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ABSTRACT 

 

The interaction of atomic and molecular oxygen along with the atomic recombination on thin 

ZrB2(0001) Zr- and B-terminated surfaces were studied using density functional theory 

(GGA/PBE) calculations. The adsorption of atomic oxygen is predominantly produced on threefold 

hollow sites for the Zr-finished surface and on B–B bridge sites for the B-finished surface. The 

experimental specular HREELS loss peaks and their shifts at high O exposures can be satisfactory 

explained by the present calculations. The interaction of O2 over both terminated surfaces produces 

mainly its dissociation through non-activated processes. This fact is in agreement with the observed 

open dissociation at room temperature. The atomic oxygen recombination over both ZrB2 surfaces 

shows that the Eley-Rideal reaction will be much more important than the Langmuir-Hinshelwood 

reaction at all temperatures and even more accessible in the case of the B-finished surface. 
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I. INTRODUCTION 

 
Zirconium diboride (ZrB2) is member of a family of materials known as ultra high-

temperature ceramics (UHTCs) 1-2, which are candidates for use in complex environments 

associated with hypersonic flights, atmospheric re-entry and rocket propulsion 3. Due to the recent 

efforts in developing hypersonic aerospace vehicles as well as re-usable atmospheric re-entry 

vehicles 4, the attention to ZrB2-based ceramics has increased appreciably in the last years (e.g., 

NASA-Ames Research Center 5). These UHTCs could be used to increase the heat tolerance 

resistance of the thermal protection systems (TPSs) of these vehicles 6. Their high melting points 

(i.e., ~ 3245 °C for pure ZrB2), relatively low densities, good chemical stabilities (e.g., for 

erosion/corrosion), high hardness, high thermal stress resistance and high electrical and thermal 

conductivities 7 are perfect properties for such kind of applications. 

Two important chemical processes concerning these ceramics involve atomic and molecular 

oxygen: 1) oxidation and 2) catalytic atomic recombination.  

ZrB2 undergoes stoichiometric oxidation when is exposed to air at elevated temperatures 7: 

 (1) 

although this process is favourable at all temperatures; only at temperatures below ~1100 °C, ZrO2 

and B2O3 form a continuous layer that produces a passive protection against oxidation. At higher 

temperatures (~1100-1400 °C) the change in weight arises from a combination of mass loss due to 

B2O3 evaporation and mass gain due to the formation of condensed oxides. The addition of other 

species over ZrB2-based UHTCs (e.g., SiC 7, TaSi2 2,..) produces some improvements on their 

oxidation resistance. Nevertheless, the correlation between oxidation kinetics and oxygen transport 

mechanisms is not fully understood. On the other hand, an experimental study by high-resolution 

electron energy loss spectroscopy (HREELS) for O2 adsorption on the ZrB2 (0001) single crystal 

surface 8 demonstrates the molecular dissociative adsorption at room temperature, being the 

threefold hollow site suggested to be the most probable atomic adsorption site when the surface is 

Zr-finished and with a vibrational frequency in the range 491-557 cm-1. 

The apparently small heterogeneous atomic oxygen recombination over this kind of UHTCs 

can be very relevant for hypersonic flights through Earth’s atmosphere 3. N2 and O2 molecules 

dissociate at different extent in these extreme conditions (their Do dissociation energies are 9.76 

and 5.12 eV, respectively 9). Thus, the more abundant atomic oxygen diffuses to the vehicle surface 

and recombines there (i.e., via Eley-Rideal or Langmuir-Hinshelwood mechanisms) transferring 

some fraction of its dissociation energy to the surface as heat. The control of this aerodynamic 

ZrB2 (s)+ 5
2

O2 (g)→ ZrO2 (s)+ B2O3(l)        ΔGreac
0 = −1977 + 0.361T(°C)  (kJ / mol)
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heating by means of appropriate TPSs is essential for successful missions 4 in order to avoid 

tragedies as the Space Shuttle Columbia disintegration. In particular, very few experimental studies 

have been carried out about the O recombination over ZrB2-based ceramics. Diffusion-tube side-

arm reactor studies for a UHTC (ZrB2 with 20-vol % SiC) 8 show a small but non-negligible atomic 

recombination coefficient (g) that increases from 300 to 673 K, but decreases sharply (2 orders of 

magnitude) at 923 K. This behaviour was explained by the formation of a B2O3 surface oxide. 

