilles (Lidiak and Anderson, 2015); Escuder-Viruete et al. 
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(2007d) determined that the protoliths of the Duarte complex are most probably Albian (> 96Ma), 

i.e., they might have extruded at the time here bracketed for metamorphism of the Maimón 

Formation. It is hence suspect dating trench-Duarte complex collision and ensuing flip of 

subduction at ca. 120-110 Ma. Indeed, most recent kinematic reconstructions coincide to place the 

Early Cretaceous oceanic plateau in the eastern Pacific, southwestward away from the subduction 

zone during the Early and most of the Late Cretaceous (e.g., Kerr et al., 1999; Pindell et al., 2012; 

Fig. 40 in Lidiak and Anderson, 2015). Accordingly, a collision event including the choking of a 

buoyant oceanic plateau and ensuing flipping of subduction in the Early Cretaceous is difficult to 

conceive. 

In the second scenario, adapted from the model of Pindell et al. (2012), Early Cretaceous (c. 

135 Ma) onset of WSW-directed subduction of the Proto-Caribbean lithosphere occurred in the 

context of a trench-to-trench transform fault connecting the W-facing subduction zones in the 

western flank of the Americas (Fig. 15a). Relative motion along the trench-trench transform zone 

was mainly transpressive and the strong sinistral shear component was accommodated by a series of 

duplex bounded by anticlockwise transform faults that segmented both the pre 135 Ma volcanic arc 

and the newly born (i.e., post 135 Ma) Caribbean arc crust. Convergence and subduction of the 

Proto-Caribbean at an oblique angle to the trench, likely aided by the interaction with buoyant 

features such as the Proto-Caribbean ridge, could have forced part of the Caribbean arc crust to 

subduct along one of these intra-arc faults. This setting for an intra-Caribbean arc trench (Figs. 15b-

c) would favor subduction of a forearc portion (i.e., the Maimón Formation), while other volcanic 

arc domains (i.e., the arc axis, represented by the Los Ranchos Formation: Escuder-Viruete et al., 

2006; Torró et al., submitted) would have escaped subduction. Our model can be envisaged as a sort 

of subduction erosion setting, allowing other elements of the upper plate, such as those present in 

the Río San Juan complex, to be incorporated into subduction (Fig. 15). It hence adequately 

explains a regional-scale, major tectonic event resulting in deformation and metamorphism 

operating synchronously along major portions of the Hispaniola island arc segment and accounts for 
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an intense decrease in arc magmatism and the deposition of the thick reefal carbonate sequence of 

the Hatillo Formation (cf. Bowin, 1966; Escuder-Viruete et al., 2006; Kesler et al., 2005). 

Finally, the arc-arc collision model proposed by Escuder-Viruete et al. (2013a; Fig. 12 

therein), in which two converging arcs with opposite dipping subduction zones collided at c. 120 

Ma after consumption of the intervening oceanic Mezcalera plate (Dickinson and Lawton, 2001, 

Mann, 2007), would also account for the regional scale subduction-collision metamorphic event 

registered in Early Cretaceous arc-related units of Hispaniola. This model, however, predicts 

volcanic arc development as old as Jurassic and generalized arc-arc collision in the Caribbean realm 

with progressive shift of the collision zone from N to S (Early Cretaceous coordinates). The lack of 

Jurassic volcanic arc sections in Cuba, Hispaniola and Puerto Rico and of Early Cretaceous 

subduction/collision-related metamorphic complexes involving volcanic arc sections in Cuba and 

Puerto Rico (to the North and South of Hispaniola, respectively) (Lidiak and Anderson, 2015) make 

this model weak. To be noted is that the volcanic-arc related El Purial (eastern Cuba) and Mabujina 

(central Cuba) complexes, that subducted/collided at 75-70 Ma (Garcia-Casco et al., 2008a and 

references therein) and c. 90 Ma (Rojas-Agramonte et al., 2011), respectively, cannot be related to 

the Early Cretaceous event discussed here. We hence prefer a more local model such as the one 

presented in Fig. 15. 

9. Conclusions 

P-T calculations based on detailed examination of mineral assemblages and mineral chemistry 

of selected metabasites from the Ozama shear zone of the Maimón Formation whose protoliths are 

only weakly altered and approximate the composition of pristine arc basalts have allowed the 

determination of higher peak pressure conditions than previously estimated. Our estimate of ~ 8.2 

kbar at 380 ºC is consistent with metamorphism in the greenschist-blueschist facies transition, 

burial depths of 25-29 km and thermal gradient in the range 13-16 ºC/km. We suggest that 

metamorphism was triggered by subduction of a forearc segment (i.e., the Maimón Formation) in 
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the late Early Cretaceous times in the framework of a major tectonic event that affected the 

Hispaniola island arc segment. 
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Table captions 

Table 1: Major element chemical composition of metavolcanic rocks of the Ozama and the El Altar 

zones of the Maimón Formation. See Torró et al. (2016a) for analytical methods and precision 

estimates. 

