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Abstract

Topological Data Analysis (TDA) is a recently developed tool designed to study
the geometry of finite data sets. In these notes, we describe the theory of persistent
homology, which is the background underlying the application of TDA.

Our work is both practical and theoretical. We describe in detail persistence
landscape functions, which are a means of visualizing persistent homology, and study
some of their properties while deriving a few novel results. From a statistical ap-
proach, our theoretical work corroborates the use of TDA to measure changes in the
underlying distribution of a data set.

We employ TDA to analyze the log returns of four main financial European
indices throughout 2005–2015, comparing our results with the ones in the paper
Topological Data Analysis of Financial Time Series: Landscapes of Crashes [19].
As in this article, we observe that the norms of persistence landscapes show strong
growth prior to substantial financial instability.

Resum

L’Anàlisi Topològica de Dades (ATD) és una eina recent dissenyada per estudiar
la geometria associada a un núvol de punts finit. En aquestes notes, descrivim la
teoria d’homologia persistent, que és el marc en el qual es basa l’aplicació de l’ATD.

El nostre treball és tant pràctic com teòric. Descrivim en detall les funcions de
paisatge de persistència, usades com a eines per visualitzar l’homologia persistent;
estudiem algunes de les seves propietats i formulem nous resultats. Prenent un punt
de vista estadístic, la nostra feina corrobora l’ús de l’ATD per mesurar fluctuacions
d’una distribució subjacent en un conjunt de dades.

Emprem l’ATD per analitzar els retorns dels logaritmes de quatre índexs financers
europeus entre els anys 2005 i 2015, i comparem els nostres resultats amb els de
l’article Topological Data Analysis of Financial Time Series: Landscapes of Crashes
[19]. Tal com passava en aquest article, observem que les normes dels paisatges de
persistència mostren un fort creixement durant períodes d’alta inestabilitat en el
mercat financer.
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Introduction

Back in 2017, The Economist published a story titled “The world’s most valuable
resource is no longer oil, but data”. Refraining from any sensationalism, we state
this title as a nice premise to motivate our work, since currently data is considered
a paramount resource and thus, highly inclined to be the subject of gripping and
innovative research.

Topological Data Analysis (TDA) is a relatively novel approach designed to
study and measure certain features of discrete multidimensional data sets, commonly
treated as point clouds embedded in Rn, using a combination of statistical, compu-
tational and topological tools to find shape-like structures in data [1, 2, 3, 6, 13]. For
TDA to be applied, data is usually encoded as a discrete geometrical sample naturally
embedded in a predefined topological space. Intuitively, TDA explores results from
studying the persistence of certain homological features, informally k-dimensional
holes, that may arise when constructing simplicial complexes born from our original
data set. Accordingly, we use persistent homology [12, 14, 24] as an essential tool to
our application.

A standard procedure to compute the persistent homology associated to a point
cloud data set relies on the construction of a filtration of simplicial complexes; though
there exists various work considering different types of assemblies of complexes (see
[3], among others), a valid approach, both theoretical and computationally, is given
by the Vietoris-Rips scheme, which contrives complexes by setting a minimum dis-
tance parameter ε for an edge of a simplex to form, e.g., σ = [p0, . . . , pk] forms a
k-simplex iff d(pi, pj) < ε for all i, j. The basic principle underlying this procedure
relies on the fact that altering this distance parameter ε results in modifying the
construction and thus, homological attributes characterizing the simplicial complex
are intrinsically dependent on it. We say a feature is more significant if it persists
for a longer range of parameters, thus considering it relevant qualitatively towards
interpreting an underlying geometry; on the other hand, as features tend to per-
sist less they are considered to be of minor importance to determine any objective
shape and hence, usually referred to as noise. As features appear and disappear,
associated parameters encode a birth-death pair for every k-dimensional hole. This
information is captured in a concise form using the means of a persistence diagram.
Assertively, every point in the diagram records as coordinates the birth and death
of every k-dimensional feature from the corresponding simplicial complex. The ge-
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ometry of the natural embedding space of persistence diagrams can be sometimes
hard to work with. This is reflected mostly when we wish to compare persistence
diagrams between diverging data sets.

An alternative tool to summarize the information contained in a persistence di-
agram is a persistence landscape [1]. The latter consists of a sequence of piecewise
linear functions defined in the re-scaled birth-death coordinates. As opposed to the
complications arisen from working in the space of persistence diagrams, persistence
landscapes are naturally embedded in a Banach space, which makes their treatment
much more straightforward. Indeed, one can apply classic and well known tools de-
rived from functional analysis and statistics, e.g., compute expectations, variances
and norms [1, 2].

Properly formalizing this scheme requires knowledge both from Algebraic Topol-
ogy and Geometry, which gives rise to persistent homology. A key quality derived
from this procedure is the robustness under perturbations of the data [10, 16], which
allows an indiscriminate analysis of the data, no matter how noisy it may be, although
taking into consideration precision issues in results are bound to occur, naturally.

Lately, much stimulating research focusing on studying the persistence of homo-
logical occurrences has sprung remarkable results in a variety of fields, such as the
discovery of a subgroup of breast cancers [5], powerful means for image processing
[4, 16], novel non-destructive testing methods for material evaluation [11], among
others [7]. Important work dedicated to time series analysis has also been devised,
studying critical transitions in financial networks [17] and time series of cryptocur-
rencies [18], as well as financial market crashes [19].

Motivated by these studies, we focus our notes on attempting to essentially repli-
cate, and try to complement, article [19]. This paper, written by M. Guidea and
Y. Katz, revolves around a newly conceived method which is used to employ a di-
rect application of TDA to financial time series, while also diving into experimenting
with synthetic time series, following an underlying random nature. We interpret
that the main goal of Guidea and Katz’s paper is to determine whether persistent
homology can devise a tool to detect early warning signals (EWS) of imminent finan-
cial meltdowns, parallel to studying the behavior of L1 and L2 norms of persistence
landscapes corresponding to preconceived data sets.

As expected, our work shares common goals as to those in [19]; the main contrast
lies in the experiments themselves, these being determined by sampling from familiar
financial markets. Thus, we analyze the time series of log returns from four relevant
European stock indices, namely IBEX 35, CAC 40, FTSE 100 and GDAXI 30, be-
longing to Spain, France, United Kingdom and Germany, respectively. Collectively,
these discrete 1-dimensional signals can be seen as embedded in a 4-dimensional
space, namely R4, where every point has coordinates recording each log return for
every index. Then, we implement a sliding window technique, enclosing continuous
“pockets” of information of a certain window size w = 50. The sliding step is set to
one day, i.e., for every shift, resulting 50-point data sets differ from one another by
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two points (the “first” and the “last” one). Subsequently, we compute the persistence
diagram associated to the persistence of loops (1-dimensional persistent homology)
for each induced point cloud in R4, thus being able to draw out the corresponding
persistence landscape and determine its L1 norm. Later, we group the norms by
means of a time series capturing the time dependent fluctuation derived from the
considered financial market processes.

During our research process, I came in contact with Dr.Yuri Katz, namely one of
the authors of the aforementioned article. His acquaintance allowed me to discuss in
real-time some of the results I was gathering on the study of synthetic time series.
Noticeably, our discussions revolved around studying the growth of norms of persis-
tence landscapes derived from random data sets with a predefined distribution. His
proposed experiments helped in expediting our research and in fact were useful to
corroborate the theoretical results we were able to prove. In fact, our main result is
based on an informal proposition in their notes, which states that the growth of Lp

norms of persistence landscapes derived from normal distributed data sets is propor-
tional to the variance of the distribution. Our discussions contemplated the veracity
of this proposition against different types of distributions, which lead to formulating
our (novel) result, which establishes some conditions for this behavior to take place
in general.

To summarize, our theoretical study of persistent homology of random data sets
is parallel to that of financial time series. Indeed, we explore the application of
TDA on synthetic time series resembling active financial markets; by discerning the
behavior of norms deriving from random data sets with explicit distribution, we aim
to better understand the results obtained from financial data with unknown volatility.
Therefore, introductory notions on modeling financial markets are given; we focus in
particular on the work of Osborne [23] and Praez [25]. In addition, we were able to
prove theoretically some empirical results gathered from the study of data born from
simulated time series. This is done by working with persistence landscapes derived
from randomized data sets, hence treating the persistence landscape as a proper
random variable. Outcomes revolve around notions such as boundaries for expected
values of L1 norms of persistence landscapes, and behavior of these under changes
of the underlying distribution of the data set. Remarkably, our work exemplifies an
unexpected bond between the fields of topology and statistics, and we believe there
is still a vast margin for research, both practical and theoretical.
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Structure of the work

Our notes are arranged in three main parts. The first part is comprised of Chap-
ters 1 and 2, where we state and expose the necessary mathematical background on
which we base our implementations. Chapter 1 includes notions of basic Algebraic
Topology, such as simplicial complexes and simplicial homology; Chapter 2 dives into
the main matters describing persistent homology, where we define concepts such as
persistence modules, persistence diagrams and persistence landscapes. The second
part is encompassed by Chapters 3 and 4. Chapter 3 is a necessary fair description
of the method employed throughout our experiments. Chapter 4 includes testing on
fabricated time series and results on some properties of persistence landscapes. The
final part consists of Chapter 5, which includes our case-study of the stated financial
indices, as well as graphical portrayals and analysis of the fluctuation of L1 norms of
persistence landscapes subjected to time. Our conclusions are laid out in Chapter 6.
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1. Simplicial homology

We assume that the reader is familiar with basic notions of topology. This chapter
focuses on the concept of homology. Our aim is to motivate the theory and applica-
tions of persistent homology, which is the main tool of our work and is discussed in
Chapter 2.

1.1 Simplicial complexes

Simplicial homology is defined for simplicial complexes. These are abstract mod-
els for polyhedra, which we assume finite. The main purpose of simplicial homology
is to provide information on k-dimensional holes that a given topological space may
have, for any k ≥ 1.