Nevertheless, experimental measurements with a similar UHTC (ZrB2 with 15-vol % SiC) at higher 

temperatures (1000-2000 K) and low pressure (200-400 Pa) air plasma 10-11 showed g coefficients 

ranging from 0.01 at about 800 K to 0.1 at 1800 K, increasing with the augment of temperature, 

following an Arrhenius-type law with activation energy values of 0.25 and 0.29 eV for 200 and 400 

Pa of total pressure, respectively. There was also observed some differences depending on the kind 

of surface mechanical treatment used for preparing the material.  

The study presented here, is related with thin layers of ZrB2, which presents similar surface 

energies for both Zr- and B-terminated surfaces with small relaxation. This situation gives us the 

opportunity of studying the reactivity on both kind of faces of zirconium diboride, which are also 

good substrates for adsorption due to the presence of several empty orbitals, p and d in boron and 

zirconium atoms, respectively.  

This paper is organized as follows: a brief report of theoretical and computational aspects are 

described in Sec. 2, the results including bulk ZrB2 properties and atomic and molecular oxygen 

adsorption processes along with atomic oxygen recombination reactions are presented in Sec. 3 and 

finally, Sec. 4 contains the main concluding remarks. 

 

II. COMPUTATIONAL METHOD  

 

Density Functional Theory (DFT) calculations have been performed with the VASP program 
12,13,14,15 based on plane wave basis set. All the calculations reported here have been carried out at 

the spin-polarized generalized gradient correction (GGA) level of the density functional theory, 

using the Perdew-Burke-Ernzerhof functional (PBE) 16,17,18,19. The atomic cores were described by 

projector augmented wave (PAW) pseudopotentials 20,21 allowing 3, 6 and 12 valence electrons for 

B, O and Zr atoms, respectively. The energy cut-off for the plane wave expansion was 550 eV, 

which produces well-converged results. Integration over the Brillouin zone was performed by using 

different k-points meshes (e.g., 5x5x1 and 14x14x14 for slab and bulk calculations, respectively) to 

ensure the total convergence of the results. The convergence criterion was 10-5 eV for the self-



 

 4 

consistent electronic minimization. Structural optimization was stopped when the x-, y- and z-

components of the atomic forces were smaller than 0.02 eV/Å.  

The transition states have been located with the nudged elastic band (NEB) method 22,23 using 

at least seven images between the reactant and the product structures. The structure of the highest 

energy structure found by the NEB algorithm was optimized and afterwards it was also 

characterized by a vibrational analysis computed with an energy accuracy of 10-6 eV. 

In the adsorption studies we have used (1x1) and (2x2) surface unit cells for the ZrB2 (0001) 

slab. A thin layer of the material (i.e., thickness between 5-6 Å) has been modelled using a 4 layer 

slab and taking into account the two possible terminations (Zr and B). The vacuum between slabs 

(17 Å) was large enough to prevent significant interactions between them. Several adsorption sites 

were studied for both O and O2 species. In spite of some calculations were initially made fixing the 

spin magnetic moment for several states (e.g., singlet or triplet states for Oad), we report the final 

spin-polarized structure which correspond to the most stable state. 

Once determined the optimal geometry for each adsorption site (without any symmetry 

restriction), we also calculated the Hessian matrix and its corresponding harmonic vibrational 

frequencies (ni) for the adsorbed species (i.e., allowing to move only the O or O2 species while 

keeping the slab atoms fixed to their positions in the equilibrium geometry). For an adatom these 

frequency values can be approximately classified as two parallel and one perpendicular movement, 

when the slab geometry is kept fixed to the optimized value. Moreover, some deeper vibrational 

analysis were carried out adding as well the first surface atoms not for focussing on the phonon 

analysis but to let us know how affect the outermost slab layer movement to the adsorbed atom’s 

vibrational modes. 