Table 2: Representative EMP analyses of amphibole from the Ozama and El Altar zones of the 

Maimón Formation. Cations normalized to 22 O and 2 OH.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

45 
 

Table 3: Representative EMP analyses of phengite from the Ozama and El Altar zones of the 

Maimón Formation. Cations normalized to 10 O and 2 OH.  

Table 4: Representative EMP analyses of chlorite from the Ozama and El Altar zones of the 

Maimón Formation. Cations normalized to 10 O and 8 OH.  

Table 5: Representative EMP analyses of plagioclase from the Ozama and El Altar zones of the 

Maimón Formation. Cations normalized to 8 O.  

Figure captions 

Figure 1: (a) Location of the PIA series (green), ophiolitic peridotites (black), and major fault zones 

of Hispaniola; EPGFZ: Enriquillo-Plantain Garden fault zone; SFZ: Septentrional fault zone; HFZ: 

Hispaniola fault zone; BGFZ: Bonao-La Guácara fault zone; SJRFZ: San Juan-Restauración Fault 

Zone. (b) Geological map of the Maimón Formation and surrounding units modified from Martín 

and Draper (1999). (C-C‘) Synthetic geologic cross section of the Maimón Formation and 

surrounding geologic units in the Median belt (after Draper et al., 1996).  

Figure 2: Field aspect (a-d) and microphotographs (e-j) of rocks from the Ozama shear zone, 

Maimón Formation. (a) Outcrop of greenschists in the Ozama River with marked planar foliation 

(Sp). (b) Detail of schist outcrop showing Dp isoclinal folding of the compositional layering and the 

quartz veins which are sheared, asymmetrically folded and boudinaged parallel to the Sp. (c) 

Metamorphic compositional layering (foliation Sp) given by the alternation of millimeter- to 

centimeter-wide bright and dark layers folded by a Ds+p deformation stage which developed an 

incipient Sp+1 foliation. (d) Folded mylonitic foliation and centimeter-scale sheath (closed) folds. (e) 

Sp-1 in muscovite microlithon enveloped by Sp muscovite sheets in a fine grained quartz matrix 

(crossed polars). (f) Detail of tightly micro-folded muscovite-chlorite intergrowths defining Sp-1 and 

Sp defined by muscovite sheets concentrated along the limbs of the folds (SEM-BSE image). (g) 

Metamorphic compositional layering of alternating submillimeter-wide muscovite-chlorite layers 
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and very fine-grained quartz layers along with occasional parallel boudinaged quartz veins; 

crenulation cleavage is locally developed (crossed polars). (h) Quartz porphyroclast showing ribbon 

texture with σ-type structure composed of very-fine quartz enveloped by muscovite in mylonitized 

schist; note the strong undulose extinction of the quartz crystals in the quartz ribbon (crossed 

polars). (i) Deformed epidote crystals displaying fan-like textures in meta-epidosite (crossed 

polars). (j) Epidote porphyroclasts in a fine-grained quartz matrix showing helical poikiloblastic 

zones (snowball-like) and δ-type structure evidencing syntectonic rotational blastesis and 

deformation (crossed polars). 

Figure 3: Field outcrop (a), hand sample (b-e) and photomicrographs (transmitted light and crossed 

polars; f-k) of rocks from the El Altar zone, Maimón Formation. (a) Meta-rhyodacite outcrop in the 

Palo de Cuaba stream; note the general low deformation of the rocks, which is limited to coarse 

cleavage. (b) Millimeter-sized quartz porphyroclasts enveloped by crude and anastomosed foliation 

in a meta-rhyodacite sample. (c) Pyritized, poorly deformed thinly bedded rhyodacite lava sample 

found close to the Fátima thrust fault in the Loma la Mina area; flow layers (with alternating pale 

siliceous and partially recrystallized and chloritized glassy matrix layers) adapts around a rounded 

quartz phenocryst. (d) Chloritized and epidotitized, poorly deformed, fine plagioclase- and 

pyroxene-phyric, massive boninitic basalt (Torró et al., 2016b). (e) Graphite-shale developed on 

carbonaceous sediments along the Maimón Fm. sedimentary unit, close to the Fátima thrust; note 

pyrite dissemination and the presence of quartz veins along the planar foliation of the rock. (f-g) 

