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ABSTRACT 33 

Aim. – To characterize the urinary metabolomic fingerprint and multi-metabolite signature associated 34 

with type 2 diabetes (T2D), and to classify the population into metabotypes related to T2D. Methods. 35 

– A metabolomics analysis using the 1H-NMR-based, non-targeted metabolomic approach was 36 

conducted to determine the urinary metabolomic fingerprint of T2D compared with non-T2D 37 

participants in the PREDIMED trial. The discriminant metabolite fingerprint was subjected to logistic 38 

regression analysis and ROC analyses to establish and to assess the multi-metabolite signature of 39 

T2D prevalence, respectively. Metabotypes associated with T2D were identified using the k-means 40 

algorithm.  41 

Results. – A total of 33 metabolites were significantly different (P < 0.05) between T2D and non-42 

T2D participants. The multi-metabolite signature of T2D comprised high levels of methylsuccinate, 43 

alanine, dimethylglycine and guanidoacetate, and reduced levels of glutamine, methylguanidine, 3-44 

hydro- xymandelate and hippurate, and had a 96.4% AUC, which was higher than the metabolites on 45 

their own and glucose. Amino-acid and carbohydrate metabolism were the main metabolic alterations 46 

in T2D, and various metabotypes were identified in the studied population. Among T2D participants, 47 

those with a metabotype of higher levels of phenylalanine, phenylacetylglutamine, p-cresol and 48 

acetoacetate had significantly higher levels of plasma glucose.  49 

Conclusion. – The multi-metabolite signature of T2D highlights the altered metabolic fingerprint 50 

associated mainly with amino-acid, carbohydrate and microbiota metabolism. Metabotypes identified 51 

in this patient population could be related to higher risk of long-term cardiovascular events and 52 

therefore require further studies. Metabolomics is a useful tool for elucidating the metabolic 53 

complexity and interindividual variation in T2D towards the development of stratified precision 54 

nutrition and medicine. Trial registration at www.controlled-trials.com: ISRCTN35739639. 55 

 56 

Introduction  57 



Type 2 diabetes (T2D) encompasses individuals who have hyperglycaemia resulting from defects in 58 

insulin secretion, insulin action or both [1]. Moreover, hyperglycaemia and insulin resistance are risk 59 

factors for cardiovascular disease (CVD) [2]. Besides an understanding of the pathophysiology of 60 

T2D, the identification of individuals at high risk, as well as knowledge of the metabolic alterations 61 

produced in patients with T2D, are crucial for preventative and disease management strategies. In 62 

recent years, progress in the development of biomarkers for T2D has been achieved due to advances 63 

in the emerging ‘-omics’ technologies, including metabolomics [3]. Successful applications of 64 

metabolomics in T2D research include the discovery of biomarkers for diagnoses and prognoses, 65 

altered metabolic pathways and drug mechanisms of action [4]. Currently, of the high-throughput 66 

analytical techniques, high-performance liquid chromatography–mass spectrometry (HPLC–MS) and 67 

proton nuclear magnetic resonance (1H-NMR) spectroscopy are those most widely employed in 68 

metabolomics for the study of diabetes, mostly due to their advantages in the analysis and 69 

identification of a broad range of metabolites in biofluids [3,4]. Furthermore, 1H-NMR is frequently 70 

used in non-targeted metabolomic approaches to profile metabolites in studies comparing T2D and 71 

non-T2D populations, as well as for elucidation and confirmation of the metabolic pathways altered 72 

as a consequence of T2D [3,5,6]. In recent years, several accurate prediction models have been 73 

constructed including variables such as age, gender and lifestyle factors [7], and some recent-omics 74 

technologies have the potential to serve as accurate analytical techniques for discovering novel 75 

biomarkers that could be involved in predictive models of T2D [4]. However, it should be pointed 76 

out that these models have mainly been tested with plasma samples, although a few have used urine 77 

samples and have also compared healthy vs T2D subjects. Thus, the use of these models in 78 

metabolomics is essential for identifying molecular signatures and phenotypic variations to improve 79 

prediction of disease risk and to better manage patients’ care and outcomes [8]. Recently, the term 80 

