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Abstract Nowadays, numerical modeling is a common

tool used in the study of sedimentary basins, since it al-

lows to quantify the processes simulated and to deter-

mine interactions among them. One of such programs is

SIMSAFADIM-CLASTIC, a 3D forward-model process-

based code to simulate the sedimentation in a marine

basin at a geological time scale. It models the fluid flow,

siliciclastic transport and sedimentation, and carbon-

ate production. In this article, we present the last im-

provements in the carbonate production model, in par-

ticular about the usage of Generalized Lotka-Volterra

equations that include logistic growth and interaction

among species. Logistic growth is constrained by envi-

ronmental parameters such as water depth, energy of

the medium, and depositional profile. The environmen-

tal parameters are converted to factors and combined
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into one single environmental value to model the evolu-

tion of species. The interaction among species is quan-

tified using the community matrix that captures the

beneficial or detrimental effects of the presence of each

species on the other. A theoretical example of a carbon-

ate ramp is computed to show the interaction among

carbonate and siliciclastic sediment, the effect of envi-

ronmental parameters to the modeled species associa-

tions, and the interaction among these species associa-

tions. The distribution of the modeled species associa-

tions in the theoretical example presented is compared

with the carbonate Oligocene-Miocene Asmari Forma-

tion in Iran and the Miocene Ragusa Platform in Italy.

Keywords Forward-Model · process-based · sedimen-

tary basin · ecological model · carbonate production

1 Introduction

Sedimentary carbonates represents 20% of the sed-

imentary rock record [31]. They are economically im-

portant as oil and gas reservoirs, ore deposits, or as

sources of industrial minerals. In addition, the chem-

istry of the atmosphere and oceans is controlled in part

by reactions of carbonate minerals with natural wa-

ters and these interactions are important in regulating

climate [31]. Some authors consider that all carbonate

compounds are directly or indirectly of biological origin

[39], other consider some cases such as the whitings in

the Bahamas, which are thought to be inorganic [30].

In any case, carbonate sediment has largely a biolog-

ical origin. Carbonate production is related to seawa-

ter chemistry, and it is heavily dependent on local to

regional environmental conditions, both spatially and

temporally. Light intensity, carbonate saturation, salin-

ity, nutrients, and temperature are the environmental
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variables that mainly control the carbonate production

rates [28,39,45]. Once produced, carbonate sediment

is subject to the same controls as clastic sediments

(erosion, transport, and deposition). The interaction

of biological activity, environmental parameters, and

sedimentary processes results in complex architectural

deposition and heterogeneous lithology of sedimentary

bodies.

The common approach to study sedimentary basins

includes field work, study of boreholes and geophysical

data. However, other methods may be useful to com-

plement conventional basin analysis in order to quantify

the biological and sedimentological processes, as well as

their controlling factors, which are typically not observ-

able in the geological record.

Forward numerical modeling is one of these tools

in the study of sedimentary basins. It allows us to ex-

periment directly by playing with different parameters

and interactions to reproduce the temporal and spatial

evolution of a basin.

During the last decades several process-based for-

ward numerical modeling approaches for carbonate and

mixed clastic-carbonate systems have been put forward,

including Bosence and Waltham [6], Bice [3], Bosscher

and Southam [8], Demicco [17], Granjeon and Joseph

[21], Norlund [32], Burgess et al. [12], Hüssner et al.

[27], Boylan et al. [9], Warrlich et al. [44], Paterson et

al. [34], Cuevas-Castell et al. [16], Hill et al. [25], and

Burgess [10]. All these carbonate and mixed carbonate-

siliciclastic sedimentary models use a common approx-

imation based on a production rate controlled by envi-

ronmental parameters.

Carbonate sediment generation is closely related to

the organisms that produce or induce its precipitation.

Given that these organisms live and compete with each

other and among themselves for resources (e.g. space,

light, food, and nutrients), an ecological model appears

as an appropriate tool to simulate carbonate produc-

tion dynamics. Such an ecological model for carbon-

ate production, resolved at basin scale for geological

time scales, was introduced by Bitzer and Salas [4,5]

with the code SIMSAFADIM, and afterwards modified

by Gratacós et al. [23,22], Carmona et al. [13], and

Clavera-Gispert et al. [15] with the code SIMSAFADIM-

CLASTIC (SF-CL).

This code is a 3D process-based forward numerical

model to simulate clastic sedimentation and carbonate

production, implemented in FORTRAN 95 program-

ming language. The code uses a finite element (FE)

method to discretize the modeled basin and solve the

equations of the processes considered.

The parameters and processes used in SF-CL are

summarized in Fig. 1. The flow, transport and clastic
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Fig. 1 Schematic diagram of the program.

sedimentation processes are the same used in the pre-

vious versions. For more details about these processes

and the code in general, the reader is referred to the

previous authors.