A simplicial complex is a pair (V,Σ), where V is a finite set that we denote by
V = {v0, . . . , vn}, and Σ is a family of non-empty subsets of V such that if σ ∈ Σ

and τ ⊆ σ then τ ∈ Σ. Elements of V are called vertices of the simplicial complex
and elements of Σ are called simplices.

A simplicial complex (V,Σ) is ordered if the set V is totally ordered. In this case,
simplices of (V,Σ) are denoted by σ = [vi0 , . . . , vik ] and we implicitly assume that
vi0 < · · · < vik . From this point forward, we assume every given simplicial complex
to be ordered.

Although the notion of a simplicial complex is purely combinatorial, we can
associate a topological space to every simplicial complex (V,Σ) in such a way that the
elements of Σ become simplices in Euclidean geometry, i.e., points, lines, triangles,
etc., as we will see consecutively. For a set of points {p0, . . . , pk} in Rn such that the
vectors p1 − p0, . . . , pk − p0 are linearly independent, we denote

∆(p0, . . . , pk) =
{ k∑
i=0

λipi ∈ Rn | λi ≥ 0,
k∑
i=0

λi = 1
}
.

Thus ∆(p0, . . . , pk) is the convex hull of {p0, . . . , pk} in Rn, and it is referred to as
a geometrical k-dimensional simplex. In this way (V,Σ) determines a topological
space, namely the subspace of Rn+1 (with the Euclidean topology) defined as

|(V,Σ)| =
⋃
σ∈Σ

c(σ),

where, for each simplex σ = [vi0 , . . . , vik ] of V , we denote c(σ) = ∆(ei0 , . . . , eik) and
{ei}ni=0 are the unit coordinate points ei = (0, . . . , 1(i+1), . . . , 0) in Rn+1. We call
|(V,Σ)| the geometrical realization of the (ordered) simplicial complex (V,Σ).
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If X is a topological space such that X ∼= |(V,Σ)| for a simplicial complex (V,Σ),
we say that X is triangulable and (V,Σ) is said to be a triangulation of X.

To ease notation, we denote simplicial complexes as K, L, etc., meaning that
K = (VK ,ΣK), and for every σ ∈ ΣK with σ = [vi0 , . . . , vik ] we say that σ is a
k-dimensional simplex or k-simplex of K.

Given simplicial complexes K = (VK ,ΣK) and L = (VL,ΣL), a simplicial map
from K to L is a function ϕ : VK −→ VL such that, for every k-simplex [vi0 , . . . , vik ]

of K, the elements ϕ(vi0), . . . , ϕ(vik) form a simplex in L (of dimension less than or
equal to k).

1.2 Simplicial homology groups

For a simplicial complex K, we denote by Cp(K) the free abelian group generated
by the p-dimensional simplices of K,

Cp(K) =
{∑

λiσi | λi ∈ Z, σi = [vi0 , . . . , vip ] ∈ K
}
.

More generally, if R is a commutative unitary ring, we denote by Cp(K;R) the free
R-module generated by the p-simplices of K. Thus, Cp(K) = Cp(K;Z).

The p-boundary operator is the group homomorphism ∂p : Cp(K) −→ Cp−1(K)

given by
∂p[vi0 , . . . , vip ] =

∑
0≤k≤p

(−1)k[vi0 , . . . , v̂ik , . . . , vip ],

where v̂ik denotes the fact that vik is omitted. We also assume that C−1(K) = 0, so
∂0 = 0. For p ≥ 0, the boundary operators have the property that

∂p ◦ ∂p+1 = 0. (1.1)

A sequence of abelian groups and group homomorphisms

· · ·Cn+1
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ Cn−2 · · ·

such that ∂n ◦ ∂n+1 = 0 for all n is called a chain complex.
Hence (C∗(K), ∂∗) is a chain complex, called the simplicial chain complex of K.

For each p ≥ 0, the kernel Ker(∂p) is referred to as the subgroup of p-cycles of C∗(K),
and the image Im(∂p+1) is called the subgroup of p-boundaries of C∗(K). From (1.1)
we deduce that Im(∂p+1) ⊆ Ker(∂p) for all p, so we can define:

Definition 1.1. Given a simplicial complexK, we define its p-dimensional simplicial
homology to be the abelian group

Hp(K) = Hp(C∗(K), ∂∗) = Ker(∂p)/Im(∂p+1).

Similarly, if R is a unitary commutative ring, we define the p-dimensional simplicial
homology of K with coefficients in R to be the R-module

Hp(K;R) = Hp(C∗(K;R), ∂∗).
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For a pair of chain complexes (C∗, ∂∗), (D∗, ∂
′
∗), a morphism f∗ : C∗ → D∗ is a

sequence of group homomorphisms fp : Cp → Dp such that

fp−1 ◦ ∂p = ∂
′
p ◦ fp for all p. (1.2)

From (1.2) it follows that a morphism f∗ : C∗ → D∗ of chain complexes sends cy-
cles to cycles and boundaries to boundaries, and thus induces a group homomorphism
in homology:

H∗(f∗) : H∗(C∗, ∂∗) −→ H∗(D∗, ∂
′
∗).

Specifically, if a p-cycle z ∈ C∗ is a representative of [z] ∈ Hp(C∗), then

H∗(f∗)([z]) = [f∗(z)].

A classical result in homology theory states that for a given simplicial complex
K and its geometrical realization |K|, the simplicial homology groups Hp(K) are
isomorphic to the singular homology groups of the topological space |K|. For a
detailed exposition on singular homology we refer the reader to [21].

Throughout our notes, we will mostly be working with the homology groups H0

and H1. Thus, we deem necessary to discuss an example illustrating a calculation of
H0 and H1 for a given simplicial complex.

Example 1.2. Let K = (VK ,ΣK) be a simplicial complex with vertex set

VK = {v0, v1, v2},

and suppose that ΣK is composed of the 0-simplices [v0], [v1], [v2] and the 1-simplices
[v0, v1], [v1, v2], [v0, v2]. The geometrical realization of this complex is the perimeter
of a triangle in R2.

We have the following free abelian groups:

C2 = 0,

C1 = Z[v0, v1]⊕ Z[v0, v2]⊕ Z[v1, v2] ∼= Z3,

C0 = Z[v0]⊕ Z[v1]⊕ Z[v2] ∼= Z3,

and the boundary operators

C2
∂2−→ C1

∂1−→ C0
∂0−→ 0.

We obtain that ∂2 = 0, ∂1[vi, vj ] = [vj ]− [vi], and ∂0 = 0. Now, we can compute the
matrix for the boundary operator ∂1 by mapping the generators of C1 to C0:

[v0, v1] 7→ [v1]− [v0]

[v0, v2] 7→ [v2]− [v0]

[v1, v2] 7→ [v2]− [v1],
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and we have the corresponding matrix

M =

 −1 −1 0

1 0 −1

0 1 1

 .

Therefore, dim Im(∂1) = 2 and dim Ker(∂1) = 1, while dim Im(∂1) = 2. Addi-
tionally, Ker(∂0) = C0 and Im(∂2) = 0. Hence the homology groups of K are

H0 = Ker(∂0)/Im(∂1) ∼= Z,
H1 = Ker(∂1)/Im(∂2) ∼= Z.

Looking back to the definition of p-homology groups, we can view these as being
quotients of “cycles modulo boundaries” for every dimension p.

Indeed, in our case H1 is isomorphic to Z. A generator for H1 is the homology
class of the 1-cycle

[v0, v1]− [v0, v2] + [v1, v2],

which yields a loop in the geometrical realization of K.
The group H0 describes or measures connectedness. This is due to the fact that

two vertices of K are in the same 0-homology class if and only if they are connected
by an edge path. In our case, H0 is isomorphic to Z. This means that the geometric
realization |K| has precisely one connected component.
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2. Persistence

In this chapter we introduce the notion of persistence and its role in homology
theory. The idea of studying the persistence of certain homological features, such
as k-dimensional holes, as a method of studying the topological structure of an
underlying space was first introduced in [14]. We also refer to [3] as one of the main
texts regarding this subject.

Throughout, we study the topological properties of simplicial complexes derived
from a discrete set X ⊂ Rn, also referred to as a finite point cloud or data set. In
addition, we assume d(x, y) to denote the Euclidean distance between points x and
y of Rn.

2.1 Filtrations

In this section we consider filtrations of simplicial complexes. We start giving
some necessary definitions and we proceed to introduce the Čech complex and, closely
related, the Vietoris-Rips complex for a given point cloud. These are the main focus
of this section and the latter will be basic from a computational perspective, since
these complexes will be the ones we use for topological data analysis (TDA).

Let K = (VK ,ΣK) be a simplicial complex. A simplicial subcomplex of K is a
simplicial complex L = (VL,ΣL) such that VL ⊆ VK and ΣL ⊆ ΣK . A filtration of
K is an ascending sequence of simplicial subcomplexes

∅ ⊆ K0 ⊆ K1 ⊆ . . . ⊆ Kr = K.

2.1.1 Čech complexes

For a finite point cloud X, a covering of X is a collection of subsets {Uα}α∈I of
Rn such that X ⊂

⋃
α∈I Uα. The following notion is classical in algebraic topology:

Definition 2.1. Let U = {Uα}α∈I be any collection of sets in Rn. The nerve of U ,
denoted N(U), is the simplicial complex N(U) = (I,Σ) with vertex set I such that:

i) ∅ ∈ Σ;

ii) {α0, . . . , αk} spans a k-simplex if and only if Uα0 ∩ . . . ∩ Uαk
6= ∅.

Definition 2.2. For a point cloud X ⊂ Rn and a real number ε > 0, consider the
open balls Bε(x) = {y ∈ Rn | d(x, y) < ε} for x ∈ X. The nerve of the covering
{Bε(x)}x∈X of X is called the Čech complex attached to X and ε, and will be denoted
by Cε(X).
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This construction is useful towards understanding the “shape” of the point cloud X.
Indeed we have the following result:

Theorem 2.3 (Nerve Theorem). Let U = {Uα}α∈I be a covering of a point cloud
X in Rn such that the intersection of any subcollection of U is either empty or con-
tractible. Then

⋃
α∈I Uα and the geometric realization of the nerve N(U) are homo-

topy equivalent.

