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Abstract 
 

A quasiclassical trajectory dynamics study was performed for carbon monoxide collisions over an 

oxygen preadsorbed b-cristobalite (001) surface. A reactive molecular force field (ReaxFF) was used 

to model the potential energy surface. The collisions were performed fixing several initial conditions: 

CO rovibrational states (v = 0-5 and j = 0, 20, 35), collision energies (0.05 £ Ecol £ 2.5 eV), incident 

angles (qv = 0°, 45°) and surface temperatures (Tsurf  = 300 K, 900 K). The principal elementary 

processes were the molecular reflection and the non-dissociative molecular adsorption. CO2 

molecules were also formed in minor extension via an Eley-Rideal reaction although some of them 

were finally retained on the surface. The scattered CO molecules tend to be translationally colder and 

internally hotter (rotationally and vibrationally) than the initial ones. The present study supports that 

CO + Oad reaction should be less important than O + Oad reaction over silica for similar initial 

conditions of reactants, in agreement with experimental data. 
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Introduction 

 

Silica-based materials are important since they are commonly used in thermal protection systems 

(TPS) (e.g., in Space Shuttle tiles). Forthcoming development of reusable launch vehicles (RLV) is a 

prerequisite for guaranteeing long-term cheap access to space. In order to fulfil RLV objectives, new 

materials are required that allow the reduction of launch mass, improved modelling of 

aerothermodynamic phenomena, increased performance and reliability of propulsion systems, as well 

as innovative TPS. In this context, the mastering of the detailed chemical physics phenomena 

associated with TPS catalysis is therefore a key element. Consequently, theoretical, numerical and 

experimental developments are necessary in order to model more accurately the corresponding gas-

surface interactions. Currently, silica-based materials (e.g., reaction-cured glass (RCG) with 94% of 

SiO2, 4% of B2O3 and 2% of SiB4) are primarily used in some TPS surfaces. Among the different 

forms of SiO2 to be studied, either amorphous or crystalline (e.g., quartz, tridymite, cristobalite, etc.), 

the b-cristobalite is the most stable polymorph at high temperatures up to the melting point of 1996 

± 5 K, which is below the high temperatures achieved during typical atmospheric entries. Moreover, 

β-cristobalite is the crystalline phase of silica with properties closest to those of amorphous silica 

(e.g., density, refractive index, band structure, etc.). Therefore, the study heterogeneous processes on 

this material can be very useful in this context. 

On the other hand, Mars atmosphere is about 95% carbon dioxide, 3% nitrogen, 1.6% argon and 

traces of free oxygen, carbon monoxide, water and methane among other gases [1]. During the entry 

of space vehicles into planetary atmospheres hypersonic speeds are reached. At these conditions some 

of the main present gas species (i.e., CO2/CO/O) collide with the spacecraft surface [2] at high 

collision energies (i.e., about 4.5 ± 1.0 eV) producing mainly the breaking of CO2 molecules into CO 

+ O. Thus, the main species present in the shock layer are CO and O, which are able to contribute to 

several heterogeneous reactions (i.e., atomic and molecular adsorption, atomic recombination, atom-

molecule reactions,...) [3]. The resulting O atoms can be strongly adsorbed over the silica surface as 
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confirmed by previous theoretical studies [4,5,6,7] with an average adsorption energy of 5.9 eV on 

top silicon position. Thus, the most probable scenario implies incoming CO molecules reacting over 

an O-preadsorbed silica surface to produce reflection, adsorption and CO2 formation, probably via an 

Eley-Rideal (ER) recombination mechanism that should be more likely than a Langmuir-

Hinshelwood mechanism (LH). 

Very scarce theoretical and experimental data are available about CO + O/SiO2 system. Thus, 

experimental investigation with carbon monoxide and oxygen mixtures on quartz indicate that oxygen 

recombination should be more important than CO oxidation in the range of pressures and 

temperatures studied [8]. The same conclusion was derived from measurements and simulations of 

the heat transfer produced to silica-based surfaces in dissociated carbon dioxide flows [3]. On the 

other hand, there are abundant studies on CO + O over metals (e.g., Au [9], Rh [10]) or other oxide 

surfaces (e.g., TiO2 [11]), especially for the LH mechanism, which seems less important that ER one 

for silica surfaces. 