‘stratified medicine’ has emerged, based on the concept that some groups of individuals should be 81 

treated differently from others due to intervariability [8]. This inter-variability can be characterized 82 

by metabolomics through the study of metabolic phenotypes, or metabotypes, as the starting point for 83 

future stratified medicine programmes and lifestyle interventions [9]. In fact, patterns of variation or 84 

metabotypes have already been previously used in diabetes datasets to separate controls from patients 85 



[10] or healthy from diseased groups [11], as well as for studying metabolomic differences among 86 

clinical phenotypes [12] and developing strategies for delivery of dietary advice [11,13]. In the 87 

present study, the aim was to characterize the urinary metabolomic fingerprint and multi-metabolite 88 

signature associat-ed with T2D prevalence in the Prevention with Mediterranean Diet (PREDIMED) 89 

study population, using a 1H-NMR-based, non-targeted metabolomic approach and classifying the 90 

population into metabolic phenotypes (metabotypes) in relation to T2D.  91 

Methods  92 

Study population  93 

The PREDIMED was a parallel-group, single-blind, multicentre, randomized controlled 5-year 94 

clinical trial aimed at assessing the effects of the Mediterranean diet on CVD primary prevention 95 

[14]. Full details of the study design and protocol have been published elsewhere (www.predimed.es) 96 

[15]. Briefly, the parti-cipants were men (55–80 years of age) and women (60–80 years of age) with 97 

T2D and/or at least three of the following cardiovascular risk factors: hypertension; overweight [body 98 

mass index (BMI) > 25 kg/m2]; current smoker; low-density lipoprotein (LDL) cholesterol >4.14 99 

mmol/L; high-density lipoprotein (HDL) cholesterol <1.03 mmol/L; and a family history of 100 

premature CVD. The trial was registered at www.controlled-trials.com as ISRCTN35739639. The 101 

present PREDIMED substudy used data collected from 154 consecutive participants from two centres 102 

(Hospital Clinic of Barcelona and University of Valencia) where urinary metabolome was determined 103 

using the 1H-NMR approach at baseline. Of these 154 participants, 85 were T2D patients and 69 104 

were non-T2D subjects. The former were diagnosed as previously reported [14,16], and all 105 

participants were free of diabetic nephropathy. The institutional review boards of the two centres 106 

approved the study protocols, and written informed consent was given by all participants.  107 

Urine collection and measurements  108 

Spot urine samples were collected at baseline and immediately stored at -80ºC until analysis. Trained 109 

personnel performed the anthropometric and blood-pressure measurements. Validated questionnaires 110 

were employed to record physical activity, lifestyle, disease history and medication use [15].  111 



Metabolomic analysis: 1H-NMR sample preparation, data acquisition and processing  112 

Urine samples were thawed at 4º C and gently vortexed before metabolomic analysis, using a 113 

procedure based on a previously published methodology [17]. Briefly, 300 mL of urine were diluted 114 

in 200 mL of H2O/D2O (8:2 ratio) and mixed with an internal standard solution [0.1% chemical-shift 115 

reference 3-(trimethylsi-lyl)propionic-2,2,3,3-d4 acid sodium salt (TSP), 2 mM of sodium azide 116 

(NaN3) and 1.5 M of KH2PO4 in 99% deuterated water (D2O)]; the pH was set at 7.0 with a KOD 117 

solution. The 1H-NMR experiments were conducted using a 500-MHz spectrometer (Varian INOVA; 118 

Varian Medical Systems, Palo Alto, CA, USA), with presaturation of water resonance using a nuclear 119 