We refer to [21, Corollary 4.G.3] for a proof of this result. Since every nonempty
intersection of open balls in Rn is convex and hence contractible, we infer from
the Nerve Theorem that the geometric realization of the Čech complex Cε(X) of a
point cloud X is homotopy equivalent to the union of the collection of open balls
{Bε(x)}x∈X for every ε.

2.1.2 Vietoris-Rips complexes

If we wish to compute a Čech complex, i.e., the list of simplices of a Čech complex
for a given point cloud X, we will find that it is computationally expensive, in the
sense that it requires the storage of various multidimensional simplices. An idea for
dealing with this problem is to construct a complex which can be recovered solely
from the collection of 1-simplices. This suggests the following variant of the Čech
construction, referred to as the Vietoris-Rips complex.

Definition 2.4. For a finite point cloud X and a number ε ≥ 0, the Vietoris-Rips
complex attached to X and ε, referred to as Rε(X), is the simplicial complex with
vertex set X and where a set {x0, . . . , xk} ⊆ X spans a k-simplex if and only if
d(xi, xj) ≤ ε for all 0 ≤ i, j ≤ k.

We note that both complexes are closely related. Indeed, we have the following
inclusions:

Cε(X) ⊆ R2ε(X) ⊆ C2ε(X).

The first inclusion follows from the definitions, and the second one is proved in [3].
We also emphasize the following facts:

• Both the Čech complex and the Vietoris-Rips complex of a point cloud X in Rn

remain invariant under translations of X within Rn. More generally, they are
preserved by any rigid Euclidean motion, including rotations and symmetries.

• While the Čech complex Cε(X) involves information about the ambient Eu-
clidean space, the Vietoris-Rips complex Rε(X) only depends on the table of
pairwise distances d(xi, xj) between the points of X. This is another reason
why Vietoris-Rips complexes are much more often used in practical applications
than Čech complexes.
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For a data set X, let us illustrate an example of the construction of both com-
plexes. We will write ε to be the radius of the balls of the covering of X derived from
the Čech construction, and δ = 2ε will be the distance parameter for the construction
of the Vietoris-Rips complex attached to X.

Example 2.5. Consider S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, the unit circle in R2. Let
X = {v0, v1, v2} ⊂ S1 be a sample of three points. For each ε, we have the attached
Čech complex Cε(X) = (X,Σ), and Σ is composed of the 1-dimensional simplices
[v0, v1], [v1, v2], [v2, v0], and 0-dimensional simplices [v0], [v1], [v2]. Example 1.2 in
the previous chapter yields the homology groups H0 and H1, namely H0(Cε(X)) ∼= Z
and H1(Cε(X)) ∼= Z. This captures the fact that Cε(X) is connected and has one
1-dimensional cycle, which in relation to the underlying space S1 is a fair topological
description.

Figure 2.1: In red, Čech complex attached to {v0, v1, v2} and ε.

On the other hand, we have that the homology group H1 deriving from the
Vietoris-Rips complex associated to the set X and δ is zero. The Vietoris-Rips
complex Rδ(X) = (X,Σ′) attached to X and δ has a similar picture to the one in
Fig. 2.1, the only difference being that in addition to the simplices in Σ, the set
Σ
′ has an additional 2-dimensional simplex, namely the face [v0, v1, v2]. Recall that

[v0, v1, v2] forms a 2-simplex if and only if d(vi, vj) ≤ δ for all i, j. An appropriate
depiction of the Vietoris-Rips complex attached to X would result in filling the red
triangle in Fig. 2.1 (not pictured here). Thus, its corresponding homology groups are
H0(Rδ(X)) ∼= Z and H1(Rδ(X)) = 0. In conclusion, in this example the structure of
the Vietoris-Rips complex is not able to capture the topology of S1.
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2.2 Persistent homology

In this section we introduce the notion of persistence of homological features, i.e.,
k-dimensional holes, and we give some introductory definitions that help structure
the theory of persistent homology, such as persistence modules. We also give standard
graphical interpretations of persistence, together with a classification theorem. For
a more complete exposition, we refer the interested reader to [24].

Definition 2.6. A persistence module is a pair (V, π) where V is a collection {Vt}
(t ∈ R) of finite dimensional vector spaces over a field F, and π is a collection

{
πs,t
}

of F-linear maps πs,t : Vs → Vt for all s ≤ t in R, such that, for s ≤ t ≤ r,

πs,r = πt,r ◦ πs,t.

We say that (V, π) is of finite type is there is a finite set A = {α0, . . . , αk} ⊂ R with
α0 < · · · < αk such that Vt = 0 for t < α0, and the following holds:

1. For every α ∈ A there is an εα > 0 so that if α ≤ s < α + εα then πα,s is an
isomorphism and if α− εα < s < α then the πs,α is not a isomorphism.

2. If x is any real number with x 6∈ A, then there is a δ > 0 such that πs,t is an
isomorphism if x− δ < s ≤ t < x+ δ.

The set A = {α0, . . . , αk} is called the spectrum of (V, π), and its elements are
spectral points.

In our notes, we consider collections of Vietoris-Rips complexes {Rεj (X)}j∈I for
every point cloud X, as described in Definition 2.4, where the parameters εj are those
for which the homology groups of Rεj (X) with coefficients in F suffer changes. Hence
we have a filtration Rεj (X) ⊂ Rεj+1(X) as long as εj < εj+1. Moreover, we have
injective simplicial maps iεj , εj+1 : Rεj (X) ↪→ Rεj+1(X). Taking Vε = H∗(Rε(X);F)

and πεj , εj+1 = (iεj , εj+1)∗ to be the induced F-linear maps in homology, we obtain a
persistence module, which will be referred to as the Vietoris-Rips module of X.

We assume that Rε(X) = ∅ if ε < 0, from which it follows that Vε = 0 for ε < 0.
For ε ≥ 0 we have, by definition,

Vε =

∞⊕
i=0

Hi(Rε(X);F).

Usually, we will only consider Vietoris-Rips modules up to a certain homological
dimension n. Thus, to clarify notation, we write

V n
ε =

n⊕
i=0

Hi(Rε(X);F).

The coefficient field F will be omitted from the notation as it is not relevant towards
our applications.

12



Figure 2.2: Sequence of Vietoris-Rips complexes for a point cloud surrounding an
annulus. As ε increases holes appear and dissappear. Persistent homology studies
the life-span of these holes. Figure adapted from [16].

A morphism f : (V, π)→ (V
′
, π
′
) between persistence modules over a field F is a

collection of F-linear maps ft : Vt → V
′
t such that

ft ◦ πs,t = π
′
s,t ◦ fs whenever s ≤ t.

For a point cloud X, the generators of the k-th homology groups Hk(Rt(X)) for
each value of the parameter t can be used as a means of representing or, better
said, visualizing persistence in X. In order to make this explicit, we introduce the
following notion.

For every interval I = [a, b) ⊂ R with a < b or I = [a,∞), we define a persistence
module F(I) as follows:

F(I)t =

{
F if t ∈ I
0 otherwise,

with πs,t = id if s, t ∈ I and πs,t = 0 otherwise. Such persistence modules are called
interval modules. Their spectrum is {a, b} if I = [a, b), or {a} if I = [a,∞). We can
also consider the direct sum of persistence modules (V, π), (V

′
, π
′
), which results in

a persistence module (W, θ), where Wt = Vt ⊕ V
′
t for all t, and θs,t = πs,t ⊕ π

′
s,t for

all s, t. Also, for every positive integer m we denote

F(I)m = F(I)
m

⊕ · · ·⊕ F(I),

so F(I)m also becomes a persistence module.
The following result states that we can decompose a persistence module (V, π)

into a direct sum of interval modules.
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Theorem 2.7 (Normal Form Theorem). For every persistence module (V, π) of finite
type over a field F, there is a finite collection of intervals {Ii}Ni=1 with Ii = [ai, bi)

or Ii = [ai,∞) for each i, such that Ii 6= Ij if i 6= j, and there is an isomorphism of
persistence modules

V ∼=
N⊕
i=1

F(Ii)
mi , (2.1)

where m1, . . . ,mN are positive integers.

Proof. We are going to give a proof of this theorem, based on the structure theorem
for principal ideal domains.

Let R be a principal ideal domain and let M be a finitely generated R-module.
Then the following holds:

1. M can be written as a direct sum of R-modules

M ∼= R/(d1)⊕ · · · ⊕R/(ds)⊕Rk,

where all di’s are non-zero and non-units of R, and di|dj for all i ≤ j.

2. The elements k and d1, . . . , ds are uniquely determined by M .

The summand Rk is referred to as the free part of M and the other summands are
torsion submodules. Now, we want to adapt this result to finitely generated graded
F[t]-modules, where F[t] is the polynomial ring on a variable t with coefficients in F.

We say that a module M over a graded commutative ring R = ⊕iRi for an
index set I is a graded module if it is a direct sum of modules

⊕
i∈IMi satisfying

RiMj ⊆Mi+j .
If M is a finitely generated N-graded module over the polynomial ring F[t], for

any field F, then

M ∼=
n⊕
i=1

T piF[t]⊕
( m⊕
j=1

T qjF[t]/(trj )
)

(2.2)

for some collection of integers pi ≥ 0, qj ≥ 0 and rj ≥ 1. Here T kF[t] denotes an
upward shifted graded module, i.e., the graded module F[t] with a translation of k
units in its degree. Moreover, this decomposition is unique up to a permutation of
the summands.

The proof of (2.2) is a variation of the standard proof in the non-graded case.
Details can be found in [26]. Another useful source is [6, Theorem 2.1].