In some previous studies we have extensively studied the atomic recombination of oxygen over b-

cristobalite [6, 12]. In the present work we want to ascertain the importance of the CO + O reaction 

in comparison with the O + O reaction to shed light on the mentioned experimental data. Thus, we 

present a quasiclassical trajectory (QCT) dynamics study of the title system using a reactive force 

field as a full dimensional potential energy surface (PES), once checked by means of new Density 

Functional Theory (DFT) calculations including long-range interactions along with experimental 

data. 

This paper is organized as follows: Section 2 provides a brief description about the theoretical 

methods: DFT, Reactive force field and QCT; Section 3 describes the system model used and the 

tests carried out to compare DFT with the force field calculations, and Section 4 presents the main 

dynamical results and discussion. Finally, Section 5 gives the summary and conclusions. 
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Theoretical methods 

A. DFT calculations 

 

Periodic DFT calculations have been performed using the Vienna ab initio simulation package 

(VASP) [13,14,15,16]. The calculations are based on the generalized gradient approximation (GGA) 

with the Perdew-Burke-Ernzerhof functional (PBE) [17]. The projector-augmented wave (PAW) 

technique within the frozen core approximation has been used to describe the electron-core 

interaction [18,19]. An energy cut-off of 550 eV has been used in the plane-wave expansion and the 

Brillouin zone was integrated by using an (3 ´ 3 ´ 1) k-point mesh by means of the Monkhorst–Pack 

method [20]. All the slab calculations were performed on an (1 ´ 1) unit cell of b-cristobalite (i.e., 

7.269 ´ 7.269 Å) with a vacuum of 15 Å, large enough to prevent significant interactions between 

periodic images. The energy convergence in the electronic self-consistent procedure was maintained 

below 10-6 eV for all geometrical calculations. Due to the important role that spin plays in atomic 

oxygen description, all calculations were spin-polarized. In addition, since the ReaxFF force field 

was fit at any geometry to the lower energy state, both spin states for O adsorption over different b-

cristobalite sites have been calculated. 

A 6-layer slab model (Si-O-Si-O-Si-O) was used for DFT calculations. To avoid any possible 

dipole field effects on the top surface due to the finite thickness of the slab, the dangling bonds at the 

bottom surface of the slab were passivated with hydrogen at their optimized positions. In earlier 

studies we checked the validity of this approach [4]. 

Since conventional DFT functionals are unable to describe correctly van der Waals interactions 

resulting from dynamical correlations between fluctuating charge distributions, long-range dispersion 

corrections have been taken into account within a DFT PBE-D2 approach of Grimme [21], as 

implemented in the VASP 5.2 version. The dispersion coefficients C6 used in the empirical force field 

of Grimme are listed in his own original paper [21] and the global scaling factor (s6) has been set to 
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0.75 because the PBE functional was chosen. 

 

B. ReaxFF Reactive Force Field 

 

The ReaxFF Reactive Force Field is a general bond-order based potential force field that uses a 

relationship between bond distance and bond order and also between bond-order and bond energy to 

be able to describe accurately the formation and rupture of bonds [22]. Non-bonded interactions (van 

der Waals, Coulomb,..) are calculated between every atom pair, irrespective of its connectivity. 

Excessive close-range non-bonded interactions are circumvented by including shielding terms. All 

connectivity-dependent interactions (i.e., valence and torsion angles) are made bond-order dependent 

to ensure that their energy contributions disappear upon bond dissociation. The ReaxFF uses a 

geometry-dependent charge calculation scheme to account for polarization effects during the course 

of the simulation. 

The ReaxFF has been parameterized and tested for a great variety of processes: chemical reactions 

on solid surfaces (e.g., dissociation of water on titania [23, 24], hyperthermal oxidation of Si(100) by 

O and O2 [25, 26, 27, 28],..), gas-phase reactions (e.g., n-heptane pyrolysis [29], oxidation of toluene 

[30],..), aqueous reactions (e.g., aqueous chloride and cooper chloride/water systems [31],..), 

reactions in zeolites (e.g., methanol to olefin reactions [32], confined reactive water in minerals 

[33],..), etc. In particular, there are studies about the oxidation of silica by O and O2 [7, 34, 35] and 

oxidation of silicon carbide by O2 and H2O [36, 37], which are very related with the present work 

(i.e., CO/O/SiO2 system). 