In this contribution, a new approach for carbon-

ate production using the previous version of SF-CL

is presented. The model takes into account the evo-

lution of carbonate producing species as a function of

(i) the environment (slope, energy, light), (ii) some in-

trinsic factors of each species, and (iii) the interaction

among them as the sedimentary basin evolves along a

geologically-relevant time scale. The implemented model

is tested with a theoretical sample experiment. After-

wards, the results of this experiment are compared with

two real cases that serve as analogues.

2 Generalized Lotka-Volterra model.

The most common models of species evolution in eco-

logical modeling are the predator-prey Lotka-Volterra

(LV) equation and its modifications. Previous versions

of SF-CL uses the predator-prey equations, and it al-

lowed to model the interaction among 3 species associ-

ations only [4,5].

From LV equations, Roberts [36] and Tregonning

and Roberts [43] formulated the Generalized Lotka-

Volterra (GLV) equation (Eq. 1 and 2) that allows un-

limited number of species and different types of inter-
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actions among species (Table 1). The GLV equation is

mainly formed by two parts, the logistic growth/decay

of a species, and its interaction with the other species,

dxi
dt

= εixi +

Ns∑
j=1

αijxixj (1)

where xi is the population density of species i; εi is

the intrinsic rate of increase/decrease of a population

of species i (also called Malthusian parameter); αij is

the interaction coefficient among the species association

i and j, (a particular case is αii, the interaction of one

species association with itself), and t is time. Eq. 1 can

be written in matrix formulation as

dxi
dt

= diag[X](ε+AX) (2)

where X is the vector of population densities of each

species i, ε is the vector of all Mathusian parameters,

A is the matrix of interaction coefficient, also known

as community matrix, and diag[X] is a square matrix

with diagonal elements equal to X, and zeros outside

the diagonal.

The GLV equations (Eq. 1 and 2) do not neces-

sarily correspond to a stable system, i.e. some combi-

nations of ε and A might correspond to systems that

quickly produce the extinction of some or all species

associations considered, hence leaving no trace in the

geological record. The stability of this system is mostly

controlled by the eigenvalues of A [20]. Thus, a species

association extinction might be related with changes in

this matrix.

2.1 Logistic equation

A typical model used for a single species development

is the logistic equation (e.g. [39,33,20]), mathematically

expressed in Eq. 3 as follows

dx

dt
= εx− εx

2

K
(3)

It relates through time t: the species population x; the

intrinsic rate ε of increase of a population; and the car-

rying capacity K, i.e. the maximum number of individ-

uals an habitat can support. Eq. 3 is equivalent to Eq.

1 for a species with αii equal to −ε/K.

Both variables, ε and K, are determined by intrin-

sic properties (e.g. birth and mortality), and environ-

mental factors (e.g. light, nutrients, clastic sediments

in suspension). Solutions follow curves similar to those

shown in Fig. 2.

There are several techniques to determine the values

of ε and K in modern ecosystems, including statistics
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Fig. 2 Sigmoidal growth curves of a species using the logistic
equation (Eq. 3). A: Results using two different K values
(K1 > K2) and the same value for ε, resulting a greater
population in K1. B: Results for three different ε (ε1 > ε2 >
ε3) and the same K value, obtaining a most rapid creation of
niche using ε1 than using ε3.

methods (e.g. [40]), laboratory experiments (e.g. [18]),

or estimations from observation (e.g. [19]).

In contrast, these parameters ε and K, can not be

deduced from the fossil record by direct observation,

neither using laboratory techniques. Thus, only statis-

tics methods for estimating these parameters are pos-

sible (applying actualism and deduction from the fossil

record). The estimates ε and K depend on the environ-

mental conditions and the intrinsic characteristics of

the species. For example, benthic autotrophic species

need access to light for their photosynthetic activity,

or feeders need to capture food particles from the wa-

ter. Thus K could be reasonably assumed to be pro-

portional to the available sea surface. On the other

hand, determining possible values for neritic species

(like plankton or ammonites) is more difficult.

From a geological perspective, the growth of a species

by intrinsic reproduction to its maximum carrying value



4 Roger Clavera-Gispert et al.

can be reasonably considered to be immediate. Hence

we assume ε = 1, thus the populations depend only on

K.

2.2 Interaction among species.

The community matrix (introduced in Eq. 2) ex-

presses numerically the relationship among the different

species. Individual entries of this matrix are always val-

ues between −1 to 1, defining detriment (−1), benefit

(1) or no affection (0) between species. Table 1 shows

seven different types of interactions according to pos-

sible values of αij . As an illustration of the flexibility

of this model, Fig. 3 shows the evolution of five species

with different interactions between them.

The community matrix of the LV and GLV equa-

tions describe the dynamics of an ecosystem at a time

scale and a time resolution that allows to resolve the

lifespan of the individuals of each species, whereas the

time scale recorded by fossil communities is far larger.

Therefore, it might not be possible to compare model

results with geological data with regards to which in-

dividuals could have been living together in a definite

time period and their relationship. Because of this, it is

not feasible to estimate the values of interaction coeffi-

cients with statistical techniques.