Overhauser enhancement (NOESY)-presat pulse sequence. Internal tempera-ture was kept constant 120 

at 298 K during acquisition. Spectra were acquired by collecting 128 scans at 32-K datapoints with a 121 

spectral width of 14 ppm, acquisition time of 2 s, relaxation delay of 5 s and mixing time of 100 ms. 122 

For spectral processing, the free induction decay (FID) was multiplied by an exponential function 123 

corres-ponding to a 0.3-Hz line broadening before Fourier transformation. All spectra were phased, 124 

baseline-corrected and referenced to TSP (d 0.0) using TopSpin version 3.2 software (Bruker BioSpin 125 

GmbH, Rheinstetten, Germany). The spectral data were processed, using an intelligent bucketing 126 

algorithm, in domains of 0.005 ppm [17] and integrated using ACD/NMR Processor 12.0 software 127 

(Advanced Chemistry Development, Inc., Toronto, ON, Canada). The spectral region 4.75–5.00 ppm 128 

was excluded from the dataset to avoid spectral interference from residual water.  129 

Statistical analysis  130 

A dataset containing integrals of NMR spectra was imported into MetaboAnalyst 3.0, a web-based 131 

platform for extensive analysis of metabolomic data [18], filtered using interquantile range (IQR) and 132 

row-wise-normalized by the sum of the spectral intensities. The normalized dataset was then imported 133 

into SIMCA-P+ 13.0 (Umetrics, Umea , Sweden) before being log-transformed and range-scaled 134 

prior to performing a principal component analysis to explore data distribution [17]. To reduce 135 

variability not associated with T2D classification, orthogonal signal correction (OSC) was applied to 136 

the dataset followed by partial least squares discriminant analysis (PLS-DA) to determine differences 137 

in metabolite profiling between the T2D and non-T2D groups. The predictive ability of the OSC–138 



PLS-DA models was then evaluated: one-third of the samples (validation set) were randomly 139 

removed from the whole dataset (training set), and the OSC–PLS-DA models calculated. This 140 

procedure was repeated five times, and was used to evaluate the ability of the models to classify 141 

prediction sets, and to calculate quality parameters of the method and the misclassification table. 142 

Quality and validation of the resultant OSC–PLS-DA models were assessed through R2Y(cum) and 143 

Q2(cum) parameters (calculated by seven-round internal data cross-validation using the default 144 

algorithm provided by the SIMCA-P+ 13.0 software), as well as by a permutation test (n = 200). 145 

Discriminant features between T2D patients and non- T2D subjects were identified from their 146 

variable importance in projection (VIP) values >1.0, a generally accepted threshold in metabolomic 147 

studies [17], with the VIP-sd(VIP) parameter also included as an additional quality parameter of the 148 

method. To eliminate the confusing effect of waist circumference, a general-ized linear model was 149 

applied, using the metabolic signature as an independent variable and T2D as a dependent variable, 150 

and adjusted by waist cirumference. Characteristics between participants were compared by apply-151 

ing Student’s t test and the chi-squared test for continuous and qualitative variables, respectively. 152 

Differences in metabolites between the T2D and non-T2D groups were tested using Student’s t test 153 

with a Benjamini–Hochberg procedure for adjusting P values. The significance level was set at P < 154 

0.05. Univariate analyses and generalized linear models were performed using IBM SPSS version 21 155 

software (IBM Corp., Armonk, NY, USA).  156 

Metabolite identification  157 

Identification of metabolites was achieved using the Chenomx NMR Suite 7.6 Profiler (Chenomx 158 

Inc, Edmonton, AB, Canada). In addition, NMR spectral libraries were consulted in databases such 159 

as the Human Metabolome Database [19] and Biological Magnetic Resonance Data Bank [20], 160 

together with the currently available literature on NMR-based metabolomics [4,17].  161 

Metabolic pathway analysis  162 



Identified metabolites were submitted to the Pathway Analysis and Network Analysis modules in 163 