Usually, several sets of parameters have been obtained by fitting ab initio data (e.g., typically 

reaction energies, equilibrium geometries, heats of formation, bulk properties,..) for numerous 

systems (more than 5000 chemical species). The present parameter set was derived for SiC oxidation 

combining previous parameters for hydrocarbon oxidation and silicon/silicon oxide systems [36]. 

They predict for instance good values for the heat of formation and other properties of a–quartz, CO 



 
 

 6 

and CO2 compared with the experimental data. 

Molecular dynamics simulation of chemical reactions via force fields is nowadays an usual 

approach to study chemical reactions of an extensive class of materials due to the great development 

of new reactive force fields  [38], as for example the ReaxFF one. Moreover, these force fields allow 

as well the dynamics study of single elementary reactions (e.g., O(3P) + SO2 [39]), being the force 

field a powerful alternative to the traditional use of ab initio-based analytical or interpolated PES 

[40], with the necessary reduction of dimensionality of the system, as occurs frequently in gas-surface 

dynamics studies which assume often a rigid solid surface model. Thus, this is also the PES approach 

followed in the present work. 

 

C. QCT calculations  

 

A dynamical study involving the interaction of CO molecules with O-preadsorbed over b-

cristobalite (001) surface was performed by means of the QCT method [41, 42, 43]. Several initial 

conditions were sampled in order to investigate several initial state-specific conditions. These 

calculations were carried out for fixed initial collision energies in the range of 0.05 eV £ Ecol £ 2.5 eV 

(some extra calculations also at 4.0 eV) at two selected surface temperature Tsurf = 300 and 900 K 

and several rovibrational states (v = 0-5 and j = 0, 20, 35). The incoming incident velocity angle (θv 

in Fig. 1), which is defined with respect to the negative z axis (i.e., 0° for normal incidence), was 

fixed and its projection onto the x-y plane (i.e., the azimuthal fv angle) was uniformly sampled within 

the 0° - 360° interval. θv was fixed at 0° because normal incidence is a good approximation for the 

real conditions of spacecraft atmospheric entries. Nevertheless, some calculations were also run at 

45° in order to study the effect of the incoming incident velocity angle.  

Initial molecular orientation angles (θ, f in Fig. 1) were sampled by the standard Monte Carlo 

method within the intervals 0° £ θ £ 180° and 0° £ f £ 360°, respectively. The initial r internuclear 
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distance was sampled between the corresponding inner (r-) and outer (r+) turning points of each CO 

(v, j) rovibrational state. Initial position (xcm, ycm) of the molecular centre of mass was randomly 

selected inside the (1 ´ 1) unit cell while zcm was set to 8.0 Å, where the interaction with surface is 

negligible. 

The slab temperature (TS) was controlled by means of a Generalized Langevin equation (GLE) 

approach [41,44] using the same procedure and friction coefficients (i.e., gg,x = gg,y = gg,z = 1.0 ´10-4 

au) that were applied previously for the studies of atomic oxygen impinging on clean [45] and O-

preadsorbed [12] b-cristobalite surfaces. 

The QCTSURF [46] code developed in our group was used to calculate the trajectories integrating 

the Hamilton equations of the system using a Beeman algorithm. The time step used was 1´10-16 s, 

which ensures a total energy conservation along the trajectories lower than 1.0´10-4 eV in absence of 

the thermal bath. The total energy is not constant due to the thermal bath dissipation effect. Total 

integration time was set to a maximum value of 6.5 ps (although it was set to 3.0 ps for Ecol ³ 0.5 eV). 

These collision times allowed a correct classification of the trajectories among the different channels: 

   (1) 

The molecular adsorption classification was set for zcm values lower than 2.5 Å and for a large number 

of total molecular rebounds on the surface (i.e.,  8), as was also set previously for atomic oxygen 

impinging a clean or an O-preadsorbed graphite surface [12, 45]. Moreover, if the molecule zcm was 

underneath the outermost layer surface the trajectory was initially classified as absorption (i.e., 

penetration into the slab) although in the results presented in the next section, absorption and 

adsorption probabilities were summed together, joining the same adsorption/absorption (sticking) 

process. On the other hand, CO was considered reflected if its zcm was higher than 5.0 Å with the 

  

CO(g) +  O'−β − cristobalite(s) →

CO(g) +  O'(ad) (CO reflection)
CO(ad) +  O'(ad) (CO adsorption)
CO'(g/ad)+  O(ad/g) (O exchange)
CO2(g) (ER reaction)
CO2(ad)  (CO2(ad) formation)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
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direction of its velocity vector pointing to the vacuum. New formed CO2 molecules, that were kept 

adsorbed at the end of the trajectory, were classified as CO2(ad) formation, hence not included as ER 

reaction, which produces only CO2 gas molecules. 