Let us focus on understanding this result in the context of persistence modules.
Let (V, π) be a persistence module with spectrum A = {α0, . . . , αk} for a0 < · · · < ak.
Consider the vector space V∗ = Vα0 ⊕ · · ·⊕Vαk

. We define an action of F[t] on V∗ by

t · v = παi, αi+1(v) if v ∈ Vαi , and t · v = v if v ∈ Vαk
. (2.3)

In this way, V∗ becomes an N-graded F[t]-module, with Vαi in degree i and Vαk
in

degrees bigger than or equal to k. Thus, we can apply (2.3) to infer (2.1).
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Indeed, applying (2.3) to the persistence module (V, π), we obtain

V ∼=
n⊕
i

tbi · F[t]⊕

(
m⊕
j

trj ·
(
F[t]/(tsjF[t])

))
. (2.4)

The free portions of (2.4) are in bijective correspondence with those basis vectors
which come into existence at parameter bi and which persist for all future parameter
values. The torsional elements correspond to those basis vectors which appear at
parameter rj and disappear at parameter rj +sj . In other words, there is a bijection
between the summands and the corresponding interval modules. Hence, we obtain
an equation as in (2.1).

Another proof for this theorem can be found in [9].
Let us interpret this result in the case of Vietoris-Rips modules. The spectrum

of the persistence modules F(Ii) determines certain intervals [ai, bi) where 0 ≤ ai ≤
bi ≤ ∞. So, each interval [ai, bi) represents the “life-span” of a homology generator
and the integers m0, . . . ,mn represent the multiplicity of every interval with respect
to the generators. In other words, if s generators are “born” at the same parameter
t and “die” at the same parameter t + ε, then we say that the interval I = [t, t + ε)

has multiplicity m(I) = s. We want to remark these last two concepts, namely the
birth and death of homology generators, so we will properly define them.

Definition 2.8. Let (V, π) be a persistence module. We say that a basis vector
v ∈ Vt is born at parameter t if, for every ε > 0, the map Vt−ε → Vt does not contain
v in its image. Similarly, we say that v ∈ Vt dies at parameter t + s if for every
0 < ε < s the map Vt → Vt+ε sends v to a nonzero element but v is in the kernel of
the map Vt → Vt+s.

The notion of birth and death remains as one that can be understood intuitively.
Figures 2.3 and 2.4 illustrate the birth and death of k-dimensional homology gener-
ators.

One of the main advantages of persistent homology is that we can visualize the
birth and death of the homology features considered. In the following sections we
will describe tools such as barcodes, persistence diagrams and persistence landscapes.
There is a clear relationship between them, in the sense that they all store similar
information extracted from a data set.
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2.3 Persistence barcodes and diagrams

The parameter intervals arising from Theorem 2.7 inspire a visual snapshot of
H∗(Rεi(X)) for a collection {εi}i∈I in the form of a barcode. A barcode is a graphical
representation of H∗(Rεi(X)) as a collection of horizontal line segments in a plane
whose horizontal axis corresponds to the values of the parameter and whose vertical
axis represents an (arbitrary) ordering of homology generators. Figure 2.4 gives
a barcode representation of how the different k-dimensional homology generators
appear and disappear as the parameters εi increase.

Now, for a fixed εi, we can pair every generator for H∗(Rεi(X)) with birth-death
coordinates (bi, di), and draw what we name a persistence diagram. Formally, from
(2.1), if we write Ii = [bi, di) we can describe the persistence diagram as the set

D = {(bi, di) | i ∈ I} ⊂ R2.

It is convenient to add to each persistence diagram all the points of the diagonal
∆ = {(b, d) | b = d} with infinite multiplicity. If we do so, the persistence diagram D
is referred to as the decorated persistence diagram. Moreover, we denote byD′ = D\∆
the persistence diagram without the diagonal ∆, also referred to as the undecorated
persistence diagram [9].

Figure 2.3: In Fig. 2.2 we can visualize a barcode for generators of Hk(Rε(X), for
k = 0, 1, 2 and ε ≥ 0. By mapping each interval to its endpoints we obtain the
corresponding persistence diagram. Figure adapted from [16].
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Figure 2.4: Illustration of the Vietoris-Rips scheme with attached barcode represen-
tation (details are given in the text). Figure adapted from [8].

An interpretation of Figure 2.4 can be that, for each parameter ε, we illustrate the
corresponding “inflated” set and its persistence barcode on the right. The homology
groups in (e) are stable; hence, for the associated parameter ε, we illustrate a final
barcode representation for H0(Rε(X)) (red) and H1(Rε(X)) (blue). To its right we
depict the associated persistence diagram, matching the ends of parameter intervals
for H0 and H1. We note that the parameter intervals for H0 have the property
that all generators are born at ε = 0; this is because H0 measures connectedness
and every point can be seen as a generator; thus, when we match intervals of H0,
the associated points on the persistence diagram will have the same x-coordinate,
which represents the birth of a generator. Any other barcode associated to Hk (for
k greater than 0) yields points p = (b, d) on the persistence diagram with different
coordinates, although always d > b, and so all points will be above ∆.

2.4 Persistence landscapes

Although the persistence landscape is a particular tool for illustrating persistent
homology, it will be our main focus in these notes and we must dedicate a whole
section to define some of its properties and the role of statistics in the persistent
landscape paradigm. We reference the reader to [1] for a more detailed introduction
to persistence landscapes, followed by [2].
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Definition 2.9. Suppose given a persistence module (V, π) and let D = {(bi, di)}i∈I
be its associated persistence diagram. For each birth-death point (bi, di) in D, we
define a piecewise linear continuous function

f(bi,di)(x) =


x− bi if bi < x ≤ bi+di

2

−x+ di if bi+di2 < x < di

0 otherwise.

Then, the function Λ: N× R −→ R given by

Λ(k, x) = kmax{f(bi,di)(x)}i∈I

is called the persistence landscape function associated to the persistence diagram D,
where kmax denotes the k-th largest value of a set.

Remark 2.10. By definition, if k > |I|, then the value of kmax is zero.

In this definition we followed [8]. For other equivalent definitions of persistence
landscapes, we refer to [1, 2]. Formally, a persistence landscape may also be viewed
as a sequence of functions λ1, λ2, . . . : R → R, where λk(x) = Λ(k, x) is called the
k-th persistence landscape function of D. Each function λk is piecewise linear with
slope either 0, 1, or −1. The critical points of λk are those values of x at which the
slope changes. The set of critical points of the persistence landscape Λ is the union
of the sets of critical points of the functions λk.

Figure 2.5: On the left, persistence diagram associated to Fig. 1 in [1]. On the right,
its corresponding persistence landscape.

An overview of the persistence landscape associated to a given data set is illus-
trated in Fig. 2.5, top right. We can interpret the k-th persistence landscape λk(x) as
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the value of the largest radius interval centered at x contained in the associated bar-
code of Λ. This is illustrated in Fig. 2.5, bottom right. Furthermore, for a persistence
landscape Λ derived from a persistence diagram D, the k-th persistence landscape
function λk has the following properties:

1. λk(x) ≥ 0 for all x;

2. λk(x) ≥ λk+1(x) for all x.

These follow directly from the definition. Indeed, for every birth-death point p in D,
we have the associated piecewise linear function fp which has image Im(fp) ⊆ R≥0.
Thus, for every k we have that kmax{f(bi,di)(x)}i∈I ≥ 0. The second property follows
directly from the fact that λk = kmax{f(bi,di)}i∈I ≥ (k + 1)max{f(bi,di)}i∈I = λk+1.
For a more detailed exposition of properties of persistence landscapes, we reference
the reader to [1, 2].

Choosing to work with persistence landscapes instead of persistence diagrams is
not arbitrary. Certainly, the geometry of the space of persistence diagrams makes
it hard to work with. In contrast, the space of persistence landscapes can be very
nice. For instance, persistence landscapes are elements of a Banach space. Hence
working with norms of persistence landscapes is an advantage, as we will see below.
But first, let us recall some basic concepts of real functional analysis.

Recall that, for a given measure space (S,A, µ) and a function f : S → R defined
µ-almost everywhere, one defines, for 1 ≤ p <∞, the Lp-norms

‖f‖p =
(∫
|f |p dµ

)1/p
and

‖f‖∞ = sup
x∈S
|f(x)| = inf {a | µ{s ∈ S : f(s) > a} = 0}.

Moreover, for 1 ≤ p ≤ ∞, we have a Banach space

Lp(S) = {f : S → R | ‖f‖p <∞},

and define Lp(S) = Lp(S)/∼, where f ∼ g if ‖f − g‖p = 0. Using these concepts,
we can define the persistence landscape norm, as follows.

Definition 2.11. Let Λ: N× R→ R be a persistence landscape function. Suppose
that on N × R we use the product of the counting measure on N and the Lebesgue
measure on R. Then, for 1 ≤ p <∞, we define

‖Λ‖p =
∞∑
k=1

‖λk‖p (2.5)

where λk(t) = Λ(k, t), and ‖λk‖p denotes the standard Lp-norm of λk.

Thus, we can endow the space of persistent landscapes with the norm (2.5) and
the set of persistence landscapes becomes a subset of the Banach space Lp(N× R).
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2.4.1 Statistics with landscapes

Here, we discuss briefly some facts about probability in Banach spaces. These
will be used in Chapter 4 to prove results on persistence landscapes derived from
random data sets with a certain distribution.

Let B be a real separable Banach space with norm ‖ · ‖ and let (Ω,F , P ) be a
probability space. Let V : (Ω,F , P ) → B be a Borel random variable with values
in B. The composite

‖V ‖ : Ω
V−→ B ‖·‖−→ R

is a real-valued random variable. Let B∗ denote the topological dual space of con-
tinuous linear real-valued functions on B. For f ∈ B∗, the composite

f(V ) : Ω
V−→ B f−→ R

is also a real-valued random variable. If we denote Y = f(V ), the mean or expected
value of Y is given by

E(Y ) =

∫
Y dP =

∫
Ω
Y (ω) dP (ω).