MetaboAnalyst 3.0 [18] and MetaCoreTM (GeneGo, Inc., St. Joseph, MI, USA), respectively, to 164 

undergo analyses of metabolic pathways and biological inter-pretations of metabolites related to T2D. 165 

Multi-metabolite signature model for T2D prevalence  166 

The results obtained by OSC–PLS-DA analysis were subjected to forward conditional stepwise 167 

logistic regression analysis to design a multi-metabolite signature model of T2D prevalence. The 168 

prediction model was applied to a training set (two-thirds of participants) and subsequently validated 169 

against a validation set (one-third of participants). Quality of the models was evaluated by calculating 170 

the sensitivity, specificity and area under the receiver operating characteristic curves (AUROCs). 171 

Urinary glucose was not included in this analysis due to the high AUROCs. The optimal cut-off for 172 

calculating sensitivity and specificity was determined as the minimum distance to the top left-hand 173 

corner [21]. Significance was set at P < 0.05. IBM SPSS version 21 statistical software (IBM Corp) 174 

was used to perform the logistic regression and ROC analyses.  175 

Metabolic phenotypes by k-means algorithm  176 

Cluster analysis to identify metabolic phenotypes, or metabo-types, was performed using the k-means 177 

cluster algorithm in MetaboAnalyst 3.0 [12,22]. This generated two clusters in the diabetes patients 178 

and two clusters in the non-diabetic participants by taking as inputs the identified metabolites from 179 

the OSC–PLS-DA analysis and applying the k-means clustering algorithm [12]. After k-means 180 

analysis, the results for the four clusters were visualized using hierarchical clustering analysis.  181 

Results  182 

Subjects’ characteristics  183 

Our participants were 67 ± 6 years old and nearly one-third were male (Table 1). Also, 55% of 184 

participants had T2D and 47% were obese. They were divided according to T2D diagnosis, as 185 

previously reported [14,16]. Both groups (T2D and non-T2D) were well balanced in terms of 186 

demographic characteristics and other cardiovascular risk factors, such as blood pressure, plasma 187 



lipids, and antihypertensive and hypolipidaemic medications (P > 0.05). Otherwise, measures of waist 188 

circumference, plasma glucose and use of antidiabetic agents were significantly higher in the T2D 189 

patients, as expected.  190 

Profiles of discriminant metabolites of T2D biomarkers by 1H-NMR metabolomics  191 

OSC–PLS-DA models were applied to determine the profile of discriminant metabolites in T2D vs 192 

non-T2D subjects. These models resulted in one latent component with R2Y(cum) and Q2Y(cum) 193 

mean values of 0.829 and 0.679, respectively, indicating a good ability to classify individuals 194 

according to their T2D status. A permutation test (n = 200), with intercept R2Y and Q2Y mean values 195 

of 0.306 and -0.149, respectively, confirmed the validity of the model (Fig. S1; see supplementary 196 

materials associated with this article online). In addition, sensitivity, specificity and accuracy values 197 

were calculated from the OSC–PLS-DA models when samples were predicted (n = 5); these values 198 

were then included in a misclassification table (Table S1; see supplementary materials associated 199 

with this article online). Thus, t-test analyses among VIP > 1.0 identified 33 metabolites that were 200 

significantly different between the T2D and non-T2D participants (Table 2). Of these metabolites, 17 201 

were significantly increased in T2D patients compared with non-T2D subjects, while the remaining 202 

16 metabolites were decreased in T2D patients. In addition, the metabolic fingerprint associated with 203 

T2D was found to be significantly independent of waist circumference except for 4-deoxythreonic 204 

acid and citrate (P = 0.11), and 3- hydroxybutyrate (3HB) (P = 0.062; Table 2). Furthermore, no 205 

statistical differences were observed in levels of metabolites among T2D patients whether taking drug 206 

treatment or not (data not shown). A comprehensive analyses of the metabolic pathways (P and 207 

impact values) revealed that the carbohydrate and amino-acid pathways were the most altered among 208 