The number of total trajectories (NT) calculated for each state-specific condition (i.e., v, j, Ecol, 

Tsurf and θv) was about 3000 for Ecol ³ 0.5 eV and 6000 for Ecol < 0.5 eV. These batches of trajectories 

ensure a standard deviation lower than 4% in the channel probabilities for the most probable processes 

(i.e., atomic reflection and adsorption). 

 

System and PES model 

 

The system model used in this dynamical study is a (3 ´ 3 ´ 1) supercell of b-cristobalite  (i.e., 

21.04 x 21.04 Å) composed by 234 atoms (89 Si atoms and 145 O atoms) arranged in 9 layers starting 

and finishing with Si ones. The slab geometry of this supercell corresponds to the ReaxFF fully 

relaxed value. It is important to note that ReaxFF allows working with periodic conditions but the 

computer QCTSURF [46] code is not prepared for this, so some restrictions have been added to the 

surface model in order to do the computational treatment. Thus, only the central area that corresponds 

to an (1´1) unit cell was sampled during the CO molecular collisions, with the preadsorbed oxygen 

atom initially located at its central top Si. Moreover, in order to avoid any reconstruction and 

amorphization of the slab as the study over the well defined (001) face was intended, only a few 

atoms of the central cell were allowed to move, being the surrounding cells kept rigid. Particularly, 

four atoms (2 Si and 2 O atoms), those just below the O adatom were free for movement. This degree 

of slab movement allowed the O adatom to oscillate around the initial position and to permit a reliable 

exchange of energy with the slab and surface temperature inclusion. 

The total PES was based on ReaxFF reactive force field for the global system (i.e., 2 O and 1 C 

atoms plus 234 slab atoms). Some additional tests were carried out to check the reliability of the 
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selected ReaxFF parameter set. A first check can be carried out comparing several properties of the 

molecules and of the solid against experimental and DFT PBE-D2 data (Table 1). For the case of the 

single molecules as CO, O2 and CO2, the agreement respect the experimental dissociation energies 

[47] is good and better for ReaxFF than for DFT PBE-D2, although respect the equilibrium distances 

is very similar. Another important point regards the description of silica polymorphs (e.g., b-

cristobalite and a-quartz). The ReaxFF optimal lattice parameters along with its cohesive energy are 

in excellent agreement with experimental data [47, 48] for both polymorphs shown in Table 1, even 

better than the DFT PBE-D2 data.  The calculated formation enthalpies, using the formula 

, were -9.29 eV and -9.31 eV for b-cristobalite and a-quartz, 

respectively; these values compare quite well with the experimental data (-9.38 eV (at 298.15 K) and 

-9.39 eV (at 0 K) or -9.44 eV (at 298.15 K), respectively [47]). 

We have also studied the adsorption of O, CO and CO2 on the main sites [4, 45] over the Si-ended 

(1 ´ 1) b-cristobalite (001) surface: on top Si (T1), a hollow (H1) and a bridge between two Si atoms 

(B1). We have kept frozen the slab geometry at its equilibrium value to simplify DFT calculations 

because previous studies [4] indicate that the effect of the slab relaxation is small. 

Each species prefers a different site position. Thus, the oxygen atoms prefer on top sites (Fig. 2a), 

the CO molecule the B1 sites (Fig. 2b) and the CO2 molecule the H1 sites (Fig. 2c). The agreement 

between DFT PBE-D2 and ReaxFF curves is almost perfect for the strong O adsorption over T1 site 

(Fig. 2a) leading to large adsorption energies of -5.85 and -5.80 eV, respectively (negative values 

mean favourable adsorption). It is worth noting the good response of this force field in reproducing 

the O atom far from the surface (triplet state) and also when it is well adsorbed (singlet state). Present 

spin-polarized DFT PBE-D2 calculations have corroborated this fact in agreement with earlier studies 

[4]. Thus, both spin states can be distinguishable only by using this technique. For the case of CO 

molecule adsorption different approaches of the molecule (i.e., perpendicular by C or O end and 

 
Δf H

SiO2(s) = Ebulk
SiO2(s) − Ebulk

Si(s) + Egas
O2⎡

⎣⎢
⎤
⎦⎥
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parallel configurations) over B1 site are compared (Figs. 2b(i-iv). The agreement between ReaxFF 

and DFT PBE-D2 method is good mainly for the approach of CO molecule perpendicular to the 

surface by the C side, Fig. 2b(i),  (cf. adsorption energies of -0.14 and -0.15 eV for ReaxFF and DFT 

PBE-D2, respectively) although force field adsorption occurs at higher distances from the surface. 