The adsorption energy (Ead) per atom was defined as 

  (2) 

where Eatom is the total ground state energy of the O atom in gas phase (i.e., O(3P)), Esurf is the 

surface (clean slab) energy at its relaxed geometry for each possible termination, Eatom+surf is the 

energy of the partial relaxed slab containing the adsorbed species and n indicates the number of 

atoms adsorbed on the surface. An analogous expression was used for molecular adsorption. 

O and O2 energies were calculated with the atom/molecule inside large broken symmetry 

boxes (i.e., 8 x 7.5 x 7.6 Å3 and 10 x 10.5 x 10.6 Å3, respectively). The well known DFT energy 

uncertainties (approximately 0.1-0.2 eV) 24 for atomic degenerate ground states (e.g., B or O atoms) 

should be considered not so relevant in this context where large adsorption energies are obtained. 

On the other hand, it is expected that these uncertainties will be lower or similar to the differences 

 Ead = − Eatom+surf − Esurf − n ⋅Eatom( ) / n
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in Ead that can be derived by using other functionals, as it was established in similar studies that 

presented deviations in adsorption energy around 0.5 eV 25. 

 

III. RESULTS AND DISCUSSION  

 

BULK AND SLAB CALCULATIONS  

 

A primitive rhombohedral (P6/mmm space group symmetry) unit cell with a single ZrB2 

formula unit can be used to describe the ZrB2 bulk. The hexagonal cell results in a stacking of 

alternate layers of zirconium and boron atoms, each zirconium having 12 equidistant boron 

neighbours, six in the plane above and six in the plane below. The boron planes are equivalent to a 

graphite-like structure. As many transition metal diborides, ZrB2 shows mixed bonding nature with 

a strong covalent bonding between B, metallic between Zr, and ionic and covalent between Zr and 

B 26, 27. 

We have calculated the main bulk properties to verify the reliability of the present DFT 

approach to reproduce ZrB2 surface. We have carried out a complete minimization of both the force 

acting over each atom and the stress tensor allowing volume and shape relaxation in order to obtain 

the equilibrium lattice parameters. Table I presents these lattice parameters (a=b, c) together with 

the cohesive energy (Ecoh), the heat of formation (∆fHo K), the bulk modulus (Bo) and its pressure 

derivative (Bo’) for ZrB2 compound along with some comparison with earlier DFT studies and with 

available experimental data. Bo and Bo' were derived by using a third-order Birch-Murnaghan state 

equation. The calculated structural properties compare very well with both experimental data and 

previous theoretical studies. 

Experimental studies by means of coaxial impact-collision ion scattering spectroscopy 32 and 

surface phonon-dispersion data measured by HREELS 33 corroborate that the ZrB2(0001) surface is 

terminated with a Zr layer. This conclusion is supported by several DFT studies 34,35 that show that 

the Zr-terminated surface is more stable than the B-terminated over a wide range of allowed 

chemical potentials. Nevertheless, the slab thickness is very important in the stability of the 

structure. Thus, for thin films of ZrB2 the corresponding surface energy for both types of 

terminations are very similar and even in certain cases (i.e., thickness tends to zero) the B-

termination is the preferred one 34, 35.  According to this, surface calculations have been done by 

using slabs with a different number of layers (i.e., thickness) for both Zr- and B-terminations and 

starting always from the calculated bulk geometry. Symmetric (5 or 11 layers corresponding to a 

thickness of 7 or 18 Å, respectively) or stoichiometric (4 or 10 layers corresponding to a thickness 
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of 5.5 or 16.5 Å, respectively) slabs were considered. Obviously, the vacuum used within these 

models has been appropriately maintained within the range 17 - 18 Å for avoiding non-desirable 

interactions between the slabs. Regarding to the different slab models used, the symmetric ones 

should reduce the spurious dipole effects while the stoichiometric ones would evidently represent 

better the correct ZrB2 stoichiometry. Table II shows the calculated interlayer relaxations (i.e., Ddij) 

for Zr- and B-terminated surfaces. The most significant feature is the noteworthy inward relaxation 

of the surface plane for both terminations (larger in the case of B-terminated surface) together with 

a much less outward relaxation of the inner layers. These results are in good agreement with 

previous theoretical data 35, 36, which show that these relaxations affect mainly the first three layers 

for the Zr-terminated surface and the outermost four-five layers in the B-terminated case. 