T2D patients (Fig. S2, Table S2; see supplementary materials associated with this article online). The 209 

metabolites involved in these pathways can be up- and downregulated (Fig. S3; see supplementary 210 

materials associated with this article online), and each metabolite is related to its own pathway (Table 211 

S3; see supplementary materials associated with this article online). 212 

Multi-metabolite signature of T2D prevalence  213 



The multi-metabolite signature for better discrimination of T2D prevalence included higher levels of 214 

methylsuccinate, alanine, dimethylglycine and guanidinoacetate, as well as lower levels of glutamine, 215 

methylguanidine, 3-hydroxymandelate and hippurate (Table S4; see supplementary materials 216 

associated with this article online). In the validation set, the specificity and sensitivity of the multi-217 

metabolite signature were 87.0% and 96.4%, respectively, while the AUROC was 96.4% (95% CI: 218 

92.0–100%; P < 0.001). However, the specificity, sensitivity and AUROC values of each individual 219 

metabolite as well as urinary glucose were lower than those of the multi-metabolite signature (Fig. 1, 220 

Table 3). 221 

Characterization of metabotypes 222 

Unsupervised analysis of k-means gave two metabotypes of diabetes participants and two 223 

metabotypes of non-diabetes participants (Table S5; see supplementary materials associated with this 224 

article online) from data for the 33 identified metabolites. After determining those four metabotypes, 225 

the results were visualized using hierarchical clustering (heatmap) analysis (Fig. 2), where 226 

samples/individuals are shown on the x-axis and metabolites are displayed on the y axis. Most of the 227 

up-and downregulated metabolites observed in the clusters were similar to those reported in Table 2 228 

for T2D and non-T2D participants except for four metabolites: acetoacetate (AA); p-cresol; 229 

phenylalanine; and phenylacetylglutamine (PAG). Levels of these four metabolites were significantly 230 

higher in clusters 2 and 3 than in clusters 1 and 4 (Fig. 2; P < 0.05) on stratifying the entire cohort, 231 

and were orthogonal for T2D. Thus, the two metabotypes of T2D (clusters 1 and 2) and two 232 

metabotypes of non-T2D (clusters 3 and 4) differed in these four metabolites. Cluster differences for 233 

subjects’ characteristics, concentrations of biochemical parameters and use of medication are 234 

presented in Table S5 (see supplementary materials associated with this article online). The main 235 

difference was that cluster 2, followed by cluster 1, had the highest plasma glucose levels, and both 236 

were significantly different from clusters 3 and 4 (P < 0.001). As expected, the use of insulin and oral 237 

antidiabetic agents was significantly different between T2D and non-T2D participants (P < 0.001), 238 

but did not differ between T2D metabotypes (P = 0.20).  239 

Discussion  240 



The present study found significant differences in the profile of 33 urinary metabolites between T2D 241 

and non-T2D participants, using a 1H-NMR-based, non-targeted metabolomic approach. 242 

Specifically, a model of eight metabolites was the multi-metabolite signature that discriminated 243 

between T2D and non-T2D after stepwise logistic regression analysis and AUROC evaluation. To 244 

the best of our knowledge, this was the first-ever study to use spot urine to determine the pathways 245 

altered in T2D in a free-living population, along with identifying a multi-metabolite signature of T2D 246 

prevalence while highlighting the key implied metabolites. This metabolomic clinical study also 247 

confirms the associated perturbations of amino-acid metabolism, with some amino acids being used 248 

as substrates for gluconeogenesis. In addition, the increased excretion of amino acids could indicate 249 

an increase in protein degradation [4]. This was observed in our present study, and corroborates other 250 

metabolomic studies showing enhanced excretion of the glucogenic amino-acids alanine [5,6] and 251 

phenylalanine [6] and derived metabolites such as guanidinoace-tate, and the decreased excretion of 252 

glutamine [6] and histidine [5]. Previously, it was found that levels of phenylalanine and glutamine 253 

were positively and inversely, respectively, associated with the risk of prediabetes and T2D [7,23]. 254 