We call an element E(V ) ∈ B the Pettis integral of V if E(f(V )) = f(E(V )) for
all f ∈ B∗. Now, for a sequence (Yn)n∈N of B-valued random variables, we say
that (Yn)n∈N converges almost surely to a B-random variable Y if there exists a null
probability set N ∈ F such that

lim
n→∞

Yn(ω) = Y (ω) if ω /∈ N .

Proposition 2.12. Let V be a B-valued random variable. If E(‖V ‖) < ∞, then V
has a Pettis integral and ‖E(V )‖ ≤ E(‖V ‖).

Theorem 2.13 (Strong law of large numbers). Let V1, . . . , Vn be independent and
identically distributed B-valued random variables, and Sn = V1 + · · ·+ Vn. We have
that 1

nSn → E(Y ) almost surely if and only if E(‖V ‖) <∞.

Details for these results are given in [22].
For a given probability space (Ω,F , P ), let X be a multivariate random variable

with corresponding persistence landscape Λ. By this we mean that, for ω ∈ Ω, X(ω)

is a data set and Λ(ω) is the corresponding persistence landscape derived from the
homology generators of the associated Vietoris-Rips module of X(ω). In this sense,
we interpret the persistence landscape as a Banach space valued random variable
Λ(ω) : Ω→ Lp(N× R).

Let X1, . . . , Xn be independent and identically distributed copies of X, and let
Λ1, . . . ,Λn be the corresponding persistence landscapes. Using the vector structure
of Lp(N×R), Bubenik defines in [1] the mean landscape Λ, as given by the pointwise
mean

Λ(k, t) =
1

n

n∑
i=1

Λi(k, t). (2.6)
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If B1, . . . , Bn are the barcodes associated to the persistence landscapes Λ1, . . . ,Λn,
then, for k ∈ N and t ∈ R, the value of the mean landscape Λ(k, t) can be interpreted
as the average value of the largest radius interval centered at t that is contained in
k intervals in the barcodes B1, . . . , Bn.

Now, if we consider Λ to be a Lp(N×R)-valued random variable, the composite
‖Λ(ω)‖ is a real valued random variable and we can rewrite Theorem 2.13 to be
understood in terms of persistence landscapes.

Theorem 2.14. Let Λ1, . . . ,Λn be independent and identically distributed copies
of Λ. Then, Λ→ E(Λ) almost surely if and only if E(‖Λ‖) <∞.

Proof. Direct from Theorem 2.13.
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3. Topological Data Analysis of
finite data sets

In this chapter we describe our method, analogous to the method used in [19],
whose purpose is to analyze some given mixture of data sets using TDA; although
very promising, this method still remains to be thoroughly tested.

3.1 Method

Here, we state briefly the structure of our method. This procedure is done using
R as our main programming language. The main R-packages we use are “TDA” and
“fda.usc”, for computing persistent homology and calculating Lp norms of persistence
landscapes, respectively. Regarding the former, we refer the reader to [15] for a full
description of this package. Here, we do not distinguish the method for any particular
p, moreover we assume the choice of p to be dependent on the application itself.

We will describe this method using a step-by-step structure, as follows:

1. Embedding of a collection of data sets.

2. Studying the persistent homology of point clouds.

3. Lp norm process.

3.2 Embedding of a data set

Our method requires an embedding of a finite collection of data sets {Si}i∈I into
a space X. We note in advance that further in these notes we will be referring to the
collection {Si}i∈I as a family of discrete time series. With this in mind we describe
this procedure to be applicable to any type of data sets.

Given a finite collection {Si}i∈I , we define an embedding, namely mixture embed-
ding, where we wish to embed a finite number N = |I| of data sets into RN . Here,
we define a data set to be a function Si : A ⊂ N → R for every i ∈ I. This mixture
embedding is done using a sliding window technique, which generates point clouds
of a certain window-size w, i.e., we generate point clouds of w points. Furthermore,
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for a fixed t ∈ A and a window-size w, we have a point cloud X in RN given by

SWw,Nf(t) =


f(t)

f(t+ 1)
...

f(t+ w − 1)


where f : A→ RN , f(t) = (S1(t), . . . , SN (t)). Thus, every point cloud is given by a
w×N matrix, where the number of columns N is the number of data sets N involved
in our analysis, and the number of rows w is the size of the sliding window. A more
detailed description of this method can be found in [20].

3.3 Studying the persistent homology of point clouds

For every point cloud X generated, we use the R-package “TDA” to compute
its persistent homology. To do this, we use the function “ripsDiag”, which returns,
in particular, the corresponding persistence diagram up to a chosen homological
dimension. Recall that we can consider the persistence module V n

ε to be the Vietoris-
Rips module corresponding to a certain homological dimension n. Formally, the
function “ripsDiag” computes the persistent homology of the Vietoris-Rips module

V n
ε =

n⊕
i=0

Hi(Rε(X)),

ranging the scale parameter ε from 0 to a chosen maximum. The algorithm imple-
mented by this package constructs the simplices using the Vietoris-Rips complex.
This results in faster computations in comparisson to computing the simplices using
the Čech construction. One of the outputs of this function is the encapsulation of
persistent homology into its corresponding persistence diagram. Subsequently, for
every stored persistence diagram we use the function “landscape” from the R-package
“TDA” to compute its corresponding k-th persistence landscape.

3.4 Lp norm process

The function “landscape” receives as inputs a persistence diagram, a number
k which determines which k-th persistence landscape we choose to evaluate, the
dimension d of the topological features we want to consider (in our case we usually
choose d = 1), and in addition we also choose the length l of a sequence which will
determine the number of values of λk that the function returns. The output is a
numeric l× 1 matrix containing the values of the evaluated k-th landscape function.

Our method consists of computing the Lp norms for the persistence landscapes Λ

derived from the point cloud X. To do this, we need to determine the sum of Lp norms
for every k-th persistence landscape function of Λ. In practice, for every resulting
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table of values corresponding to a λk, we will use the package “fda.usc”, which has
the tools to approximate the Lp norm of our discretized function λk. In addition,
if our window size is small enough, we can reduce the infinite sum

∑∞
k=1 ‖λk‖p to a

very manageable size, since for a finite number of points in the persistence diagram
the sum will always be finite, i.e., we can choose a fixed number of k-persistence
landscape functions to compute the norm ‖Λ‖p.

The last step in our procedure consists of illustrating a time series or process to
depict the Lp norm fluctuation. Once we have built our process, we can study its
statistical properties, i.e., variance, spectral density, lags, etc. We note that, to ease
computation, in our examples we used p = 1 for computing the norms to quantify the
combined data sets behavior, though this can be done using any p-norm, as defined
in (2.5).

Figure 3.1: R-script drawn from a test on independent Normal distributed data sets.
Details are given in Chapter 4.
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4. Testing on synthetic time series

From the practical perspective, we will test whether a growing variance of a
data set born from trajectories of random distributed variables leads to an increase
in values of L1 persistence landscape norms. This is done as a means of verifying
the accountability of the method proposed by Guidea and Katz [19], as they did
also. Given we want to analyze financial time series, these experiments are done
naturally, in the sense that as we increase the variance, we are trying to mimic a
more “heated” state of the market. In addition, we prove some of the smaller results
obtained experimentally in that paper and, thus, adding to the credit that persistent
homology can be used as a means of studying the shape of abstract data.

The empirical tests are done using Monte Carlo methods, where we perform mul-
tiple random samplings from a random variable to obtain some type of deterministic
result.

4.1 Normal distributed variables with a growing variance

Closely following [19], we test the method to check the effect of a growing variance
on a data set born from normal distributed variables. We start by generating four
independent series born from the drawing of 50 trajectories from normal distributed
variables N (0, σ2). The idea is that the values of σ are considered in an increasing
order from 1 to 10, and for every σ, we embed our series in R4, obtaining a 50-point
data set. Now, for every point cloud born from a fixed σ we apply the method dis-
cussed and obtain the corresponding L1 norm. Thus, these simulations are repeated
various times and at the end of every realization for a given σ, we compute the mean
of values of the obtained norms. We run a total of 10 realizations as described and
analyze the results graphically, as seen in Figure 4.1.
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(a)

(b)

Figure 4.1: Plots of Monte Carlo simulations, 400 iterations, derived from inde-
pendent Normal distributed data sets. Figure (b) shows of the dependency of the
L1 norm on the growing standard deviation and (a) shows the dependency on the
corresponding growing variance.

Noticeably, as σ increases, there is quadratic dependency of the L1 norm with
respect to the standard deviation σ. This implies that, as we can observe, there is
associated linear growth of L1 with respect to σ2.
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In other words, for a fixed number of simulations N , if we define Λiσ2 to be the
persistence landscape derived from the i-th simulation for a given σ2, we have that

1

N

N∑
i=1

‖Λiσ2‖1 ≈ σ2 · 1

N

N∑
i=1

‖Λi1‖1,

where ‖Λiσ2‖1 denotes the L1 norm of the persistence landscape. So, as was observed
in [19], for a growing number of iterations, the mean of norms of persistence land-
scapes converges towards a linear increasing function of the average variance of the
distributions.

4.2 Scaled Student t-distributed variables

As we will see further in these notes, the Scaled t-distribution is considered to
be a more accurate distribution to model the returns of financial markets. Thus, it
makes sense to test whether persistence homology is accurately able to measure a
growing volatility in a Scaled t-distributed variable.

First, let us start by describing a variable following a Student t-distribution. We
say that T follows a Student t-distribution with ν degrees of freedom if it arises when
estimating the mean of a normally distributed population when the sample size is
n = ν + 1 and the population’s standard deviation is unknown. Its shape is bell
curved, like that of the normal distribution, but it is characterized for having “heavy
tails”, informally this means that trajectories drawn from T are more prone to fall
far from the mean. Now, if we define the random variable X = µ̂+ σ̂T , we have that
X follows a scaled Student t-distribution. Moreover, this family is multiparametric,
meaning the distribution of X depends on multiple parameters, namely its degrees
of freedom ν, the location parameter µ̂ and the scaling factor σ̂.