The only plausible way to apply the LV and GLV

equations to the geological record is to fix the interac-

tion behaviour using a predation-prey-mutualism-symbiosis-

competition conceptual relationship and ascribe some

reasonable values to this qualitative assessment (Table

1). Such quantifications are not verifiable, neither uni-

versal, and can only be applied individually to each case

study.

3 Environmental parameters.

The carbonate production model in SF-CL used as a

base model, takes into account the following controlling

factors: siliciclastic sediments in suspension, nutrients,

and water depth as a proxy for light [4,5,15]. In this

contribution the following factors are also added: slope;

energy of the medium; and light affection.

3.1 Light.

Light is one of the most important parameters since

many carbonate producers are photoautotrophic organ-

isms. Therefore, light plays an important role control-

ling carbonate production. The relationship between
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Fig. 3 Graphical evolution of 5 species using the GLV equa-
tions. A. Evolution without species interaction. Note the typ-
ical evolution of the logistic equation. B. Evolution of the 5
species using the interactions defined by the community ma-
trix C.

carbonate production, photosynthesis and light is ev-

idenced by the decrease of carbonate production with

water depth [39].

Common current numerical models take carbonate

production rate to primarily and strongly depend on

depth. Analytical forms to model this dependence are

obtained by relating carbonate sedimentation to known

exponential function for light attenuation in the ocean,

typically for coral growth and, consequently, for shallow

water carbonate production [3,35,7,8,27,5,9,44,16,25].

The original carbonate production module [4,5] for

shallow water has been extended to include all possi-
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Table 1 List of interaction among species, the effects on species, and rang of αij values.

Interaction Effects on i αij range Effects on j αji range

Neutralism no affection αij = 0 no affection αji = 0
Amensalism detrimental −1 ≤ αij < 0 no affection αji = 0

Commensalism beneficial 0 < αij ≤ 1 no affection αji = 0
Competition detrimental −1 ≤ αij < 0 detrimental −1 ≤ αji < 0
Mutualism beneficial 0 < αij ≤ 1 beneficial 0 < αji ≤ 1
Predation beneficial 0 < αij ≤ 1 detrimental −1 ≤ αji < 0

Prey detrimental −1 ≤ αij < 0 beneficial 0 < αji ≤ 1

ble marine carbonate production systems, defined by

means of influence curves, which the user can flexibly

constrain (detailed in section 3.4).

3.2 Energy of the medium.

Energy of the medium is a local and regional param-

eter controlling growth of carbonate producing organ-

isms. Nonethless, in certain cases such as for coral reefs,

it has been suggested to have a much more important

controlling effect at a regional scale [28]. For example,

wave energy determines the morphology and growth

rates of carbonate-producing organisms; e.g., the coral

branching complexity decreases as hydrodynamic stress

increases [14].

Several authors include this parameter to control

the carbonate production, including Bosscher and Southam

[8], Demicco [17], Granjeon and Joseph [21], Nordlund

[32], and Burgess and Emery [11].

SF-CL includes two parameters to simulate the ef-

fects of energy of the medium. The first one is a wave

baseline, above which no sedimentation occurs. The sec-

ond one is a parameter as a function of flow velocity,

which in turn depends on water depth and distance

from the input point. A piece-wise linear curve forming

a trapezoid (Fig. 4) can be specified as an input param-

eter in the code to control the effect of this factor on

each species growth.

3.3 Slope.

The depositional profile is another factor control-

ling carbonate producing species. For example, in steep

shores, waves bounce back without reducing their en-

ergy, whereas mildly sloping shores dissipate all the

waves energy without bouncing them back. A flat sur-

face or a gently sloping sea bottom faces the sunlight

better and gets an even amount of light from morn-

ing to evening, while steep walls may never face the

sunlight or receive it for only short periods of the day.

Several authors including Hubbard and Scaturo [26],

Letourneur et al. [29], and Roff et al. [37] take this fac-

tor into account in the study of present ecosystems.

Up to the authors knowledge, the slope of the bot-

tom surface is not included explicitly as a controlling

parameter in any other forward numerical models ap-

plied at geological time scale. SF-CL computes the slope

of the bottom topography in each element of the finite

elements mesh and includes this parameter as an en-

vironment factor for carbonate production using the

standard trapezoidal function detailed in the next sec-

tion.

3.4 Combining environmental parameters and

carbonate production.

SF-CL implements an influence function for each en-

vironmental factor (water depth, slope, fluid flow, and

nutrients), plus a function for each siliciclastic sediment

type in order to model the interaction with carbonate

producing organisms. For the sake of simplicity, these

functions have a trapezoidal shape that the user can

define through 4 points: a minimum value, a maximum

value, and 2 optimal values as shown in Fig. 4. The

function is linearly interpolated between these points.