Muscovite lepidoblasts describing planar to anastomosed penetrative foliation that mildly wrap 

around plagioclase and minor quartz phenocrysts in a semi-porphyritic meta-basalt; note the 

absence of pressure shadows and the preferred orientation of the phenocrysts. (h) Meta-rhyodacite 

with abundant and variably fragmented quartz phenocrysts in a fine grained quartz-rich matrix; a 

crude foliation is defined by muscovite-chlorite lepidoblasts. (i) Detail of pressure shadow of fine-

grained quartz adjacent to two quartz phenocrysts in a fine-grained matrix composed of quartz and 

muscovite-chlorite; note the absence of preferred orientation or lineation of the quartz phenocrysts. 
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(j) Poorly deformed, moderately fine to medium plagioclase-phyric, massive basalt; the matrix is 

composed of fine-grained plagioclase crystals and chloritized glass. (k) Pyroxene phenocryst 

remnant in protomylonite; sample collected very close to the Fátima thrust.  

Figure 4: Plot of whole rock geochemical data of studied Maimón samples in (a) the A/CNK [= 

molar ratio of Al2O3/(CaO+Na2O+K2O)] vs A/NK [= molar ratio of Al2O3/(Na2O+K2O)] diagram 

after Shand (1943) and (b) the ACF diagram after projection from Qz, Ttn and H2O and along the 

indicated exchange vectors. In b), the likely magmatic assemblage of the mafic protoliths is given 

on the basis of petrography of unaltered basaltic rocks of the lower basaltic unit of the Los Ranchos 

Formation according to Escuder-Viruete et al. (2006); the represented hydrothermal assemblage 

includes mineral phases associated with formation of volcanogenic magmatic sulfide mineralization 

worldwide. Plots include data of boninites (BON), IAT and low-Ti IAT (LOTI) basalts and felsic 

volcanic rocks of the Los Ranchos Formation (LRF; Escuder-Viruete et al., 2006), boninites and 

forearc basalts (FAB) from the Izu-Bonin-Mariana (IBM) forearc (Reagan et al., 2010) and felsic 

volcanic rocks from Saipan-Rota, Mariana Islands (Reagan et al., 2008) for comparison. Larger 

symbols represent samples used for thermobarimetric constraints.  

Figure 5: ACF, AFM and AKF plots for whole rock data of volcanic samples from the Ozama shear 

zone (a, b) and the El Altar zone (c, d) of the Maimón Formation. Mineral phases observed in the 

metamorphic assemblages of the studied rocks from each zone are represented schematically (see 

figure 12 for details). Projection points and exchange vectors are indicated for each diagram. For 

chlorite, chm 965 and clc 965 refer to chamosite and clinochlore with atomic abundances of Fe-Mg, 

Al and Si of 9, 6 and 5 (per 10 O and 8 OH), respectively (Spear, 1993). Only bulk composition of 

rocks used for thermobarimetric calculations are labelled. 

Figure 6: Photomicrographs (a) and X-ray images (b-d) of amphibole-rich domains in greenschist 

rocks from the Ozama shear zone. (a) Detail of a zoned amphibole crystal (center of the image) and 

partially folded amphibole lepidoblasts describing polygonal arcs (optical microscope, plain 
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polarized transmitted light). (b) X-ray image of Si in amphiboles; note the occurrence of both, 

deformation (folding) of amphibole lepidoblasts and local polygonal arcs defined by tabular 

amphibole crystals. (c) Aluminum, Ca, Na, Mg and Fe X-ray images of a non-folded zoned 

amphibole crystal; scanned area in (b). (d) Silicon, Al, Ca, Mg, Fe, Na X-ray images showing 

textures and zoning of amphibole crystals. In X-ray images (b-d), other mineral phases are masked 

out and the resulting images are overlain onto a gray-scale BSE image. Color scale bar represents 

the relative element concentration in counts.  

Figure 7: Composition of calcium and sodium-calcium amphiboles from the Ozama shear zone 

plotted in the classification scheme of Hawthorne et al. (2012). In (a), filled black squares are the 

locations of named Mg end-members. Analyzed sodium-calcium amphiboles are represented in (b), 

and calcium amphiboles in (c) and (d).  

Figure 8: Detail of the sub-micron scale intergrowths between phengite, paragonite and chlorite in a 

sample of metaplagiorhyolite from El Altar zone. SEM-BSE image. 