Thus, the minimum energy approach predicted by DFT PBE-D2 is 1.96 Å whereas ReaxFF predicts 

it to be 2.76 Å. The approach by the O side (Fig. 2b(iii)) is overestimated by ReaxFF. Thus, for the 

most stable vdW complex the adsorption energy corresponds to -0.34 eV at a distance of 2.32 Å from 

the surface for ReaxFF while it corresponds to an adsorption energy of -0.03 eV at a distance of 2.74 

Å for the case of DFT PBE-D2 method. For parallel approach (Figs. 2b(ii, iv)) ReaxFF also 

overestimates the adsorption (cf. adsorption energies of -0.26 eV at 2.09 Å for ReaxFF and -0.04 eV 

at 3.00 Å for the case of DFT PBE-D2 method). Previous theoretical studies on the CO adsorption 

over similar oxides as rutile show as well analogous adsorption energies (e.g., -0.32 eV for TiO2(100) 

[49] or TiO2(110) surfaces [50]). The adsorption over metals seems to be more stable (e.g., -0.77 eV 

over clean Au(321) [51]).  

Fig. 2c shows the most stable vdW complex for CO2 adsorption on H1 site, corresponding to a 

perpendicular configuration. ReaxFF also tends to overestimate the molecular adsorption (cf. 

adsorption energies of -0.32 eV at a distance from the surface of 2.68 Å in the case of ReaxFF and        

-0.15 eV at a distance of 2.08 Å in the case of DFT PBE-D2). Dispersion-corrected DFT calculations 

of CO2 adsorption on oxidized rutile (110) surfaces [52] show adsorption energies within the range -

0.39-0.44 eV at low coverages for both parallel and almost perpendicular (tilted) configurations, in 

agreement with available experimental data. Adsorption on siliceous zeolites, more similar to the 

present b-cristobalite surface, presents lower adsorption energies (i.e., -0.32 eV at PBE-D2 level for 

CO2 in the centre of an eight-membered ring [53]), similar to present ReaxFF values. 

In spite of the differences between ReaxFF and DFT PBE-D2 calculations for both molecular 

adsorptions, these are quite low and it is expected that the small CO or CO2 adsorption will have a 
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very small effect on the dynamics study (see next section). For the CO case, this will enhance slightly 

the adsorption mainly at low collision energies and for the CO2 case, this can increase a bit the CO2(ad) 

channel respect the CO2 gas one. 

 

QCT dynamical results 

 

Fig. 3 shows the observed reactions probabilities for the different heterogeneous processes as a 

function of the collision energy, fixing the initial rovibrational CO state (i.e., v=2, j=0), the surface 

temperature (Tsurf = 300 K) and the angle of incidence (qv = 0°).  CO reflection is the main channel, 

being CO adsorption the second one (Fig. 3a). This latter becomes more important at low collision 

energies as could be expected due to the low CO adsorption energies, predicted by both ReaxFF or 

DFT PBE-D2 methods. Other minor processes observed were: the O exchange between CO and O 

adatom and the CO2 formation in gas phase (i.e., ER reaction) or producing adsorbed CO2. The 

increase of Ecol diminishes the CO2 adsorption hence increasing even more the ER reaction. Logically, 

the integration at longer collision times of trajectories classified as CO2(ad) could favour slightly the 

ER probability.  Since the preadsorbed O atom remains strongly linked to the silica surface (Fig. 2a), 

the possibility of extracting this adatom from the surface with an incoming atom or molecule should 

be in principle low. Moreover, the fact that the CO bond is very strong (Table 1) leads to a slightly 

endothermic process for the CO2 formation via an ER mechanism (i.e., ΔE = 0.17 eV without 

inclusion of ZPE), which is coherent with the low calculated ER probabilities. 

The CO vibrational excitation effect is presented in Fig. 4. This reduces the reflection of CO 

molecules and favours the non-dissociative CO adsorption (Fig. 4a and 4b) along with the other minor 

processes (Fig. 4c, 4d and 4e) within the interval 0 ≤ v ≤ 2.  