Moreover, no significant differences arise in comparing symmetric vs. stoichiometric slab models 

(c.f., 10 vs. 11 layer slab results). On the other hand, the slab models with 4 or 5 layers seem to be 

accurate enough for atom/molecule adsorption calculations. 

 

OXYGEN ADSORPTION 

 

We have studied the adsorption of atomic oxygen on seven different sites over the unit cell of 

ZrB2 (0001) surface finished in Zr or B layers (Fig. 1). For the Zr-terminated surface (Fig. 1b), 

there is a hollow site (H1) in which the adatom coordinates three Zr atoms of the same layer; the 

other two explored sites are a bridge site (B1) between two Zr atoms and a Zr top site (T1). In the 

case of the B-terminated surface (Fig. 1c), there are 4 relevant sites: a bridge between two B atoms 

(B2), a six-fold hollow site (H2) in the centre of the B hexagon, a B top site (T2) and a site located 

in the middle between H2 and B2 sites (M2).  

Table III summarizes the results for the atomic oxygen adsorption over the seven sites listed 

above for a four-layer slab model, where the two first layers were allowed to relax. These values 

were obtained keeping free the spin polarization although very similar results were also taken 

fixing the spin state during the oxygen adsorption (i.e., singlet and triplet). From the values 

obtained, a different behaviour is patent for the two kinds of surfaces.  In the case of the Zr-

termination, the most stable site is the H1 one (Ead = 8.53 eV), decreasing the adsorption energy in 

the order H1 > B1 > T1.  However only the H1 stationary point corresponds to a true minimum 

with all positive vibrational frequencies. The calculated O-Zr distance for this adsorption minimum 

is quite close to the expected values in a typical crystalline solid as zirconia (2.221 Å and 2.141 Å 

for cubic 37 or orthorhombic 38 structures, respectively). The three Zr atoms in the H1 site are 

almost not shifted by the O adsorption in comparison with other Zr atoms of the same first layer. 
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Moreover, we have also checked the description of the minimum adsorption site (i.e., H1) by using 

a five-layer slab model (which describes slightly better the clean slab). The resulting structure is 

almost the same reported in Table III (e.g., Ead  =  8.51 eV, d(O-Zr) = 2.133 Å and d(O-B) = 2.989 Å). 

It is also important to note that this H1 site, which corresponds to the most stable threefold hollow 

site predicted by the present study, is in complete agreement with HREELS experimental 

predictions 8.  

The other sites B1 and T1 correspond to first- and second-order saddle points, respectively, 

and they are associated with diffusion over the surface. Thus, B1 is a diffusion transition state that 

connects two adjacent H1 minima (i.e., H1 ® B1¹ ® H1) with an energy barrier of 0.57 eV. When 

the adatom is on T1 site, two different diffusion paths are available since the site is surrounded by 

six B1 and six H1 sites (Fig. 1b). Hence, the connection can involve two opposite H1 minima (H1 

® T1¹ ® H1) or two B1 sites (B1¹ ® T1¹ ® B1¹), with much larger energy barriers (2.65 eV and 

2.08 eV, respectively).  

In the case of boron termination, the most stable site is a bridge between two neighbouring 

boron atoms (B2, Ead = 6.30 eV) whereas the other three possible sites are stationary points related 

with the diffusion among the different surface sites, decreasing their adsorption energy in the order 

B2 > M2 > T2 > H2.  The calculated B-O distances for the most stable site (B2) are similar to those 

observed experimentally in borates or boric acids (e.g., 1.367-1.371 Å in H3BO3 39 or 1.363-1.561 

Å HBO2 40). Diffusion between two adjacent B2 minima can occur through a high-energy barrier of 

1.02 eV (B2 ® M2¹ ® B2). Moreover, M2 sites surrounding the same B atom are connected 

through T2 (M2¹ ® T2¹ ® M2¹) whereas M2 of different B atoms can be connected through H2 

transition state (M2¹ ® H2¹ ® M2¹), with very different energy barriers (0.31 eV and 2.32 eV, 

respectively). 