Figure 9: Multicationic diagram including relevant mica end-members illustrating the continuous 

nature of the coupled cation substitutions underlying the compositional variation within the 

investigated phengite crystals from the Maimón Formation. 

Figure 10: Selected bivariate diagrams showing the compositional spectrum of the studied phengites 

from the El Altar and the Ozama zones, Maimón Formation. Mixed analyses in fine 

phengite+paragonite intergrowths in rocks from the El Altar zone are indicated for the bivariate 

diagrams involving Na and K. 

Figure 11: (a) Multicationic diagram (R
2+

 - Si) for chlorite of the Maimón Formation, including 

end-members after Wiewióra and Weiss (1990). R
2+

 refers to divalent cations (Fe
2+

, Mg
2+

 and 

Mn
2+

), R
3+

 to trivalent cations (in our case, Al
3+

) and □ to vacancies. (b) Bivariate Si+Fe+Mg vs. 

Al(iv)+Al(vi) plot for chlorite from the Maimón Formation.  
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Figure 12: Phase relationships for Group O1 metabasites from the Ozama shear zone in the AFMN 

(a; sample CM-2-2) and ACFN (b; sample CM-2-1) ―deluxe‖ diagrams, and for sample CM-2-6 

(Group A1-metabasite of the El Altar zone) in the ACFN (c) and AFM (d) diagrams. The minerals 

and bulk rock (wr) compositions are projected from the phases and exchange vectors indicated in 

each diagram. Chlorite end-members chm 965 and clc 965 refer to chamosite and clinochlore with 

atomic abundances of Fe-Mg, Al and Si of 9, 6 and 5 (per 10 O and 8 OH), respectively (Spear, 

1993).  

Figure 13: (a) Isochemical P-T equilibrium phase diagram for sample CM-2-2 (Ozama shear zone) 

calculated with Perple_X [SiO2 = 60.15, Al2O3 = 6.60, FeO = 8.05, MgO = 13.82, CaO = 6.47, 

Na2O = 4.27, K2O = 0.63, O2 = 0.40 (percent molar units)]; the red line in the upper diagram 

indicates the presence of sodium-calcium amphibole in the assemblages at high pressure. Mineral 

abbreviations after Whitney and Evans (2010), except for amphibole composition denoted by the 

Na- Ca- or Na-Ca classification. The color code indicates thermodynamic variance from 3-variant 

(white) to 8-variant (dark grey). (b) Isopleths for Si (a.p.f.u.) in phengite (blue dashed lines) and 

Mg# in the chlorite (green dotted lines) are represented. In (b), the star indicates the peak 

metamorphic P-T conditions, and the red arrow (path) represents a warm geothermal gradient 

downdip along the top of the descending slab (see Figure 14). 

Figure 14: Composite P-T diagram showing the calculated conditions of the Ozama shear zone of 

the Maimón Formation and other rock bodies in the region. The metamorphic conditions for the 

Ozama zone (star) locate in the greenschist to blueschist facies transition. Arrows represent the 

metamorphic P-T paths from high-pressure metamorphic complexes from Hispaniola (Maimón 

Formation after Escuder-Viruete et al., 2002; Río San Juan mélange after Krebs et al., 2008; 

Morrito unit, Jagua Clara serpentinite-matrix mélange, and Guaconejo subunit, after Escuder-

Viruete and Pérez-Estaún, 2013a) and of subducted metamorphic volcanic arc sequences of the 

Caribbean (Blue Mountains after West et al., 2014; Mt. Hibernia after Willner et al., 2016; Villa del 
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Cura after Smith et al., 1999). Slab-mantle interface geotherms (top and bottom of subducted 

oceanic crust) for cold and warm subduction are after Peacock and Wang (1999). The facies scheme 

is after Liou et al. (2004). 

Figure 15: Possible tectonic scenario for the development of high-pressure in the Maimón 

Formation, following Pindell and Kennan (2009) and Pindell et al. (2012). See text for details. 
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Figure 14 
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Table 1 

Regio
n 

Maimón Ozama Maimón Altar 

Roca Metabasite Metaba
site 

Metapelite 

Grou
p 

O1 O1 O1 O1 O2 O2 O2 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 A1 A2 A3 A4 A4 

Rock 
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16 
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%) 
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07 

57.
02 

56.
33 

45.
92 

54.
99 
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70 
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14 
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34 

54.
72 
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16 
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88 

57.
27 

59.
37 
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36 
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63 
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33 
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18 

57.
01 
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73 
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93 

61.
48 

71.
88 

TiO2 1.0
3 
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0.5
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0.6
2 
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0.4
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0.4
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0.6
4 