In regards to our experiment, we test whether a growing scaling factor for a
fixed ν and location parameter µ̂ = 0, describes a deterministic behavior for values
of L1 norms of the corresponding persistence landscapes. Aside from changing the
distributions, our test is done analogously as in the previous section. In this case,
we grow the scaling factor σ̂ from 1 to 20 for a fixed number of degrees of freedom
ν = 4. We note that the choice of ν is somewhat arbitrary, as our goal is to test
the behavior of L1 norms in regards to a scaling factor. We also observe that, for
ν < 2 the variance is not defined, since V(X) = σ̂ν/(ν − 2); hence we carried out
tests with ν > 2. Computations done with ν < 2 have not resulted deterministic in
value, this fact seems intuitively plausible, since for undefined variance the random
nature of the variable is too high to generate predictable data sets. On the other
hand and interestingly enough, for undefined variance there still exists a real value
for L1 persistence landscape norms.
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(a)

(b)

Figure 4.2: Plots of a Monte Carlo simulation, 400 iterations, derived from indepen-
dent scaled Student-t distributed data sets. For a fixed number of degrees of freedom,
Figure (b) shows of the dependency of the L1 norm on the growing standard deviation
and (a) shows the dependency on the corresponding growing variance.
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4.3 Some properties of persistence landscapes

Our goal is to formalize the results obtained in the previous tests, and see if we
can characterize this behavior in general. We derive a theorem that, under some
conditions, describes well the behavior of the expected L1 norm of a persistence
landscape constructed as in the previous tests. We note that, for this result to hold,
the persistence module must be derived from the Vietoris-Rips construction.

Theorem 4.1. Let (Ω,F , P ) be a probability space and X denote a multivariate
random variable such that X(ω) = {X1(ω), . . . , XN (ω)} describes an N -point data
set in Rd, where Xi : Ω → Rd. So, for 1 ≤ i ≤ N , Xi is a multivariate random
variable with distribution D(µ, Id · σ2). Assume that D has the following properties:

i) D is symmetric;

ii) σ2 ∈ [0,∞);

iii) for a certain scaling factor h, hD(µ, σ2) ∼ D(µ, h2σ2).

Then,
E(‖Λh2σ2(ω)‖1) = h2 · E(‖Λσ2(ω)‖1).

Here, we consider the persistence landscape Λσ2 to be a Banach space valued random
variable as described in Chapter 2, born from the data set X(ω).

In order to prove this result, we will have to work on some useful propositions
that will greatly simplify our explanation. From this point on, we assume X to be a
finite point cloud in Rd as described in the theorem. Moreover, we note that every
point Xi of X can be written as X(i) = (Xi

1, . . . , X
i
d), where for every 1 ≤ j ≤ d,

Xi
j ∼ D(µ, σ2). In other words, the coordinates of every point are also independent

and identically distributed random variables, and when we write V(X) = σ2, we are
denoting the variance of Xi

j .
For a given landscape Λ, we know that its Lp norm is defined by ‖Λ‖p =∑∞
k=1 ‖λk‖p, where λk is the k-th persistence landscape function of Λ. It would

seem obvious that, for a finite data set, this sum is finite. Indeed, to prove this we
must show that for t large enough, the terms ‖λk‖p are zero for all k ≥ t. First,
let us consider the associated persistence diagram D∗ = {(bi, di) | i ∈ I} \ ∆. If
|I| < ∞, then we have that for a certain value t such that k > t ≥ |I|, Λ(k, x) =

kmax{f(bi,di)(x)}i∈I = 0. In other words, if the number of points of the persistence
diagram D∗ is finite, then there exists t such that λk = 0 for all k ≥ t and hence,
‖λk‖p = 0. Now, from Theorem 2.7, we have that the number of points of D∗ is di-
rectly related to the number of k-th homology generators of the persistence module,
and we deduce that for a finite number of points in a data set then the number of
points in the corresponding persistence diagram is also finite.

Now it would be nice to prove that, with the assumptions made on X, the expected
value E(‖Λ‖1) is finite. To do this, we need the following result.
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Proposition 4.2. Let Λ denote the persistence landscape derived from X. Then,

E(‖λ1‖1) ≤ N · d · σ2,

where N denotes the number of points of X, d is the dimension of the embedding
space Rd, and σ is the standard deviation of the distribution associated to X.

Proof. Let D∗ denote the undecorated persistence diagram associated to Λ. From
previous arguments we have that |D∗| < ∞. Thus, there are a finite number of
points pi = (bi, di) ∈ D∗ so that we can define εb = min

s
{bs} and εd = max

l
{dl} to be

the minimum parameter at which a generator is born and the maximum parameter
at which a generator dies, respectively. Now, we consider the function

f̃(x) := f(εb,εd)(x) =

x− εb if x ∈ (εb,
εb+εd

2 ]

−x+ εd if x ∈ ( εb+εd
2 , εd).

Recall that in Chapter 2 we defined the function fpi for every pi so that λk =

kmax{fpi}i∈I . Hence, it is easily deduced that dom(λ1) = dom(f̃) =: S ⊂ R, since
λ1 = max{fpi}i∈I . Moreover, f̃(x) ≥ λ1(x) for all x ∈ S. Taking integrals on both
sides, ∫

S
f̃(x) dx ≥

∫
S
λ1(x) dx,

since f̃(x) ≥ λ1(x) ≥ 0. Subsequently, we deduce the following

‖f̃‖1
(1)
=

(εd − εb)2

4
≥ ‖λ1‖1. (4.1)

Equality (1) results from the fact that we are computing the area of the triangle of
basis (εb − εd) and height ( εd−εd2 ). Now, since Vietoris-Rips complexes are invariant
under translations, we may assume that the point cloud X is centered at 0. We have
the following chain of inequalities:

‖λ1‖1 ≤
(εd − εb)2

4

(2)

≤ max
1≤i≤N

(d2(Xi, 0))
(3)
= max

1≤i≤N

( d∑
j=1

Xi2

j

)
.

Inequality (2) comes directly from the fact that (εd − εb) ≤ 2 · max
1≤i≤N

(d(Xi, 0)) = r.

In other words, the distance between two points of X inside the disc D(0, r) =

{x ∈ Rd | d(x, 0) ≤ r} will never surpass 2r. For (3), we compute the vector norm
‖ max

1≤i≤N
(d2(Xi, 0))‖22. Now, taking expected values on ‖λ1‖1 and max

1≤i≤N

(∑d
j=1X

i2
j

)
,

E(‖λ1‖1) ≤ E( max
1≤i≤N

( d∑
j=1

Xi2

j

)
) ≤ E

( N∑
i=1

d∑
j=1

Xi2

j

)
≤ N ·

d∑
j=1

E(X2)
(4)
= N · d · σ2,

where (4) comes from the fact that V(X) = E(X2) + E(X)2. Since X is centered
at 0, we have that E(X) = 0 and V(X) = σ2.
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Given the propositions above, the next step is to prove that the expected value
of the L1 norm of a persistence landscape derived from X is finite. We came up with
the following result:

Theorem 4.3. Let X denote a multivariate random variable with distribution D

such that X(ω) describes an N -point data set in Rd. Assume D has the following
properties:

i) D is symmetric;

ii) σ2 ∈ [0,∞);

iii) for a certain scaling factor h, hD(µ, σ2) ∼ D(µ, h2σ2).

Let Λ be the persistence landscape derived from X. Then,

E(‖Λ‖1) ≤ N2 · d · σ2.

Proof. From previous deductions, we have that
∑N

i=1 ‖λi‖ has a finite number of
terms N , and from Proposition 4.2, E(‖λ1‖1) < N · d · σ2. So, we can write the
following chain of inequalities:

E(‖Λ‖1) = E
( N∑
i=1

‖λi‖1
)

=
N∑
i=1

E(‖λi‖1)
(1)

≤ N · E(‖λ1‖1) ≤ N2 · d · V(X).

Inequality (1) is due to the property λk ≥ λk+1 mentioned in Chapter 2.

Our last step before proving Theorem 4.1 involves studying what results from
scaling a point cloud, in regards to its associated persistence landscape norm ‖Λ‖1.

Proposition 4.4. Let X denote a finite point cloud in Rd with associated persistence
landscape ΛX , and H : Rd → Rd be a homotecy such that H(X) = h·X =: X

′. Then,

‖ΛX′‖1 = h2 · ‖ΛX‖1. (4.2)

Proof. Consider D, D′ to be the corresponding persistence diagrams for X,X ′ , re-
spectively. Then, for every i ∈ I, Pi ∈ D becomes hPi ∈ D

′ . Indeed, for any
k-simplex σ = [p0, . . . , pk] in the Vietoris-Rips complex attached to X at parame-
ter α, it has to be so that d(pi, pj) < α for all i, j. So, when we apply H we have
that σ = [p0, . . . , pk] becomes σ′ = [hp0, . . . , hpk] and if σ is formed at α, then σ

′

is formed at h · α. Thus, |D| = |D′ | and every point in D is scaled by h in D′ .
Furthermore, for every fPi associated to the persistence landscape of X, we have
that fPi 7→ fhPi

and so, ΛX becomes hΛX . Now, for a fixed k, recall that we denote
ΛX(k, x) = λk(x) to be the k-th persistence landscape function of ΛX , so we can
write ΛX′ (k, x) := hΛX(k, x) = λ

′
k(x). Moreover, we have the associated domains in

R2, Ωk = {(x, y) | x ∈ dom(λk), y ≤ λk(x)} and for X ′ , the new scaled domain is
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h · Ωk =: Ω
′
k = {(x, y) | x ∈ dom(λ

′
k), y ≤ λ

′
k(x)}. Since the L1 norm measures the

area, we can write

‖ΛX′‖1 =

∫
Ω
′
k

1 · d(x, y) = h2 ·
∫

Ωk

1 · d(s, t) = h2 · ‖ΛX‖1.