At low collision energies, where the CO adsorption is important, the analysis of the final position 

of CO adsorbed molecules shows that at Ecol = 0.05 eV the molecule gets absorbed around the other 
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available free T1 sites, mainly inside the unit cell but also outside. This effect is more evident as 

vibrational excitation increases from 0 to 2. In the case of Ecol = 0.3 eV again the CO molecule prefers 

the adsorption on T1 sites principally when it approaches by the C end; when the approach is by the 

O atom it prefers to get adsorbed around the B1 sites close to the central T1 site, where the 

preadsorbed oxygen atom is located.  

Vibrational excitation and Ecol rise enhance ER reaction (Fig. 4d). There is a high-energy threshold 

(e.g., 0.5 eV for v = 0), which is significantly reduced when v is augmented. However, for v > 2 the 

ER probabilities are lower. The same decrease in probabilities is observed for O exchange, CO2(ad) 

formation and CO adsorption processes, producing thus an increase of CO reflection. The high 

vibrational amplitude worsens the possibility of CO molecule to reach the B1/H1 open areas of solid 

surface, where simultaneously interacts with the preadsorbed O atom. In this case, extended CO 

molecule interacts more repulsively with silicon atoms belonging to the unit cell and becomes mostly 

reflected. 

Regarding the formation of CO2(ad) (Fig. 4c), it is observed a clear shift of the maximum in the 

reaction probability for higher initial CO vibrational levels, possibly by the same repulsive interaction 

mentioned before, which implies that the molecular desorption can begin at  lower collision energies. 

 The rotational CO excitation effect is almost negligible for reflection or adsorption processes. 

Only for minor processes (Fig. 5) there is any noticeable effect. For instance, CO2 (g or ad) formation 

is slightly diminished because the C end of CO is deviated from Oad, while exchange of O atom is 

somewhat favoured. 

The surface temperature effect, introduced through the thermal bath, is very small as can be 

inferred comparing reaction probabilities at Tsurf = 300 K and 900 K (Figs. 3 and 6, respectively). 

Only a slight decrease in the CO2(ad) reaction probabilities for high surface temperatures is appreciated 

at CO (v = 2) as usual due to the expected increase in the molecular desorption. This behaviour was 

similarly observed for O or O2 colliding over clean or O-preadsorbed b-cristobalite surfaces [12, 45, 
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54]. 

The effect of the incident angle on the reactivity can be seen in Fig. 7. CO reflection becomes the 

most important process, especially at higher collision energies, being all other processes highly 

reduced. This change in reactivity comes out since the perpendicular component of the collision 

energy is halved in off-normal incidence (qv = 45°), which implies lower reaction probabilities 

according with the behaviour shown in Fig. 3. In the case of CO adsorption, the reaction probabilities 

are very similar although a bit larger for normal incidence and very low collision energies because 

ReaxFF shows larger adsorption energies for non-parallel configurations (i.e., -0.34 eV for 

perpendicular approach and -0.26 for parallel approach, Fig. 2b), which are less favoured for off-

normal incidence. 

The present results confirm that CO2 formation (g or ad) from CO + Oad should be less important 

than O2 formation from O + Oad over silica [12] for similar initial conditions (i.e., collision energy, 

incident angle,…) in agreement with experimental data [3, 8]. However, there are two facts that can 

change this situation: the increase of either the collision energy or the CO vibrational excitation. Thus, 

at hyperthermal conditions CO + Oad reaction could become more important that it was assumed in 

previous works. 

Particular attention has been devoted to the analysis of CO reflected molecules in order to know 

the different mechanisms of losing and gaining energy of CO with the solid surface. Fig. 8 shows the 

final vibrational distributions of reflected CO molecules (P(v’)) for several initial conditions (i.e., Ecol 

and v), fixing qv = 0°, Tsurf = 300 K and CO at (j = 0). The peaks of the different distributions and the 

average of the final vibrational number (<v’>) confirm a large increase of the vibrational excitation 

after the collision on the surface, being the number of molecules that reduce its vibration very low. 