0.6
5 

0.48 0.4
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0.3
5 

0.5
6 

0.2
7 

Al2O3 15.
39 
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61 
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47 
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91 
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61 

17.
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46 
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46 
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62 
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78 
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49 
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23 
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68 
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14 
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83 
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90 
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35 

16.
25 
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45 

FeO(t
)* 
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8 

9.1
3 

7.4
7 

7.1
0 
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4 
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0 
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7 
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5 
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3 

MnO 0.1
8 

0.2
1 

0.1
5 

0.3
1 

0.1
6 

0.1
5 

0.1
0 

0.1
6 

0.2
1 

0.1
9 

0.1
1 

0.1
8 

0.1
4 

0.1
7 

0.1
8 

0.2
1 

0.2
5 

0.4
3 

0.21 0.0
3 

0.2
2 

0.0
6 

0.1
0 

MgO 5.4
9 

8.7
9 

6.0
6 

8.3
4 

5.1
6 

7.1
0 

4.5
8 

4.6
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3 
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9 
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6 
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5 4 7 0 5 0 2 9 5 1 4 6 0 4 3 6 7 4 0 0 0 5 

LOI 2.2
3 

1.7
4 

2.1
8 

10.
28 

4.7
8 

5.4
7 

2.6
2 

4.2
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3.7
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3.8
8 
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4 
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70 
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SiO2 
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4 
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7 
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8 
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76 
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8 
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7 

8.0
2 

6.7
8 
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6 

8.0
4 
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7 
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8 
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7 
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9 
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8 
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0 
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7 

0.1
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4 

0.3
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0.1
5 
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4 
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0 
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7 
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3 
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1 

0.20 0.0
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0.0
7 

0.1
1 

0.1
5 

0.7
1 

0.7
1 

0.0
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*Total Fe expressed as FeO.  
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Table 2 

Rock sample CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-1 CM-2-2 CM-2-2 CM-2-2 CM-2-2 

Analys. No. a-2  e-1  e-2  b-5  72.00 74.00 177.00 179.00 180.00 185.00 A 34  a-3  b-3  35.00 211.00 

SiO2 56.64 55.65 56.40 55.75 56.11 56.23 56.37 55.74 56.02 56.04 54.72 52.40 54.29 54.95 54.82 

TiO2 0.02 0.04 d.l. d.l. 0.05 d.l. 0.03 0.01 0.02 0.07 0.04 0.02 0.07 d.l. d.l. 

Al2O3 0.65 0.55 0.68 1.19 1.00 1.04 0.89 1.27 0.78 1.23 1.51 3.29 2.23 2.07 2.13 

FeO* 10.02 11.68 9.88 11.14 11.07 10.34 11.78 13.31 11.12 8.97 12.02 14.22 13.83 13.32 14.43 

Fe2O3* 0.41 0.43 0.66 1.19 0.83 0.50 0.61 0.59 0.72 0.71 1.48 3.37 4.10 3.07 2.91 

MnO 0.26 0.33 0.34 0.33 0.29 0.32 0.28 0.38 0.31 0.23 0.34 0.36 0.34 0.30 0.32 

MgO 17.47 16.52 17.34 16.60 16.56 17.22 16.13 14.83 16.23 17.90 15.67 12.73 12.88 13.66 12.98 

CaO 12.31 12.48 12.00 11.56 11.73 11.78 11.56 11.00 11.55 12.37 11.94 9.62 7.90 8.86 8.94 

Na2O 0.53 0.24 0.67 0.73 0.76 0.59 0.84 0.99 0.80 0.49 0.62 2.03 2.94 2.43 2.26 

K2O d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. 0.01 0.04 0.07 d.l. d.l. d.l. 

F d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. 

Cl 0.01 d.l. d.l. d.l. 0.02 d.l. 0.02 d.l. 0.02 0.01 d.l. 0.01 0.02 d.l. d.l. 

H2O** 2.13 2.10 2.12 2.12 2.11 2.12 2.11 2.10 2.10 2.13 2.10 2.06 2.08 2.09 2.09 

Sum 100.47 100.02 100.20 100.61 100.53 100.18 100.65 100.21 99.67 100.15 100.48 100.17 100.67 100.75 100.88 

Total*** 100.47 100.02 100.20 100.61 100.52 100.18 100.65 100.21 99.66 100.15 100.48 100.17 100.67 100.75 100.88 
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                Si 7.98 7.95 7.97 7.90 7.94 7.95 7.98 7.98 7.99 7.89 7.82 7.63 7.82 7.87 7.87 