The atomic coverage effect has also been studied, considering a two O atom adsorption in the 

same (2x2) supercell, which means an increase from 12.5 to 25 % of coverage taking into account 

only the H1 minimum sites for the Zr-terminated face or from 8.3 to 16.7% for considering only 

the B2 minimum sites for the B-terminated surface. When an initial oxygen atom is preadsorbed on 

a first H1 hollow site, a second O can be adsorbed on one of the three non-equivalent H1 sites 

(labelled as H1(A), H1(B) and H1(C)) as it is indicated in Fig. 2a and Table IV. The adsorption 

energy per atom is larger when both H1 sites are as far as possible (i.e., H1 + H1(C)), arising then 

similar adsorption energy and geometry as for a single atom adsorption. A clear shift in vibrational 

frequencies is also observed. For instance, perpendicular frequencies increase not only with atomic 
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coverage but also and in a greater extent when the adatoms are in nearer H1 sites (i.e., at lower O-O 

distances). 

In the case of the B terminated surface there are four non-equivalent B2 sites for the second 

O atom (Fig. 2b) although we observe only small differences respect their adsorption energies and 

geometries (Table IV). In principle, a similar trend in Ead values could be expected as for Zr-

termination, explaining the similar stability for two-atom adsorption in B2 + B2(D) in comparison 

with one-atom adsorption on B2 site, where O-O distance is large enough (3.179 Å) and no 

interaction between O atoms is expected as in the single atom adsorption case. In this latter 

configuration both O adatoms are in different B hexagons but when those oxygen atoms are in the 

same hexagon the behaviour seem to be rather different and their stability decreases (e.g., in B2 + 

B2 (C)) respect one single atom adsorption. Moreover a larger Ead is observed for shorter O-O 

distances (i.e., B2 + B2(A) > B2 + B2(B) > B2 + B2(C)). This can be explained in terms of the 

important surface (slab) reconstruction (e.g., ∆z = 0.986 Å for B2 + B2(A)) produced in the first 

boron layer (Fig. 3), which gives an Ead even greater than for the case of a single atom adsorption. 

Thus, the B-O distances become shorter (Table IV) and both <BOB angles become larger (i.e., 

(88.6 °, 88.69 °), (86.0 °, 111.5 °) and (113.1 °, 113.1 °) for C, B and A cases, respectively), 

approaching the experimental B-O distances and <BOB angles observed in H3BO3 39 or in HBO2 40 

crystalline structures (i.e., <BOB angles within 118-121º and 119-120º intervals, respectively). 

The specular HREELS spectra for oxygen-exposed ZrB2 (0001) surfaces 8 show a loss peak at 

60.9 meV (491.2 ± 16 cm-1). When atomic exposure increases this peak shifts towards a higher 

energy of 69.1 meV (557.3 ± 16 cm-1) increasing also its intensity. As this technique detects mainly 

the dipole-active modes (i.e., only the perpendicular modes which change the dynamic dipole 

moment) the peak is in agreement with present DFT results for the adsorption of one oxygen atom 

on H1 site (Table III) that show a perpendicular active mode at 462.8 cm-1 for the lowest coverage. 

The inclusion of the Zr atoms of the first layer into the vibrational frequency analysis produces an 

increase of 4-5% (i.e., 488.4 cm-1, 361.4 and 360.4 cm-1), in even better agreement with the 

experimental data. For slightly higher coverages (i.e., 25% corresponding to the adsorption of two 

O atoms) the DFT results (Table IV) show a shift of the active mode to 454.3, 481.7 or 663.1 cm-1 

depending on the closeness of both H1 occupied sites (H1 + H1(C), H1(B), H1(A), respectively). It 

is worth noting that only one of the two perpendicular modes listed in Table IV (the symmetric 

one) is active. At this 25% of coverage the most favourable adsorption would be mainly produced 

in H1 + H1(B) or H1 + H1(C) pair of sites that keep the two O-O atoms still far from each other, 
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which would produce a peak within the 56.3-59.7 meV range, justifying thus the experimental 60.9 

meV peak.  