We note that this relation results from a simple change of variables,

x = h · s→ dx = h · ds
y = h · t→ dy = h · dt.

This completes the proof.

Given these results, we can begin the proof of Theorem 4.1:

Proof. Theorem 4.1. Let H denote a homotecy such that H : Rd → Rd, so X 7→ h ·X.
From the assumptions made, we can safely deduce that for every point Xi ∈ X we
have H(Xi) = h · Xi ∼ D(µ, h2σ2). From this point forward we will be using
the following notation terms indistinguishably: ΛX(ω) = Λσ2(ω) and Λh·X(ω) =

Λh2σ2(ω).
Let X1, . . . ,Xn denote independent identically distributed copies of X, and let

Λ1
X, . . . ,Λ

n
X be the corresponding persistence landscapes. Now, without losing gen-

erality, we can assume µ = 0. Proposition 4.4 implies that

1

n

n∑
i=1

‖Λih2σ2(ω)‖1 = h2 1

n

n∑
i=1

‖Λiσ2(ω)‖1, (4.3)

since for every landscape Λiσ2 we have the corresponding scaled persistence landscape
Λih2σ2 . From Theorem 4.3 we have that the expected values E(‖Λiσ2‖1), E(‖Λih2σ2‖1)

are finite. Hence, we can apply Theorem 2.13 (Strong Law of Large Numbers), and
we obtain

1

n

n∑
i=1

‖Λih2σ2(ω)‖1 −→ E(‖Λh2σ2‖1) a.s.

h2 1

n

n∑
i=1

‖Λiσ2(ω)‖1 −→ h2 · E(‖Λσ2‖1) a.s.

So, taking limits in (4.3), we obtain

E(‖Λh2σ2‖1) = h2 · E(‖Λσ2‖1),

as we claimed.
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5. Modeling financial markets and
empirical analysis on European
stock indices

Many theories have been written over the years about modeling the underlying
distribution (if there is any) of stock price returns. Osborne’s research in [23], to-
gether with others, led to believe that equity prices follow a geometric Brownian
motion. If we consider small windows in time, i.e., days, weeks, months, this model
implies that the distribution of share price changes should follow a normal distri-
bution. Although, it is widely accepted that share price changes are not normally
distributed; a modern approach is considering the Student t-distribution to model
the behavior of price changes, as seen in [25]. In this chapter, we will introduce
some basic concepts on Brownian motion and it’s derived financial models. From a
practical perspective, we will describe a new type of econometric analysis on various
stock price indices. This procedure closely follows [19] and is, in fact, an attempt to
replicate the results obtained in that paper.

5.1 Some financial models

In this section, we study some basic applications of financial modeling. Financial
markets are best understood as an abstract (simplified) representation of any type of
investment, where one can understand results derived from a synthetic deterministic
nature and try to extrapolate results to the real world.

Modeling financial markets usually makes sense in terms of stochastic processes.
In our case, we are working with models that describe the logarithmic returns of a
certain price evolution, so we feel it is necessary to properly define this notion.

Definition 5.1. A stochastic process in a probability space (Ω,F , P ) is a function

X : Ω× T −→ R
(ω, t) 7−→ Xt(ω)

such that X is measurable, that is to say X−1(B) ∈ F × B(T ), for all B ∈ B(R)

where B(R) denotes the Borelians of R.

In this sense, a stochastic process is a function that does not only depend on the
time t, but also on a trajectory ω of the probability space. From this point forward,

33



we assume all financial processes considered to be stochastic processes, in the sense
that when we describe a process of prices S(t) we are assuming it to be defined as
above.

5.1.1 Osborne-Samuelson model

Let’s assume we have a model of a series of prices in the form of a continuous time
stochastic process S = {St}t>0 in such a way that every St be a random variable that
represents the price at time t and so, Sti = si, for any i = 0, . . . , n. If we take into
account daily variations of a price, this quantity is relative to the order of magnitude
of said price. Therefore, it is natural we consider the relative variation of the price
change, the so called returns

ri =
si − si−1

si−1
. (5.1)

Moreover, we define the stochastic process X = {Xt}t>0, where Xt = logSt. This
process represents the so called log price process. In our approach, we are interested
in considering the following series Y = {Yn}n∈N, called the log return process, where
Yn = Xn − Xn−1; in other words, Y describes the increments of X at given times
t0, . . . , tn. Considering the process {Yn}n∈N is justified in the sense that from (5.1)
we have

si − si−1

si−1
=

si
si−1

− 1 ≈ log(si)− log(si−1) = Xt −Xt−1.

Before we dive into the Osborne-Samuelson model, it is important we define the
concept of Wiener process, also referred to as Brownian motion.

Definition 5.2. A Wiener process Wt is a stochastic process characterized by the
following properties:

1. W0 = 0.

2. For every t > 0, the future increments Wt+υ −Wt, u ≥ 0, are independent of
the past values Ws s < t.

3. W has Gaussian increments: Wt+υ − Wt is normally distributed with mean
µ = 0 and variance υ, Wt+υ −Wt ∼ N (0, υ).

4. W has continuous paths: Wt is continuous in t.

Osborne-Samuelson’s model assumes that the price process S evolves as a geo-
metric Brownian motion, that is,

St = s0e
αteσWt , t ≥ 0,

where s0 is the current price, α is a real parameter, σ is positive andW is a standard
Brownian motion. Note that this is equivalent to assume

Xt = x0 + αt+ σWt,
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where x0 = log s0. Now, taking equally spaced observations we have the increments
of the process X,

Yn = α+ σ(Wn −Wn−1), n ≥ 1. (5.2)

Thus, according to the Osborne-Samuelson model, a series of daily log returns
yi = xi − xi−1 must be sampled from a normal random variable with mean α and
standard deviation σ. From (5.2), it is equivalent to say that Y follows a distribution
with density

f(y) =
exp(−y2/2σ2τ)√

2πσ2τ
, (5.3)

where σ2 is the variance of y over unit time intervals and y is the difference of
log returns over a time interval τ . In physics, regarding Brownian motion, σ2 is
proportional to the temperature of the gas under discussion. Thus, by analogy,
we can think of the “temperature” of the share market as being a variable which
represents the degree of activity or energy of the markets, namely σ2.

Based on our results in Chapter 4, we conclude that persistent homology as-
sertively characterizes changes in volatility (or “temperature”) in the stock market,
as long as we consider the return of share prices as modeled in (5.3). This experiment
should be considered as a toy example, since in reality the return of share prices does
not follow a normal distribution.

5.1.2 Scaled Student t-distribution

An alternative to the Osborne-Samuelson model can be derived from considering
a doubly stochastic model, which takes σ2 to be itself a random variable following a
distribution f , namely a re-scaled Student t-distribution. This is considered to be a
more appropriate model to describe logarithmic returns, as with other models that
consider fat-tailed distributions. Lightly, the idea of a doubly stochastic model is
that we consider a random variable X to be modeled in two stages. In one stage,
the distribution F (X;h0, . . . ) of X is represented in a standard manner, for which
we use one or more parameters. The other stage consists of describing some of
these parameters (h0, h1, . . . ), to be themselves random variables with a certain
distribution F ′ .

Praez writes in [25] an extension to the work done by Osborne and Samuelson, and
derives a new model that uses a scaled Student-t distribution to model logarithmic
returns of financial markets. His insight is based on observing that Osborne’s model
assumes the volatility σ2 to be a constant, although now it is widely considered
that the underlying distribution of the variation of share price changes is not fixed.
Noticeably, Praez rewrites Osborne’s model (5.3) as a conditional distribution

f(y | σ2) =
exp(−y2/2σ2τ)√

2πσ2τ
. (5.4)
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Without loss of generality, we can rewrite (5.4) by considering τ = 1 (a unit time
interval) and y as having a non-zero mean µ. Thus, it becomes

f(y | σ2) =
exp(−(y − µ)2/2σ2)√

2πσ2
.

If we now denote by h(y) the distribution of y which takes into account the random
nature of σ2, and g(σ2) to be the underlying distribution of the variance, we obtain
h(y) by integrating

h(y) =

∫ ∞
0

f(y | σ2)g(σ2) dσ2. (5.5)

A solution is given by

g(σ2) =
σ2m

0 (m− 1)mσ−2(m+1)

exp[
(m−1)σ2

0
σ2 ] · Γ(m)

.

Here, σ2
0 = E(σ2) and the variance of σ2 is σ4

0/(m− 2). Now, when g(σ2) is substi-
tuted in (5.5), we obtain h(y) by integration as

h(y) =
Γ(m) · [(2m− 2)π]1/2 · σ0

[1 + (y − µ)2/σ2
0(2m− 2)]1/2

.

This is a Student t-distribution with ν = 2m−n degrees of freedom, except for a scale
factor [n/(n− 2)]1/2. Thus, the distribution of (y − µ)/σ0 would be that of a scaled
Student t-distribution. We note that, for n small, this distribution resembles that of
a normal distribution. The distribution function g(σ2) of the variance has mean σ2

0

and variance σ4
0/(m − 2). Intuitively, it represents the distribution of the variance

of the share under discussion and it is discussed in [25] to be an inverted gamma
distribution. Similar tests as the ones in Chapter 4 have been done with variables
following an inverted gamma distribution [19]. Although the results exposed above
are founded, we will not give the particulars; for a more detailed exposition we refer
the reader to [25], and references therein.

Thus, we assume this distribution (scaled t-Student), to be a more rigorous ap-
proach in modeling log returns of financial markets. Moreover, resulting tests done
in Chapter 4 correctly measure a change in volatility (scale) of the distribution,
again proving the validity of the method considered to measure changes in variance
of financial data.
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5.2 Analysis on European stock indices

In this section, we follow [19], except that we choose financial indices from the
European stock market. In our case-study, we consider IBEX 35, FTSE 100, DAX
30 and CAC 40 as notable stock indices in Spain, United Kingdom, Germany and
France, respectively. Our study is designed to measure changes in the persistence of
1-dimensional loops born from this data, paying special attention during the time
frames of the global economic crisis and the European debt crisis.