Al(iv) 0.02 0.05 0.03 0.10 0.06 0.05 0.02 0.02 0.01 0.11 0.18 0.37 0.18 0.13 0.13 

Al(C) 0.09 0.04 0.09 0.10 0.11 0.12 0.13 0.19 0.13 0.10 0.07 0.20 0.20 0.22 0.23 

Ti(C)  0.00 0.00 - - 0.01 - 0.00 0.00 0.00 0.01 0.00 0.00 0.01 - - 

Fe3+(C)  0.04 0.05 0.07 0.13 0.09 0.05 0.06 0.06 0.08 0.07 0.16 0.37 0.44 0.33 0.31 

Mg(C)  3.67 3.52 3.65 3.51 3.49 3.63 3.41 3.16 3.45 3.76 3.34 2.76 2.77 2.92 2.78 

Fe2+(C)  1.18 1.39 1.17 1.27 1.30 1.19 1.39 1.58 1.33 1.06 1.43 1.67 1.58 1.54 1.67 

Mn(C)  0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

Fe2+(B) 0.00 0.00 0.00 0.05 0.01 0.03 0.00 0.01 0.00 0.00 0.01 0.06 0.09 0.06 0.06 

Mn(B) 0.01 0.04 0.02 0.04 0.04 0.04 0.03 0.05 0.02 0.02 0.04 0.04 0.04 0.04 0.04 

Ca(B) 1.86 1.91 1.82 1.75 1.78 1.78 1.75 1.69 1.77 1.87 1.83 1.50 1.22 1.36 1.38 

Na(B) 0.13 0.05 0.16 0.16 0.18 0.15 0.21 0.25 0.21 0.11 0.12 0.39 0.65 0.55 0.53 

Na(A) 0.01 0.02 0.02 0.04 0.03 0.02 0.02 0.02 0.01 0.02 0.05 0.18 0.17 0.13 0.10 

K(A) - - - - - - - - - 0.00 0.01 0.01 - - - 

Vac(A) 0.99 0.98 0.98 0.96 0.97 0.98 0.98 0.98 0.99 0.97 0.94 0.81 0.83 0.87 0.90 

OH 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 1.99 2.00 2.00 2.00 1.99 2.00 2.00 

F - - - - - - - - - - - - - - - 
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Cl - - - - 0.01 - 0.01 - 0.01 0.00 - 0.00 0.01 - - 

Subgroup Calcium amphiboles Sodium-calcium amphiboles 

Name Act Act Act Act Act Act Act Act Act Act Act Ferri-

mhb 

Ferri-win Ferri-win Ferri-win 

*FeO and Fe2O3 wt. % concentratios were calculated for electroneutrality. 

**H2O wt. % concentration was calculated on the basis of 2 OH p.f.u. 

*** Sum - oxygen equivalent to F and Cl. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

71 
 

Table 3 

  Ozama shear zone   El Altar zonea 

Rock sample CM-26 CM-35 CM-2-12 CM-2-12 CM-2-12 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-16 CM-24 CM-24 CM-24 CM-2-6 CM-2-7 

Analys. No. d-12 d-3 A-3 C 14  D 2  A 25 B 137 B 141 C 231 b-3 a-6 d-2 a-1 G-5 D 2 

SiO2 48.70 48.98 47.90 48.44 48.62 51.08 50.86 51.02 50.87 48.31 48.36 47.66 47.46 49.93 49.48 

TiO2 0.04 0.08 0.27 0.25 0.15 0.10 0.14 0.15 0.11 0.01 0.05 0.04 d.l. 0.07 0.03 

Al2O3 32.57 26.84 27.67 27.46 27.53 24.03 23.37 22.79 20.34 31.00 39.00 38.11 38.42 28.19 35.89 

FeO(t)* 2.46 5.22 5.08 5.16 4.86 5.97 6.31 6.62 7.97 2.25 0.78 0.87 0.85 5.12 1.81 

MgO 1.36 2.47 2.38 2.31 2.60 3.41 3.38 3.61 4.92 2.11 0.41 0.38 0.42 3.24 0.63 

Na2O 0.31 0.08 0.08 0.07 0.11 0.09 0.08 0.07 0.10 0.15 3.57 3.28 8.04 0.80 1.35 

K2O 9.25 10.81 9.95 10.58 10.40 10.78 10.65 10.30 9.07 10.70 3.67 4.36 0.09 6.82 7.37 

F d.l. d.l. d.l. 0.14 d.l. - - - - 0.18 0.47 1.23 d.l. d.l. d.l. 

Cl d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. 