A further increase in the coverage produces an increment of the vibrational frequency of this 

perpendicular active mode, which can justify clearly the shift of the experimental peak from 60.9 to 

69.1 meV. Thus, DFT calculations for 3 (37.5% of coverage) or 4  (50% of coverage) oxygen 

atoms adsorbed in the same type of hollow sites (i.e., all upward or all downward) within the (2x2) 

supercell produce values of 492.0 and 511.5 cm-1, respectively, which also correspond to adsorption 

energies per atom of 8.14 and 7.92 eV, respectively, only slightly less stable in comparison with 

lower coverage values (Tables III and IV). The inclusion of more O atoms decreases largely the 

adsorption energy per atom (e.g., 6.49, 5.96, 5.33 and 3.90 eV for 6, 7, 8 or 8 atoms, respectively), 

possibly because these additional O atoms occupy now nearest neighbour sites with a stronger but 

unfavourable O-O interaction. This behaviour was also predicted for H adsorption on the same 

surface 41, which shows as well that the most stable coverage is around 50%, being this value close 

to the saturation coverage one. At very high oxygen exposures the observed streaky LEED patterns 
8 confirm these strong O-O interactions. 

On the other hand, at high O exposures two small additional experimental loss peaks were 

also detected at 52-53 meV (419.4-427.5 ± 16 cm-1) and 87.7 meV (707.3 ± 16 cm-1) 8. Possible 

explanations based on the presence of some peroxo species (e.g., O2
2-) or in some subsurface 

oxygen caused by some vacancies were proposed for the larger loss peak. Some Zr vacancies 

would put the B-layer more accessible for the incoming O atoms. In addition, the large outward 

relaxation observed for O adsorption in the outermost boron layer for a B-finished surface (e,g., in 

B2 + B2(A), Fig. 3b) could justify the penetration and adsorption of O over the accessible boron 

subsurface layer at these coverages. This fact can be reinforced not only for the similar surface 

energies observed for both slab terminations in thin ZrB2 layers 35 but also by the large adsorption 

energy calculated for B2 sites. Therefore, this peak at 87.7 meV could be also produced by O-B 

stretching modes, whose calculated vibrational frequencies for B2 sites (i.e., 706.1 cm-1 (Table III) 

or 725.6-891.5 cm-1 (Table IV) for 8.3 % and 16.7 % coverages, respectively) are very close to the 

experimental value (707.3 ± 16 cm-1). However, another possible explanation could come from the 

fact that at higher coverage the top Zr sites (T1) become more available and their calculated 

associated frequencies (i.e., 700.1 cm-1, Table III) would be also compatible with the loss peak of 

87.7 meV. At lower coverage only the most stable H1 sites would be occupied justifying the 

absence of this peak. 
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We have also studied the molecular interaction of oxygen on ZrB2 (0001) for both terminated 

surfaces. Molecular oxygen can only be adsorbed dissociatively (not molecularly) over the Zr-

terminated surface, which is a non-activated process (i.e., without any energy barrier) with both O 

final adatoms occupying two consecutive threefold hollow sites (i.e., H1 + H1(A), Fig. 2a), in good 

agreement with the experimental open dissociation at room temperature for both O2 and H2 

molecules 8. Moreover, similar DFT results were reported for H2 dissociation on the same surface 
41. However, the B-terminated surface presents a somewhat different behaviour as shown in Figure 

4. Thus, when O2 approach parallel to the surface there is a non-activated molecular adsorption 

with an adsorption energy of 2.63 eV respect O2 gas (MIN1 in Table V). From this minimum there 

is a small energy barrier of 0.27 eV (zero point energy not included) corresponding to a transition 

state (TS2 in Table V) which dissociates to B2 + B2(B) sites. The parallel asymmetric imaginary 

frequency allows the movement of both oxygen atoms in opposite way until reaching two non-

consecutive B2 sites. However, for a perpendicular molecular approach there is a small energy 

barrier of 0.39 eV (zero point energy not included), corresponding to another transition state (TS1 

in Table V) connecting also with the molecular minimum (MIN1,  Fig. 4). 