5.2.1 Procurement and treatment of financial data

We obtain financial data using the R-package “quantmod”, which extracts it from
Yahoo finance. Our time frame ranges from the dates 01-01-2005 to 01-01-2015, we
consider a window of 10 years to contain sufficient data to appropriately test this
method. The data consists of the prices of various European stock indices and we
will focus on gathering the adjusted closing value of every index. Since these values
are not normalized, we use the previously defined indicator, namely the logarithmic
return. Let us remember it is defined as the process log(Pi,j/Pi−1, j), where Pi,j
is the adjusted closing value of index j at the day i. The idea now consists of
considering the 4 time series independently, so we can embed them in R4 using the
mixture embedding described previously. In our approach, the window size is w = 50

days, such that every day represents a point whose coordinates are the logarithmic
returns of every index considered. Thus, for every sliding step, we have a point cloud
embedded in R4. Figure 5.1 (a) is an illustration of a resulting point cloud on the
k-th sliding step.

5.2.2 Studying the persistent homology of financial data sets

The sliding step is set to one day, which in our case yields an approximate
(2530− w) time ordered set of point clouds, though variations on this number may
result from missing trading dates or mismatching trading dates between indices.
For every resulting point cloud, we use the R-package “TDA” to compute its persis-
tent homology and, as mentioned previously, we construct the simplices using the
Vietoris-Rips scheme. Figure 5.1 is an example illustrating this process. We recall
that, in our experiment, we are computing one-dimensional persistent homology, so
that for every Vietoris-Rips complex we are computing its H1 homology group. In
other words, we are only considering the persistence of 1-dimensional loops through-
out. Then, for every resulting persistence diagram we use the function “landscape”
from the R-package “TDA” to calculate its corresponding persistent landscape.
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(a)

(b)

(c)

Figure 5.1: The Vietoris-Rips scheme; for every (fixed) radius we have a certain
Vietoris-Rips complex.
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Figure 5.2: Top-down, Persistence diagram from Figure 5.1 and its corresponding
1-persistence landscape, followed by the persistence diagram and 1-persistence land-
scape from the same indices on different selected dates.
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5.2.3 L1 norm time series

As we know, the persistence landscape can be naturally embedded in the Banach
space L1(N×R) and we can easily calculate its L1 norm. The last step in our method
is to construct a time series to illustrate the L1 norm fluctuation. Our main goal is to
capture variations that may have happened during the financial crisis of 2007-2008
and the European debt crisis of 2009-2013.

(a)

(b)

Figure 5.3: Time series of the normalized L1 norms of persistence landscapes between
2005 and 2015.

Here, we interpret the L1 norm time series in a qualitative sense. Noticeably,
in Figure 5.3 we can appreciate strong peaks emerging during the period of the
global economic crisis of 2007-2008. The main difference with our picture and the
one derived in Guidea and Katz’s paper is that of a small time shift and much
higher fluctuations around the year 2012. Indeed, the financial crisis in the US is
considered to have started with the Lehman Bankruptcy (15-09-2008), and regarded
to have spread through the European markets a little later, around mid-October
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2008. The higher peaks around 2012 we suspect are directly related to the European
debt crisis, which emerged during late 2009 and had its highest impact in mid 2012.
This fact can be appreciated in our picture, on the last quarter of the same year (see
Fig. 5.3 (a)). We also note that, taking into consideration IBEX 35 as one of our
indicators may have caused a stronger fluctuation during the European debt crisis
period. In fact, Spain’s main financial index reflects the fact that it was one of the
European countries together with Greece, Portugal, Ireland and Cyprus, who were
unable to repay or refinance their government debt without the assistance of third
parties.

Figure 5.4: Top-down, the first two pictures show the associated variance time se-
ries (see plot title) with a rolling window of w = 400 days and sliding step set to
one day. Las two pictures show the superposition of the normalized L1 norm and
corresponding variance time series (see plot title). Dates range from 2005 to 2015.

Still, we can perform a quantitative analysis of the time series illustrated, and
furthermore we would like to be able to compare our results with the ones obtained
in [19]. Though various statistical measures can be used to interpret the time series
illustrated, we will restrict our study in analyzing the variance of each time series.
We employ a rolling window of w = 400 days with the sliding step set to one day,
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to the time series obtained from the European stock indices (Fig. 5.3 (a)) and US
stock indices (Fig. 5.3 (b)). We also consider the variance of the L1 norm time series
derived from considering only the English, French, and German markets. We name
this plot reduced Europe (see Fig. 5.5). Here, the method employed to study the
rolling variance of a time series is analogous to that of the L1 norm time series,
namely the sliding window technique described in Chapter 3.

Figure 5.5: Normalized time series of the associated L1 norm of persistence land-
scapes derived from three European indices.

Figure 5.6: Superposition of the associated normalized variance of four European
markets (in grey), in comparison to three European markets (in black). Details in
text.

As was expected, variance derived from both European and US markets show
strong growth prior to the financial crash of 2008. We also note that the variance
associated to the time series of the four European markets starts to grow much earlier
(mid 2007), in comparison to that of the US markets. It is also clearly seen that,
in regards to the European financial debt crisis, variance and norms derived from
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the persistence of loops of financial data during that period, show strong fluctuation
and much higher peaks (Fig. 5.4 (Europe–Variance and Norms)) than the variance
and norms derived from the US market. This result is expected, in the sense that
different markets (US and European) have naturally different behaviors. Still, we can
appreciate a slight growth in both variance and norms derived from the US market
around the European financial debt crisis, an interpretation of this matter results in
assuming the intrinsic dependency of global economic markets.

Figure 5.7: Localized associated variance for US and European markets. On the left,
time series a year prior to November 2008. On the right, a year prior to the last
quarter of 2012.

If we focus on the reduced Europe L1 norm plot (see Fig. 5.5), in comparison to
the illustration derived from considering the full European depiction (Fig. 5.3 (a)), we
notice qualitatively that the apparent volatility frequency of the time series is much
higher, especially from 2009 onward. On the other hand, frequencies from Fig. 5.3
(a) seem to be more stable with a distinguished higher peak around mid 2012. A
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comparison of both variances derived from the corresponding L1 norm time series
is shown in Fig. 5.6. Although both variance time series seem to grow during that
period, it is clearly seen that the mean variance derived from the reduced European
norm time series is much lower than that of the non-reduced European plot. We
suspect this matter is directly related to the fact that, adding the Spanish index
IBEX 35 contributes to much higher volatility in the data set time series around
mid 2012 and hence, resulting in a singular high peak in the non-reduced European
plot. To synthesize this analysis, one could say that the volatility of the distribution
during crisis periods from the non-reduced European data set is higher than that of
reduced European data.

To conclude, Fig. 5.7 depicts the local behavior of the variance corresponding to
each of the three norm plots considered. We notice, as in [19], the variance of each
plot shows strong growth prior to both financial crashes. This is especially the case
when considering the variance of the non-reduced European plot (Fig. 5.7, top left)
near the financial crisis of 2008.
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6. Conclusions

Regarding applications of TDA, yet again studying the persistence of 1-dimen-
sional loops born from well-known financial data has proven successful in measuring
irregularities across time in the markets considered. We want to stress that results
gathered from our experiments should be seen as a continuation of the recent work
done by Guidea and Katz in [19].

Hence, our approach was manifold. First, we replicated the financial time series
analysis done with TDA [19] using distinct financial data (Fig. 5.3 (a)). Subsequently,
we managed to gather the same picture derived from US financial data (Fig. 5.3 (b)),
and thus we were able to put them in direct comparison. In both illustrations it can
be seen that L1 norms of persistence landscapes grow similarly when approaching
periods of high financial instability. The main difference between our picture and the
one derived in Guidea and Katz’s paper is that of a small time shift and much higher
fluctuations around the year 2012; we suspect this is due to the European financial
debt crisis, which caused high volatility in European financial markets during that
period. In addition, we considered a separate depiction, using only three European
financial indices, namely a subset of the first four, taking out IBEX 35, and contrasted
both L1 norm time series, making use of both the qualitative norm picture and also
comparing the variance of each time series. In regards to this last experiment, our
conclusion is that the volatility of the distribution during crisis periods from the
non-reduced European data set is higher than that of reduced European data. We
also depict side-by-side the variance of local time-frames from each of the three data
sets considered (Fig. 5.7), which shows strong growth prior to the financial market
irregularities. This is especially the case when observing the local variance during
the global financial crisis of 2008 (Fig. 5.7 left).

This approach demonstrates consistency in results and proves to be simple enough
to be replicated as a means of research. As mentioned in their paper, this method
behaves well enough to be applied to any type of mixture of time series. This can
be seen in Chapter 3, where we break down our procedure without the need to give
proper sense to the data sets themselves. Thus, this method can be seen as a means
of studying the time-dependent fluctuation of the shape of abstract data. The novelty
of this approach lies in the fact that we do not consider the data to be a discretization
of an underlying shape, thus parting from the classical intent of the application of
TDA, which relies on having an underlying geometry a priori.

We were also able to prove some empirical results gathered from the study of data
born from synthetic time series. We note that most of the resulting propositions
are based on Bubenik’s work [1]. Tackling problems derived from working with
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persistence landscapes as random variables is a field still considered to be in its
infancy, allowing us to explore matters like the finiteness of expected values of L1

norms derived from persistence landscapes under some conditions. Our main result,
namely Theorem 4.1, should be seen as a complement to our empirical analysis of
time series, since it describes the behavior of significant topological features extracted
from altering data under a predefined distribution, and we believe that it could be
used to study any type of data conducting in the same matter. Noticeably, our work
exemplifies an unexpected bond between the fields of topology and statistics, and we
believe there is still a vast margin for research, both practical and theoretical.
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