Thus, below the minimum (A) and above the maximum

(D) no production can occur (influence=0). Between

the two optimal values (B and C), production is con-

sidered unhindered by this factor (influence=1). Finally

between the minimum (A) and the first optimal point

(B), or between the second optimal point (C) and the

maximum (D), the influence is linearly interpolated.

All these functions return influence values between

0.0 and 1.0, that are combined into one single environ-

mental hindrance value using one of the following two

ways: through the rule of the minimum,

fenv = min {fflow, fwd, fnutr, fclst s, fslp} (4)

or through the multiplicative rule,

fenv = fflowfwdfnutrfslp

Nsed∏
s=1

fclst s (5)



6 Roger Clavera-Gispert et al.

In
fl
u
e
n
c
e

0.0

1.0

Environmental parameter

B C

No
Production

No
Production

A D

Highest
Production

Fig. 4 Trapezoidal function used to compute the influence
of each environmental factor (slope, water depth, and fluid
flow). This function is defined by 4 points: A is the minimal
value below which the species cannot live. Points B and C
define the range where the species has the best conditions for
development. D is the value over which the species cannot
live either.

where fenv is the environmental hindrance global fac-

tor; fflow is the effect of fluid energy; fwd is the effect

of water depth; fnutr is the effect of nutrient concen-

tration; fclst s is the hindrance effect due to presence of

siliciclastic sediment class s; fslp is the effect of terrain

slope, and Nsed is the number of modeled siliciclastic

sediments.

The environmental curves of many extinct species

are not known, and the information that can be ex-

tracted from the geological record is obviously limited.

Thereby, the quantification of these parameters is not

an easy task. The best way to compute the global envi-

ronmental factor depends on the availability and the ac-

curacy of these data. Usually, for a species with a well-

constrained environmental sensitivity to each of these

factors, the multiplicative rule appears to be the best

option. On the other hand, the rule of the minimum

is more robust, thus it will be more appropriate for a

species which environmental sensitivity is only roughly

known.

The effect of choosing the minimum rule or the mul-

tiplicative rule can be seen graphically in a synthetic

example in Fig. 5.

In the current implementation, this global environ-

mental factor downscales the intrinsic rate of increase

of a population ε of Eq. 1 as:

εi = εmax i fenv (6)

where εmax i is the maximum growth rate of species

association i at the optimal environmental conditions.

Once a species association population is computed,

carbonate production is calculated using a carbonate

production factor. Production factors are specified for

the maximum population, and linearly scaled to the

actual population following the relation

dP

dt
= Rmax

xi
Ki

(7)
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where P is the carbonate production; t is time; Rmax

is the carbonate production factor when population is

at its maximum; and Ki is the maximum population of

species i, computed as:

Ki =
εi
αii

(8)

3.5 Numerical method

The conceptual and methematical model for the car-

bonate production results in a set of differential equa-

tions (ODEs), one for each species associations mod-

eled. The Runge-Kutta-Fehlberg method (RKF45) is

used to solve this GLV ODEs system. This method is

selected due to it is an explicit method with a step-

size control and dense output data. Similar methods

has been tested, such as Runge-Kutta of order 8(5,3),

but they are slower than the chosen method. Consid-

ering that the GLV ODEs equations are 1D, they do

not explicitly depend on spatial coordinates and can be

solved at each node of the FE mesh.

The RKF45 method requires 4 parameters to solve

the GLV ODEs:
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– the step-size (or time step) that is a parameter ob-

tained automatically by the program. The program

discretizes the total modelling time (defined by the

user as an input parameter) in several time steps in

order to solve the equations system. The discretiza-

tion is done according to the Courant stability cri-

terion in order to avoid numerical errors [41]. This

criteria can be obtained in function of the faster

process in the basin and ensures that a sedimentary

particle can be transported from one node of the FE

mesh to the next one within a time step. The time

step is obtained from the fluid flow velocity and the

spatial discretization of the FE mesh. Thus, it is

assumed that within a time step, all the modelled

geological processes remains constant [5,22].

– initial population of the species association. This is

an input parameter initially defined by the user as

an initial condition. This value is used by the pro-

gram to obtain the population at the end of the first

time step. This population is then used as an input

parameter for the next time step and so on.

– tolerance that refers to the maximum error that is

accepted for the equation system solution.

– and the safety factor that ensures that the solution

is within the tolerance[24]. This parameter together

with the previous one are defined by the user as in-

put parameters and both are related to the solution

quality.

Finally, the representative population and carbon-

ate production are obtained at each time step and for

each node of the FE mesh, .

4 Synthetic sample experiment.

4.1 Initial set-up.

A theoretical experiment has been used to test the

new capabilities of the improved carbonate production

model. This example models a carbonate ramp of 24.01

km2 (4900 m x 4900 m) discretized into 50 columns

and 50 rows, obtaining a mesh with 2500 nodes and

4802 elements, as displayed in Fig. 6A. Initial subma-

rine basin topography defines a ramp ranging from 0.0

m at its northern side to a maximum of 150.0 m at the

southern one, resulting a constant sloping surface, with

a 2◦ dipping angle (Fig. 6). Total simulation time is 90

000 years, divided into 180 time steps of 500 years.