In addition, deregulation of branched-chain amino-acid metabolites (valine, leucine, isoleucine) has 255 

also been associated with risk of diabetes and insulin resistance [7,23]. Indeed, such changes have 256 

been observed in urine through the increased excretion of metabolites such as 3-hydroxyisovalerate 257 

[24] and methylsuccinate from their degradation pathways, which may reflect greater isoleucine 258 

catabolism [25]. The present metabolomic clinical study has shown an increase in the glycolysis and 259 

gluconeogenesis pathways in the liver associated with increased excretion of metabolites, including 260 

lactate, glucose and pyruvate, as also observed in previous studies [4]. Increased amounts of some 261 

carboxylic acids, such as cis-aconitate, an intermediary in the tricarboxylic acid cycle, and 262 

dicarboxylic suberic acid, were observed in the urine of T2D patients. In fact, increased excretion of 263 

cis-aconitate reflects systemic stress caused by hyperglycaemia or local effects on tubular transport 264 

in the kidneys [5]. Metabolites related to methylamine metabolism, such as dimethylglycine and 265 

trime-thylamine N-oxide, are systemic breakdown products of choline [5] that, due to their 266 

osmoregulatory properties, may be linked to a hyperosmotic effect of glucose or indicate renal 267 

papillary dysfunction when found in high concentrations [26]. In our study, decreased urinary levels 268 



of creatinine and its metabolite methylguanidine [27] were also observed, which could be related to 269 

alterations of glomerular filtration rate (GFR) in T2D with a possible decrease of muscle mass [28], 270 

although our participants were free of nephropathy. However, in a recent report, lower creatinine 271 

excretion rates were associated with all-cause mortality in diabetes patients and in nephropathy [28]. 272 

Diabetes and obesity are lifestyle-related disorders that could cause an increased incidence of gut 273 

dysbiosis [29], which is directly related to alterations in gut microbial-related metabolites [30]. 274 

Indeed, the results of our study have shown a reduction in the excretion of well-known microbial 275 

metabolites, such as hippurate, PAG and p-cresol [29], as well as trigonelline and 3- 276 

hydroxymandelate. While PAG and p-cresol are related to protein putrefaction, hippurate is a 277 

breakdown product of polyphenol and fibre metabolism [9], and 3-hydroxymandelate is a metabolite 278 

of tyrosine [19]. Previous studies had observed that individuals with impaired glucose tolerance and 279 

patients with T2D have lower levels of hippurate and PAG [5]. Therefore, our study supports previous 280 

findings that a microbiota imbalance could be key in the pathogenesis of a diabetic state and that 281 

healthy diets and/or lifestyle patterns directed towards improving microbiota quality are essential for 282 

preventing advanced pathological states [31]. The present study identified two distinct metabotypes 283 

in T2D patients (clusters 1 and 2) and two in the non-T2D participants (clusters 3 and 4) using k-284 

means cluster analysis based on their identified metabolic profiles. It should be noted that the 285 

metabotype comprising higher levels of four metabolites (phenylalanine, PAG, p-cresol and AA) was 286 

found in the entire study population and was orthogonal for T2D. In particular, differences were 287 

observed in some parameters between clusters 1 and 2 (T2D patients) whereas no differences were 288 

noted between clusters 3 and 4 (non-T2D subjects). Although the increase in these metabolites were 289 

orthogonal for T2D, when the focus was on diabetes patients, those with higher levels of those four 290 

metabolites also had higher levels of plasma glucose, but with no differences in use of antidiabetic 291 

medications or in other characteristics. Thus, our hypothesis is that the T2D patients in cluster 2 could 292 

have had a greater lack of control over their disease which, in the long term, could have led to a 293 

greater number of complications such as myocardial infarction, stroke, heart failure and kidney 294 