H2O** 4.50 4.36 4.34 4.30 4.38 4.41 4.37 4.36 4.32 4.37 4.49 4.05 4.69 4.48 4.58 

Sum 99.21 98.88 97.69 98.74 98.67 100.03 99.20 99.17 98.67 99.23 100.89 100.02 99.97 99.06 101.33 

Total*** 99.21 98.87 97.68 98.68 98.67 100.03 99.20 99.17 98.67 99.15 100.69 99.50 99.97 99.06 101.27 

                Si 3.24 3.36 3.31 3.32 3.33 3.47 3.49 3.50 3.53 3.25 3.08 3.08 3.03 3.34 3.18 
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Al(iv) 0.76 0.64 0.69 0.68 0.67 0.53 0.51 0.50 0.47 0.75 0.92 0.92 0.97 0.66 0.82 

Al(vi) 1.79 1.52 1.56 1.54 1.54 1.39 1.37 1.35 1.19 1.71 2.00 1.99 1.93 1.57 1.91 

Ti 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 - 0.00 0.00 

Fe 0.14 0.30 0.29 0.30 0.28 0.34 0.36 0.38 0.46 0.13 0.04 0.05 0.05 0.29 0.10 

Mg 0.13 0.25 0.24 0.24 0.27 0.35 0.35 0.37 0.51 0.21 0.04 0.04 0.04 0.32 0.06 

sum vi 2.07 2.08 2.11 2.09 2.10 2.09 2.09 2.11 2.17 2.05 2.09 2.07 2.02 2.19 2.07 

Na 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.44 0.41 0.99 0.10 0.17 

K 0.79 0.94 0.88 0.93 0.91 0.93 0.93 0.90 0.80 0.92 0.30 0.36 0.01 0.58 0.61 

Vac 0.17 0.04 0.11 0.06 0.08 0.05 0.06 0.08 0.12 0.06 0.26 0.23 0.00 0.30 0.23 

sum xii 0.83 0.96 0.89 0.94 0.92 0.95 0.94 0.92 0.88 0.94 0.74 0.77 1.00 0.70 0.77 

OH 2.00 1.99 2.00 1.97 2.00 2.00 2.00 2.00 2.00 1.96 1.91 1.75 2.00 2.00 1.97 

F - - - 0.03 - - - - - 0.04 0.09 0.25 - - - 

Cl - - - - - - - - - - - - - - - 

*Total Fe expressed as FeO. 

**H2O wt. % concentration was calculated on the basis of 2 OH p.f.u. 

*** Sum - oxygen equivalent to F and Cl. 

a Due to the very fine intergrowths of paragonite and phengite, these values represent mixed compositions 
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Table 4 

Rock sample CM-26 CM-2-12 CM-2-1c CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-7 CM-2-7 CM-2-7 CM-2-7 

Analys. No. d-9 D 6  A 3  A 31 B 163 B 164 C 235 C 238 C 122 C 124 C 131 D 140 

SiO2 29.46 25.79 27.71 28.91 28.94 26.99 28.39 27.76 29.06 27.83 26.41 28.72 

TiO2 0.04 0.04 d.l. 0.00 0.02 0.00 0.00 0.03 0.00 0.01 0.00 0.00 

Al2O3 22.24 20.40 18.08 16.91 16.29 18.42 17.55 18.98 24.48 24.18 22.65 25.53 

FeO(t)* 20.51 26.57 24.45 23.50 25.71 26.11 24.51 25.12 16.23 15.59 16.55 15.34 

MnO 0.28 0.33 0.46 0.46 0.40 0.47 0.53 0.52 0.39 0.39 0.39 0.34 

MgO 14.62 15.69 18.09 17.99 17.24 16.66 17.35 16.52 20.16 19.98 19.72 18.89 

CaO 0.03 d.l. 0.14 0.32 0.11 0.04 0.05 0.05 0.03 0.00 0.04 0.01 

Na2O 0.07 d.l. d.l. 0.00 0.12 0.00 0.00 0.00 0.03 0.04 0.11 0.03 

K2O 0.64 0.03 d.l. 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.06 0.22 

F d.l. 0.09 d.l. - - - - - 0.15 0.10 0.22 0.13 

Cl d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. d.l. 