The sea-level position has been initially defined at

-35 m, and the sea-level changes combine a sinusoidal

function and a linear trend (Fig. 6C):

SL = −35 + 30 sin (
2πt

45000
) + 25t (9)
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Fig. 6 Experiment set-up. A. 3D view of the initial basin
topography and boundary conditions for sediment and water.
B. Corresponding finite element (FE) mesh. Right boundary
nodes are defined as inflowing nodes, while the left boundary
nodes are defined as the outflowing nodes in order to induce
E-W marine currents. River discharge is defined through two
input nodes in the NE corner. C. sea-level function used to
simulate the sea-level changes.

Under these conditions, two main eustatic cycles

are obtained (Fig. 6C), trying to force coastline and

river discharge migrations and to obtain different depo-

sitional systems. This is intended to study the different

sedimentary architectures and the effects of coastline

migration on carbonate deposits.

Considering this initial set-up, this example has been

executed in a Dell R© T7610 workstation with Red Hat R©
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Linux R© 6.5, with 32 Gb RAM and with two Intel R©
Xeon E5-2687w (3,1Ghz) processors (16 cores, 32 threads).

Total runtime for this example has been about 13 hours.

4.2 Initial and boundary conditions

Flow model

River inflowing nodes has been defined through two

input nodes in the NE corner. Additionally, to induce an

E-W marine currents, 50 inflowing nodes are defined in

the eastern boundary of the FE mesh, and 50 outflowing

nodes in the western boundary (Fig. 6B). This bound-

ary conditions can change depending on the coastline

position due to sea-level variations through time.

The obtained fluid flow is represented in Fig. 7 at

four different time steps of the simulation time. Inde-

pendently of the coast line position, it can be appreci-

ated that the fluid flow behaves according to the source

point in the NE corner, but it also reproduces a general

E-W marine current trend, parallel to the coast line.

The maximum velocity is located near the river inflow-

ing nodes, close to the coast line mostly with a NE-SW

component depending on where the coast line is located

and the sea-level variations. The lowest fluid flow veloc-

ities values are located in the Eastern boundary. The

values of the fluid flow depend mainly on water depth

and the distance from the fluid source.

Siliciclastic transport and sedimentation model

Initial conditions for sediment transport and sedi-

mentation are defined considering that the basin has

no sediment concentration in suspension at time t=0

years. Additionally, two grades of siliciclastic sediment

(a coarse and a fine) are introduced into the basin through

the same two inflowing nodes at the NE corner in or-

der to simulate the river discharge. Each sediment type

has been defined using the parameters summarized in

Table 2, which control the sediment input and the pro-

portion of each sediment type that is deposited or rest

in suspension for transport at each time step, according

to its grain size and the fluid flow velocity.

Carbonate production model

Regarding to the carbonate production model, four

species associations have been considered: scleractinian

corals, benthic foraminifera, rhodoliths, and planktonic

foraminifera. The parameters used and obtained from

the bibliography to describe the optimal and subopti-

mal environments where the different species associa-

tions can live are described below and combined using

the minimal value rule (summarized in Table 3).

Scleractinian corals are common carbonate pro-

ducers in clear and warm tropical to subtropical shal-

low waters with moderate energy environment. Thus,

in this sample experiment, the optimum water depth

where corals can live has been defined between 2 and

20 m, with a maximum of 50 m, the slope of the bot-

tom with low values (maximum of 2.5◦), and fluid flow

velocity ranging from 1 to 40 m/d.

Benthic foraminifera live in water depths from

1 m until 200 m with higher populations between 10

and 40 m, depending on species environment and age

[2]. In this example, the maximum depth where this

species can live, has been fixed to 165 m, and the op-

timal values ranging between 10 and 40 m. Moreover,

benthic foraminifera are not slope-depending and can

live under high energetic conditions.

Rhodoliths live in low intertidal zones to below

150 m, typically in areas where light is strong enough

for fostering growth. The range used in the example is

between 5 to 150 m. Water motion needs to be strong

enough to inhibit sediment burial but not so energetic

or unidirectional to cause mechanical destruction or

rapid transport out of favourable growing conditions

[42]. Thus, optimal energy conditions are defined be-

tween 1.5 and 40 m/d.

Planktonic foraminifera live suspended in sea-

water column, hence the slope of the bottom profile is

an irrelevant factor. Water depth is also not relevant

but a range from 0 to 160 m has been considered for

this species. Currents can move this species association

out from high fluid flow areas, thus, lower fluid flow ve-

locities needs to be considered. In the example, a range

between 0 to 3 m/d has been used.