The initial CO vibrational excitation affects the shape of the final P(v’) distributions. When CO 

molecule is initially at v=2 the final peak is also maintained at v’=2. The shape of P(v´) depends little 

on the initial amount of collision energy although the peak intensity gets lower as Ecol increase. At v 
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= 2, a bimodal distribution tends to appear at low collision energies (i.e., middle panels in Fig. 8), 

being even more evident at v = 4 (i.e., right panels in Fig. 8). Thus, two microscopic mechanisms 

could be inferred: molecules that gain or lose vibrational energy. The analysis of 100 trajectories in 

both peaks shows that CO molecules that interact with atoms belonging to the non-rigid slab (i.e., 

central cell) account for the peak at lower v’ values whereas those trajectories impinging on the rigid 

slab (i.e., surrounding cells) are finally scattered with higher vibrational energy, thus contributing to 

the peak at higher v’ values in the vibrational distribution.  

In particular, an analysis of the contribution of both kind of trajectories (i.e., non-rigid vs. rigid 

collisions) for the colder peak (i.e., v’=3) for v = 4 and Ecol = 0.50 eV showed values of 53% and 47 

%, respectively, while for the hotter peak (v’=9) were 25% and 75%, respectively. Therefore, in case 

of using a larger non-rigid unit cell the final distributions would be expected to be only centred at the 

lower v’ peak. 

The analysis of rotational distributions for the most populated final vibrational level (not shown 

here) has been also carried out and shows typical one-peaked distributions. As usual, the increase in 

Ecol drives to wider distributions peaked at larger j’ values. The average <j’> values increase with 

both the initial collision energy and the vibrational initial state (e.g., for v=2 and Ecol = 0.50 eV and 

2.50 eV,  <j’> = 17.7 and 37.8 respectively for v’=2). Moreover, for v = 4, an additional analysis of 

the rotational distributions corresponding to the hottest v’ peak (i.e., v’ = 9) shows quite similar 

rotational distributions as those obtained for the lowest peak at v’=3. 

Final rotational and vibrational distributions support that scattered molecules become internally 

excited  (i.e., vibrationally and rotationally). This point can be also shown by plotting the increments 

of total and collisional molecular energies: ΔEtot = Etot’-Etot and ΔEcol=Ecol’-Ecol (primes are used for 

final values). Fig. 9 shows (i.e., see distribution shapes and average values) that reflected CO 

molecules are mainly scattered with lower final collision energies. However, the distributions of the 

final total energies tend to be hotter than the initial ones, being broader for larger initial collision 
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energies. Thus, there is a clear augment of the molecular internal energy as it was stated previously, 

partially counterbalanced by a decrease in the collision energy, producing a general increase in the 

total molecular energy. This behaviour would imply that the inelastic collisions of CO over silica, 

which is the principal process, would not heat too much the solid surface. Hence, this material could 

be appropriate to be used in TPS materials for CO2 rich atmospheres, where CO and O species are 

important.   

 

 

 

 

Summary and conclusions 

 

A dynamical quasiclassical trajectory study have been carried out for the collision of CO(v,j) 

molecules over an O-preadsorbed β-cristobalite surface by using a based ReaxFF force field potential 

energy surface. Additional DFT calculations and available experimental data support the reliability 

of the present set of ReaxFF parameters. 

The main elementary processes observed were the molecular reflection and the non-dissociative 

molecular adsorption, the first one increasing and the second one decreasing when collision energy 

is augmented. Another minor elementary processes were: the O exchange between CO and O adatom 

and the CO2 formation in gas phase (i.e., ER reaction) or producing finally adsorbed CO2. 

The Eley-Rideal reaction increases with collision energy and with the CO initial vibrational 

excitation. This latter also reduces the reflection of CO molecules and favours the non-dissociative 

CO adsorption along with the other minor processes within the interval 0 ≤ v ≤ 2.  

The effects of rotational CO excitation and surface temperature are almost negligible for all 

processes. The effect of the incident angle is important, showing that for off-normal incidence the 
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CO reflection becomes the most important process, especially at higher collision energies, being all 

other processes greatly reduced. 

The present study confirms that CO2 formation (g or ad) from CO + Oad reaction should be less 

important than O2 formation from O + Oad reaction over silica for similar initial conditions (i.e., 

collision energy, incident angle,..) in agreement with experimental data. 

The scattered CO molecules, which constitute the main elementary process, tend to be 

translationally colder and internally hotter (rotationally and vibrationally) than the initial ones. This 

implies that the inelastic collisions of CO over a silica surface almost do not heat this solid surface. 