Materials with a low oxidation rate are required for hypersonic applications whereas the 

present DFT calculations confirm the great capability of both ZrB2 surfaces to be oxidized by either 

molecular or atomic oxygen. This fact justifies accordingly the necessity of adding other species on 

ZrB2-based UHTCs in order to increase their oxidation resistance (e.g., SiC 7, TaSi2 2,..). 

 

ATOMIC OXYGEN RECOMBINATION REACTION 

 

We have also studied the atomic oxygen recombination over the ZrB2 surface with the two 

possible surface terminations through two typical mechanisms: Eley-Rideal (ER: O(g) + O(ad)) and 

Langmuir-Hinshelwood (LH: O(ad) + O(ad)). As the preadsorbed oxygen prefers the most stable 

adsorption sites, this study was focused on considering one or two O adsorbed on H1 and B2 sites 

for Zr- and B-terminated surfaces, respectively. A first analysis on their exo- or endothermicities 

(DEreac) reveals that the ER reaction will be much more accessible than LH reaction at all 

temperatures or collision energies because DEreac (zero point energy not included) for ER is much 

lower than for LH (2.49 and 9.62 eV for Zr-terminated surface and 0.26 and 6.21 eV for B-

terminated surface, respectively). The minimum energy path for ER reaction over the Zr-terminated 

surface has not shown any additional transition state; thus, its energy barrier corresponds only to 

the whole endothermicity. 
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A different scenario is observed in the case of the B-terminated surface. When the incoming 

oxygen gas atom approaches to the adatom preadsorbed on B2 site, a new minimum structure 

(MIN2, Table VI) is formed without an energy barrier, adopting both O atoms a perpendicular 

configuration respect to the surface (Fig. 5). From this minimum is possible to produce directly 

O2(g) surpassing a second-order transition state (TS3, Table VI) through the perpendicular 

imaginary frequency (n = 137.2i cm-1), which also can reach the most stable molecular adsorption 

minimum (MIN1) following through the another imaginary frequency (n = 285.4i cm-1) that 

describes mainly a parallel movement although with some perpendicular character.  

According to these facts, the ER reaction will be much more important than LH reaction in 

both terminated ZrB2 surfaces, although the ER reaction would be more available for the B-finished 

surface (0.26 eV of endothermicity and 0.51 eV of energy barrier). However, the Zr-terminated 

surface results should be more relevant in comparison with the experimental data of the catalytic 

efficiency for the recombination of atomic oxygen on ZrB2-based ceramics. In spite of the addition 

of SiC (15-vol %) to ZrB2 can alter its reactivity, the experimental activation energies (0.25 and 

0.29 eV for 200 and 400 Pa of total pressure, respectively 11) are very close to the present DFT 

results for a low coverage limit. However, the inclusion of SiC compound and the effect of the high 

experimental temperatures (800-1800 K) should be introduced in additional theoretical calculations 

(i.e., kinetic and dynamics studies) to make a more reliable comparison. 

 

IV. SUMMARY AND CONCLUDING REMARKS 

 

Density functional theory (GGA/PBE) calculations were carried out to describe the main 

ZrB2 bulk properties together with the interaction of atomic and molecular oxygen with thin films 

of zirconium diboride, considering both Zr- and B-terminated (0001) surfaces. All the calculated 

structural properties (e.g., lattice parameters, cohesive energy, heat of formation, bulk modulus,…) 

compare satisfactorily well with either experimental data or earlier theoretical studies. Surface 

calculations using slabs with a different number of layers show a clear trend to inward relaxation of 

the surface plane for both terminations along with much less outward relaxations of the inner 

layers. 