The interaction among species associations is estab-

lished using the interaction coefficients, defined in the

community matrix shown in Table 4. The values used

force a no-interaction scenario (αij = 0.0) when the

two species live in different range of water depth, flow

velocities, or slope. The values of αij < 0 define com-

petition between species for resources (e.g. space, light)

because all species are photosynthetic species without

any predator-prey relationship between them, in the ex-

ample, the values used indicate low interaction. The in-

ternal competition is defined in all species associations

as αii = −0.01 indicating low internal competition.

4.3 Results and discussion

Siliciclastic sediment distribution
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Fig. 7 Fluid flow computed at 500, 25000, 50000, 80000 years. Note the colour scale is logarithmic, and the fluid flow
direction arrows are represented at a random sample locations. Red line indicates the inflowing boundary and blue line marks
the outflowing boundary.

Table 2 Parameters used to define the two siliciclastic sediments in the example. Following [22], maximum flow for deposition
is a critical value below which sediment can be deposited (as a function of the settling and fluid flow velocity). Longitudinal
and Transversal dispersivity are defined as a function of the finite element mesh discretization in order to avoid numerical
errors solving the transport equation. In turn, the finite element mesh is defined as a function of the expected heterogeneity.

Input Sediment Settling Max.flow Density Longitudinal Transversal Diffusion
nodes input rate for deposition dispersion dispersion

(T/m3) (m/d) (m/d) (g/cm3) (m−1) (m−1) (m2/s)

Coarse siliciclastic 1 and 51 0.0006 1.06 155.0 2.7 100.0 100.0 10-7
Fine siliciclastic 1 and 51 0.002 0.005 40.2 2.7 100.0 100.0 10-6

In the model, terrigenous sedimentation occurs mainly

in the NE area near the defined inflowing nodes (Fig.

8). The deltaic systems display different progradational-

aggradational-retrogradational patterns that well rep-

resent the defined sea-level variations and the corre-

sponding input nodes migration. This relationship causes

a complex pattern of facies interfingering and facies het-

erogeneity in 3D. As expected, coarse sediments are re-

stricted to proximal areas near the input nodes and

fine-grained sediments are deposited basinward. In pro-

portion, deltaic systems are mainly built up by the

finest sediment. The sedimentary bodies show typical

sigmoidal geometries and stratigraphic architectures in

accordance with the basin geometry, sea-level varia-
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Table 3 The four defining points for the trapezoidal func-
tions (Fig. 4) used in the synthetic sample experiment.

Min. Opt.1 Opt.2 Max.

water depth Corals 1 2 20 50
(m) Bent.foram. 1 10 40 165

Rhodo. 5 50 70 150
Pl.foram. 1 50 160 200

slope Corals 0 0 2.5 2.5
(◦) Bent.foram. 0 0 89 90

Rhodo. 0 0 4 15
Pl.foram. 0 0 89 90

fluid flow Corals 1 1 39 40
(m/d) Bent.foram. 0 0 39 40

Rhodo. 1.5 1.5 39 40
Pl.foram. 0 0 2 3

Table 4 Community matrix used in the theoretical example
in order to define the interaction among species.

Corals Ben.foram. Rhodo. Pl.foram.

Corals -0.01 -0.001 -0.002 0.0
Bent.foram. -0.001 -0.01 -0.001 0.0

Rhodo. -0.002 -0.01 -0.01 -0.001
Pl.foram. 0.0 0.0 -0.001 -0.01

tions, and inflowing water and sediment input (Fig. 8).

Carbonate deposits

Regarding to carbonate deposits, the experiment re-

sults show a coherent distribution according to the pa-

rameters defined for carbonate production organisms

associations (Fig. 9). Thus, a zonation as a function

of water depth can be observed from corals placed in

the northern area of the basin, benthic foraminifera

spread on the whole basin but mainly concentrated in

the central part, followed by rhodoliths and planktonic

foraminifera in the southern part of the basin.

The complex interaction among the modeled param-

eters that control the species association evolution and

its carbonate production is difficult to analyse. Never-

theless, a detailed study can be done in order to com-

pare the expected and the obtained results. For exam-

ple, and focused on coralline association, the resulting

carbonate distribution and the defined environmental

factors (Table 3, section 4.2) can be compared in differ-

ent time steps (6000y and 11000y are compared in Fig.

10). Under these conditions, the area where corals can

live and growth can be delimited by the superposition

of each environmental factor. During this period (from

6000 to 11000 years) a marine trangression is modeled,

thus the resulting optimum area due to water depth

changes according to the evolution of the sea-level po-

sition through time. The high slope of the delta front

sited in the NE inhibits the development of coral species

association in this area. The flow velocity restricts the

development of coralline sediment eastwards. Total sed-

iment deposited in each time step is in turn conditioned

by the interaction with the other species associations

and the available space for deposition.