disease [32]. Certainly, phenylalanine has been described as a marker of higher diabetes risk [7,23] 295 

and, furthermore, has also been used together with tyrosine and isoleucine to predict long-term future 296 



cardiovascular events, an increased disposition towards atheroscle- rosis and perhaps even inducible 297 

myocardial ischaemia [33]. In addition, phenylalanine has been identified as a biomarker associated 298 

with future cardiovascular events in meta-analyses [34]. PAG and p-cresol are metabolites of 299 

microbial origin [35]. PAG comes from the conversion of phenylalanine to phenylacetate by 300 

microbiota and its subsequent conjugation with glutamine [36]; and p-cresol, the most widely studied 301 

uraemic retention solute, is formed by microbial metabolism of tyrosine [36]. PAG has been 302 

described as a strong independent risk factor for mortality and CVD in patients with chronic kidney 303 

disease [35], while p-cresol has been described as a predictor of cardiovascular events independent 304 

of GFR in patients with mild-to-moderate kidney disease [37]. The fourth metabolite that differed 305 

between T2D clusters was the ketone body AA. This is generated from the ketogenic amino-acid 306 

lysine and may also be derived from b-oxidation of fatty acids. AA and 3HB are at a ratio of 1:1 in a 307 

physiological state, although 3HB increases its excretion in ketoacidosis [38]. Recent evidence has 308 

highlighted the association between elevated levels of ketone bodies and hyperglycaemia and T2D 309 

[39]. It is also worth noting that the T2D patients in clusters 1 and 2 had similar mean ratios of 310 

AA:3HB (1:2), whereas clusters 3 and 4 (non-T2D) had mean ratios of 1:1 (albeit not statistically 311 

significant). However, there were statistically significant differences (P = 0.007) between ratios in 312 

T2D (1:2) vs non- T2D (1:1) participants. Both hyperketonaemia and ketosis have been related to 313 

liver, brain and microvasculature complications, which can increase the risk of morbidity and 314 

mortality [40]. Therefore, the subjects in clusters 2 and 3 with increased levels of these four 315 

metabolites could have higher risks of CVD and other such events in future. Thus, further studies 316 

should now evaluate these metabolites in such populations in long-term studies. One limitation of our 317 

present study is that the panel of metabolites and the model used for the multi-metabolite signature 318 

imprinting of T2D were obtained from a high-cardiovascular-risk population, and so needs to be 319 

validated and replicated in other populations. In addition, the metabolite panel should also be tested 320 

in patients with different grades of T2D, including prediabetes states, to determine its limit values for 321 

prediction. Moreover, it would be of interest to evaluate whether our metabotypes are modified in 322 

states such as prediabetes. Another limitation of our study is that the microbial composition in these 323 

participants was unknown, thereby preventing any correlations with the identified metabolites. On 324 



the other hand, one strength of our study is that it reproduced of real-life conditions of the participants. 325 

In conclusion, the results of our cross-sectional study using a non-targeted 1H-NMR metabolomics 326 

approach reveal a multi-metabolite signature of T2D prevalence comprising eight metab-olites 327 

belonging to pathways related mainly to glucogenic and ketogenic amino acids, glycolysis and 328 

gluconeogenesis, carboxylic acid metabolism and changes in gut microbiota metabolism. This is also 329 

the first study to identify metabotypes in T2D, revealing that such patients have higher levels of 330 

phenylalanine, PAG, p-cresol and AA—metabolites related to higher risks of long-term cardio-331 

vascular events—and also higher levels of plasma glucose. Nevertheless, as they were orthogonal for 332 

T2D, further studies now need to evaluate their long-term effects. In addition, this study reinforces 333 

the use of metabolomics to discover and to evaluate the main metabolic pathways altered in T2D and 334 

the metabotypes of individuals. Thus, it would be highly useful to investigate T2D diagnosis and 335 

treatment to further support the development of stratified and precision medicine.  336 
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