This behaviour along with the low reactivity suggests that this material could be appropriate to be 

integrated in the composition of TPS materials to be used in dissociated CO2 atmospheres. 
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TABLES 

 
 

Table 1  Comparison of ReaxFF (top), DFT PBE-D2 (middle) and experimental (bottom) data for 
several molecules and polymorphs of silica a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

a Equilibrium distances and dissociation energies(without inclusion of ZPE) for molecules and 
lattice parameters and cohesive energies for bulk silica (ReaxFF, DFT PBE-D2 and experimental 
[47, 48]). Experimental Ecoh derived from ∆fH

o at 25 ˚C [47] for the process:  SiO2(solid) ® 

Si(g,ideal) + 2O(g,ideal).  
  

 Re (Å) De (eV) 

CO(X1S+) 

1.123 

1.144 

1.128 

 

11.68 

11.53 

11.22 

 

CO2(X1Sg+) 

1.249 

1.177 

1.162 

 

5.82 

6.30 

5.61 

 

 O2(X3Sg-) 

1.265 

1.234 

1.208 

5.21 

6.07 

5.23 

 a=b,c (Å) Ecoh (eV) 

 
b-cristobalite 
(cubic, P213) 
 

 

7.014, 7.014  

7.269, 7.269 

7.147, 7.147 

 

19.18 

- 

19.21 

 
a-quartz 
(trigonal,P3221) 
 

4.892, 5.379  

4.801, 5.323 

4.913, 5.405 

19.20 

19.45 

19.27 
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FIGURE CAPTIONS 

 

Fig. 1  

Coordinates system for CO molecule interacting with an O-preadsorbed b-cristobalite (001) surface. 

The internal coordinates (r, q, f) define the molecular CO orientation, while (qv, fv) define the angle 

of incoming centre of mass velocity vector ( ). The definitions of the x and y axes are not unique 

although it is unimportant since the whole range of fv angles is considered (i.e., 0 - 360°).  

 

Fig. 2 

DFT PBE-D2 (dashed and dotted lines) and ReaxFF (solid line) energy curves for several species 

over clean b-cristobalite surface at its optimum geometry, whose is fixed: (a) O over T1 site, (b) CO 

over B1 site for two perpendicular (q = 0º (i), 180º (iii) ; C or O sides) and two parallel (q = 90º, f = 

180º (ii), 90º (iv)) configurations, and (c) CO2 over H1 site for a perpendicular approach. Geometries 

of molecules are optimized at each point. The z origin is established at the first layer (Si) of the 

surface.  

 

Fig. 3  

QCT reaction probabilities for an O-precovered b-cristobalite surface as a function of CO collision 

energy, fixing initial qv = 0°, Tsurf = 300 K and CO at (v = 2, j = 0). 

 

Fig. 4 

QCT reaction probabilities for an O-precovered b-cristobalite surface as a function of CO(v) 

vibrational levels and collision energies, fixing initial qv = 0°, Tsurf = 300 K and CO at (j = 0). Note 

different Y-axis scales. 

Fig. 5 


v
cm
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QCT reaction probabilities for an O-precovered b-cristobalite surface as a function of CO(j) rotational 

levels and collision energies, fixing initial qv = 0°, Tsurf = 300 K and CO at (v = 0). 

 

Fig. 6 

QCT reaction probabilities for an O-precovered b-cristobalite surface as a function of CO collision 

energy, fixing initial qv = 0°, Tsurf = 900 K and CO at (v = 2, j = 0). 

 

Fig. 7 

QCT reaction probabilities for an O-precovered b-cristobalite surface as a function of CO collision 

energy, fixing initial qv = 45°, Tsurf = 300 K and CO at (v = 2, j = 0). 

 

Fig. 8 

QCT final vibrational distributions of reflected CO(v’) molecules for different initial Ecol values and 

CO vibrational levels, fixing qv = 0°, Tsurf = 300 K and CO at (j = 0). The distributions shown are 

normalized to population unity. Average final vibrational values are also indicated. 

 

Fig. 9 

Differences between initial and final collision energies (∆Ecol, solid line) and total energies (∆Etot, 

dashed line) of CO molecules, which are reflected on an O-precovered b-cristobalite surface, as a 

function of initial CO(v) vibrational levels and collision energies. Initial fixed conditions: CO(j = 0), 

qv = 0° and Tsurf = 300 K. Average values are indicated between parentheses. 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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