Facies assemblages

Results can also be analysed and visualized trough

facies assemblages obtained automatically by the pro-

gram (Fig. 11). Facies are grouped as a function of

sediment percentage per each sediment type (obtained

from the total sediment deposited) and coloured ac-

cording to the major sediment every 500 y. In this

sample experiment, 6 facies assemblages are obtained.

Each one is characterized by a mixture of sediments

(graphically summarized in Fig. 12), and corresponds

with four carbonate-dominated facies (I to IV) and two

siliciclastic-dominated facies (V and VI).

Specifically, Facies I is dominated by corals with a

contribution larger than 40%; Facies II is dominated

by benthic foraminifera with a minimal contribution of

35%; Facies III is characterized mainly by rhodoliths

(> 40%) and planktonic foraminifera (∼ 40%); Fa-

cies IV is dominated by planktonic foraminifera with

a proportion larger than 40%; Facies V is dominated

by coarse siliciclastic sediment (> 40%); and facies VI

is dominated by the finest clastic sediment, with a min-

imum proportion of 30%.

Additionally, the program can extract a synthetic

1D column at a defined point of the basin (Fig. 11, 1 and

2) representing the sediment deposited, and the corre-

sponding sediment percentage in vertical direction.

Sequential stratigraphy

From the sea-level variation and the facies assemblage

distribution, 9 differentiated genetic types of deposit

(systems tracts) belonging to three distinct depositional

sequences (A, B, and C) can be interpreted (Fig. 13).

The Depositional Sequence A (DSA) is composed of

Transgressive (T), Highstand (H) and Forced Regres-

sive (FR) deposits. Depositional Sequence B (DSB) in-

cludes a Lowstand (L), Transgressive (T), Highstand

(H), and Forced Regressive (FR) genetic units. Depo-

sitional Sequence C (DSC) comprises a Lowstand (L)

genetic unit followed by Transgressive (T) deposits. De-

positional sequences are mainly developed on distally-

steepened ramps or in a river delta around the silici-

clastic sediment input in the NE part of the basin.

The T deposits of DSA and DSC (Fig. 13B and D)

are stacked in a retrograding pattern (Fig. 14A, B, and
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gitudinal and perpendicular cross-sections with a grey mask for values below 0.001% are amplified for a better comprehension.
Vertical exaggeration 10x.

C) and are formed by facies assemblage I in the inner

and middle ramp, facies assemblages II, III, and IV in

the middle and outer ramp. The facies assemblage V

and VI are also present in the area around the silici-

clastic sediment input in the NE of the basin. The T

deposits of DSB follow the same pattern as DSA and

DSC but facies assemblage II is not present (Fig. 14A).

The H deposits of DSA and DSB (Fig. 13B and D)

exhibit a thin carbonate unit stacked in an aggrading

pattern (Fig. 14A and B). The H genetic type of deposit

in DSA is made up of facies assemblage I, which change

basinwards to facies assemblages II, III, and IV on the

SW carbonate ramp, and facies assemblages V and VI

in the NE river delta. In DSB, the facies assemblage II

is not present.

The FR deposits in both sequences A and B, cor-

respond to a large river delta system stacked in a pro-

grading pattern (Fig. 13C and 14C, D and E). Similar

to the H units, the L units are constituted by proximal

facies (facies assemblage I), which change basinwards

to facies assemblage II. The thickness of these units are

thin and the units aggrade.

4.4 Comparison

The form, the bathymetry and extension of the the-

oretical basin are arbitrary and are therefore not com-

parable with real geological examples. The parameter

values of the species associations are taken from the

bibliography and the interaction coefficients were es-
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timated (section 4.2). Therefore, results obtained can

only be compared with real carbonate ramps on the

basis of the obtained facies distribution.

The species associations modeled in this theoret-

ical example are present in carbonate successions of

Oligocene-Miocene age, such as the Asmari Formation

in SW Iran [1] and the Ragusa platform in Italy [38].

Asmari Formation:

The Asmari Formation mainly consists of limestones,

dolomitic limestones, and clay-rich limestones. It cor-

responds to a carbonate platform developed across the

Zagros Basin.

According to [1], in the inner ramp, the most abun-

dant skeletal components are larger foraminifera. The

presence of porcellanous foraminifera indicates a low-

energy, upper photic, inner depositional environment.
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The middle ramp deposits are characterized by larger

foraminifera with perforate walls indicating a deposi-

tional environment situated in the mesophotic to oligophotic

zone. The lower photic zone is dominated by large, flat,

and perforated foraminifera associated with symbiont-

bearing diatoms. Lower slope facies are differentiated

from upper slope by the greater amount of micritic ma-

trix, an increase in the flatness, and size of the perforate

foraminifera and presence of planktonic foraminifera.

The outer ramp was characterized by low energy condi-

tions and sedimentation of mudstones with planktonic

foraminifera, which indicate deeper water.

The Ragusa ramp:

Located in SE Sicily, the Ragusa platform corresponds

to the outcropping portion of the Hyblean Plateau [38].