H2O** 11.84 11.40 11.59 11.56 11.50 11.45 11.54 11.59 12.39 12.08 11.60 12.28 

Sum 99.98 100.35 100.54 99.64 100.41 100.15 99.92 100.56 102.96 100.22 97.75 101.49 

Total*** 99.98 100.31 100.54 99.64 100.39 100.15 99.92 100.56 102.89 100.18 97.66 101.43 

Si 2.98 2.70 2.87 3.00 3.01 2.83 2.95 2.87 2.80 2.75 2.71 2.79 
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Al(iv) 1.02 1.30 1.13 1.00 0.99 1.17 1.05 1.13 1.20 1.25 1.29 1.21 

Al(vi) 1.64 1.22 1.07 1.07 1.01 1.10 1.10 1.19 1.57 1.57 1.44 1.72 

Ti 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 1.74 2.33 2.11 2.04 2.24 2.29 2.13 2.17 1.31 1.29 1.42 1.25 

Mn 0.02 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.03 

Mg 2.21 2.45 2.79 2.78 2.68 2.60 2.69 2.55 2.89 2.94 3.01 2.74 

Ca 0.00 - 0.02 0.04 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 

Na 0.01 - - 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.02 0.01 

K 0.08 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 

Sum vi 5.71 6.04 6.03 5.97 6.00 6.04 5.97 5.97 5.82 5.84 5.94 5.76 

Vac. Vi 0.29 0.00 0.00 0.03 0.00 -0.04 0.03 0.03 0.18 0.16 0.06 0.24 

OH 8.00 7.97 8.00 8.00 7.99 8.00 8.00 8.00 7.95 7.97 7.93 7.96 

F - 0.03 - - - - - - 0.04 0.03 0.07 0.04 

Cl - - - - - - - - - - - - 

Mg# 0.56 0.51 0.57 0.58 0.54 0.53 0.56 0.54 0.69 0.70 0.68 0.69 

*Total Fe expressed as FeO.  

**H2O wt. % concentration was calculated on the basis of 8 OH p.f.u.  

*** Sum - oxygen equivalent to F and Cl. 
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Table 5 

  Ozama shear zone El Altar zone 

Rock sample CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-2 CM-2-1c CM-2-1c CM-2-6 CM-2-6 CM-2-6 

Analys. No. B 111 B 112 B 126 B 127 B 134 A 239 A 241 17 59 61 

SiO2 67.79 67.95 69.63 69.82 69.71 67.26 67.96 68.38 68.15 68.25 

Al2O3 18.45 18.38 19.20 19.21 19.31 19.87 19.19 19.46 19.45 19.32 

FeO(t)* 0.16 0.07 0.16 0.08 0.11 0.04 0.11 0.04 0.06 0.03 

CaO 0.09 0.09 0.02 d.l. d.l. 0.67 0.04 0.09 0.04 0.02 

BaO d.l. d.l. 0.05 d.l. 0.07 - - d.l. 0.02 0.03 

Na2O 11.56 11.62 11.54 12.11 11.96 11.07 11.45 11.90 11.99 11.58 

K2O 0.33 0.41 0.11 0.08 0.06 0.05 0.04 0.02 d.l. 0.02 

Total 98.38 98.52 100.71 101.29 101.22 98.96 98.79 99.89 99.70 99.26 

           Si 3.01 3.02 3.02 3.01 3.01 2.97 3.00 2.99 2.99 3.00 

Al 0.97 0.96 0.98 0.98 0.98 1.03 1.00 1.00 1.01 1.00 

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.00 0.00 0.00 - - 0.03 0.00 0.00 0.00 0.00 

Ba - - 0.00 - 0.00 - - 0.00 0.00 0.00 
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Na 1.00 1.00 0.97 1.01 1.00 0.95 0.98 1.01 1.02 0.99 

K 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 - 0.00 

Ca+Ba+Na+K 1.02 1.03 0.98 1.02 1.01 0.98 0.98 1.01 1.02 0.99 

           %Ab 97.75 97.31 99.30 99.59 99.65 96.48 99.55 99.47 99.77 99.77 

%An 0.43 0.42 0.10 - - 3.25 0.22 0.40 0.17 0.11 

%Or 1.81 2.27 0.61 0.41 0.35 0.27 0.24 0.13 0.06 0.13 

*Total Fe expressed as FeO. 
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High-pressure greenschist to blueschist facies transition in the Maimón Formation (Dominican Republic) suggests mid-Cretaceous subduction 

of the Early Cretaceous Caribbean Arc. 

HIGHLIGHTS 

- Peak metamorphic conditions of 8.2 kbar at 380ºC (green- to blueschist transition). 

- Burial to 29 km and thermal gradient of 13.2 ºC/km dispute previous tectonic models. 

- We suggest subduction and exhumation of a warm forearc slice previous to 110 Ma. 

- Major tectonic event occurred in the Hispaniola segment of the arc at 120-110 Ma. 

- We discuss three possible tectonic scenarios that conform to new and previous data. 