Following these authors, the inner ramp is composed

by coral-rich, mudstone/wackestone beds. The inner-

most facies of the inner shallow-water zone comprises

gastropods associated with fragments of Corallinaceae

red algae, ostracods and green algae. Shelfward, coral

colonies extent associated with benthic foraminifera,

serpulids, bivalves, and echinoderms, which appear in

the outer shallow-water zone. The muddy sediments

of the most restricted part of the inner ramp reflect

low energy and euphotic conditions. Trophic resources

were low enough for scleractinian corals to grow, sug-

gesting oligo-mesotrophic conditions (low-medium nu-

trients concentration). Basinwards, the occurrence of

packstones in the outer shallow-water zone supports a

relative increase in water energy.

In the middle ramp, sediments mainly consist of

corallinaceans (branching shapes and spherical rhodoliths)

that are associated with chlorozoan biota (sleractinian

corals and red algae). Subordinate biota include bry-

ozoans, serpulids, Vermetidae, and small benthic foraminifera.

Basinward, benthic foraminifera, as well as echinoids,

and planktonic foraminifera complement the biota. Sed-

iments of the middle ramp were likely deposited in the

euphotic-mesophotic zone. The deepest associations of

scleractinian corals, Vermetidae and benthic foraminifera

suggest euphotic water depths [38].

In the outer ramp, the dominating facies consists

of planktonic foraminiferal mudstones and wackestones

lacking light-dependent biota.

Comparing the three carbonate ramps (Fig. 15),

coral species association is present in the inner and

middle ramp with different proportion, but follows the

same distribution. Benthic foraminifera are present in

the inner and middle ramp, except in the theoretical

example where have been extended to the outer ramp.

Rhodoliths are mainly present in the middle ramp in

the three cases, however they are present in the inner
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ramp of Ragusa, and extend to the outer ramp in the

theoretical example. Planktonic foraminifera occur in

the deepest areas of middle ramp settings and extends

to the outer ramp in all examples.

The benthic foraminifera and rhodoliths are present

in the outer ramp in the theoretical example, although

on a low proportion. These light-dependent biota pres-

ence in the outer ramp is the main difference with the

real carbonate examples, and it may indicate that the

outer ramp is not aphotic in the theoretical example.

Thus the theoretical values used and extracted from the

bibliography for this kind of species associations differs

from the ones in Ragusa and Asmari (that shows also

differences between them) indicating probably specific

rhodoliths and benthic foraminifera in these platforms.

5 Conclusions.

One of the main aspects of SIMSAFADIM-CLASTIC

(SF-CL) is the ability to model carbonate production

and clastic sedimentation and their interaction, as well

as the interplay with the rest of simulated elements. The

modeled processes are designed over a geological time

at a basin scale using a process-based forward model.

This allows the prediction of complex geometries and

facies patterns.
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The new model presented for carbonate production

illustrates the importance to take into account the bio-

logical interactions and intrinsic factors of the carbon-

ate producing organisms (the species growing and the

interaction among other species), as well as the envi-

ronmental parameters, such as energy of the medium,

bottom profile, or water depth.

The results of the sample experiment show the po-

tentiality of the code. The example exhibits optimal

results for the simulated processes (fluid flow, sediment

transport, clastic sedimentation, and carbonate produc-

tion). From the results obtained, it is possible to see the

stratal architecture and stacking patterns of sedimen-

tary bodies and their relationship.

The obtained carbonate production distribution dur-

ing the modeled time in the basin is a combination of

interactions of the species associations with the envi-

ronmental parameters. The result of these interactions

is complex, but some conclusions can be highlighted:

– The slope plays an important role in the delta front

in NW part, where most of the clastic sedimentation

occurs.

– Due to the initial basin geometry, water depth factor

has a great influence in the N-S direction as shown

in the facies distribution in vertical and horizontal

directions.

– Flow velocity plays an important role in areas near

the shoreline combined with the water source, where

an important gradient of velocities is present.

– The interaction among species is not clearly visible

in the example, despite it is present. The reasons

are: (1) the low values taken in the example and (2)

interaction do not change in time, but the environ-

mental factors do change, masking this interaction.

Regarding to the comparison with real examples,

the facies distribution correlate well based on their posi-

tion along the ramp. The only exception is in the outer

ramp where in the sample experiment presents light-

dependent biota, indicating oligophotic conditions, while

in the Ragusa and Asmari platforms do not appear.

This may indicate that the theoretically lower limit

used for rhodoliths and benthic foraminifera and ob-

tained from the bibliography is lower than the expected

for the Ragusa and Asmari due to the presence of a spe-

cific specie of rhodoliths and benthic foraminifera.

Summing up, we can conclude that the new ver-

sion of SF-CL is an important step compared with the

previous versions, because simulations -such as the ex-

ample presented herein- would not be possible without

the new improvements presented. These improvements

condition better the carbonate evolution of the species

association, and allow more realistic results since new

important parameters can be taken into account.
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