The adsorption of atomic oxygen is mostly favourable on threefold hollow sites (H1) for the 

Zr-finished surface and on B–B bridge sites (B2) for the B-finished surface. The calculated large 

stability on these H1 sites is in complete agreement with specular HREELS experimental 

predictions. The coverage effect has been studied showing a noticeable influence for the Zr-
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terminated surface. The adsorption energy per atom is larger when both H1 sites are as far as 

possible. A clear shift in the perpendicular vibrational frequencies is observed when the coverage is 

augmented (462.8 ® 492.0 ® 511.5 cm-1), which can explain the experimental loss peak shift from 

491.2 to 557.3 ± 16 cm-1. The most stable coverage was found around 50%, being this value close 

to the saturation one and similar to the previously calculated for the H adsorption over the same Zr- 

terminated surface. 

Moreover, the additional experimental small peak observed at 707.3 ± 16 cm-1 for high O 

exposures could be explained considering an O-B stretching, which presents vibrational 

frequencies for B2 site (706.1 cm-1 or 725.6-891.5 cm-1 for 8.3 and 16.7% coverages, respectively) 

very close to the experimental value. However, another possible explanation could come from the 

O adsorption on top Zr sites at higher coverage. 

The molecular interaction of oxygen over both terminated surfaces produce mainly its 

dissociation through non-activated processes, which is in agreement with the observed open 

dissociation at room temperature. Furthermore, O2 can be molecularly adsorbed on the B-

terminated surface adopting a more stable parallel configuration (Ead = 2.63 eV). 

The study of the atomic oxygen recombination over both ZrB2 surfaces shows that the Eley-

Rideal reaction will be much more important than the Langmuir-Hinshelwood reaction at all 

temperatures or collision energies. The ER reaction will be more accessible for the B-finished 

surface (only 0.26 eV of endothermicity and 0.51 eV of energy barrier), but it is less stable than the 

Zr-terminated one with a higher endothermicity. The DFT results for a low coverage limit are 

compatible with the experimental activation energies (i.e., 0.25-0.29 eV) derived for ZrB2-based 

ceramics with 15-vol % SiC at high temperatures (800-1800 K), although additional theoretical 

calculations (i.e., kinetic and dynamics studies at high temperatures) including SiC into the slab 

should be necessary to make a more trustworthy comparison. 
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FIGURE CAPTIONS 

 

Figure 1. Side (a) and top views (b, c) of the ZrB2 (0001) slab model with a Zr (a, b)  and a B (c) 

topmost layer , respectively. The different adsorption sites are shown for each termination. Red line 

defines the (2x2) supercell. Blue and green circles stand for Zr and B atoms, respectively. 

 

Figure 2. Non-equivalent minimum adsorption sites available for a second O atom when a first one 

is previously adsorbed on H1 (Zr-terminated slab) or B2 (B-terminated slab) sites in a (2x2) 

supercell. Blue, green and red circles stand for Zr, B and O atoms, respectively. 

 

Figure 3. Top (top panels) and side (bottom panels) views of a) clean slab and two-atom adsorption 

cases on the B-terminated surface: b) B2 + B2(A), c) B2 + B2(B), d) B2 + B2(C) and e) B2 + 

B2(D). In the bottom panels the last boron layer was kept fixed in the optimization process while 

the other layers were allowed to relax. Blue, green and red circles stand for Zr, B and O atoms, 

respectively. For clarity, the atoms belonging to the two lowest layers are drawn translucent in order 

to focus the attention on the outermost boron layer. 

 

Figure 4. Minimum energy path for the molecular adsorption over the B-terminated surface. Insets 

point out the stationary points listed in Tables VI and V. Green and red circles stand for B and O 

atoms, respectively. 

 

Figure 5. Minimum energy path for the ER atomic oxygen recombination reaction on B-terminated 

surface. Insets point out the stationary points listed in Table V. Green and red circles stand for B 

and O atoms, respectively. 
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Fig. 4 
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Fig. 5 
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TABLE I. Calculated and experimental lattice parameters, equilibrium volume, interatomic distances, cohesive energy, heat of formation, bulk 

modulus and its pressure derivative of ZrB2 compound 

 
 

Method a 
(Å) 

c 
(Å) 

Vo 
(Å3/cell) 

dZr-B  
(Å) 

dB-B 
(Å) 

Ecoh  

(eV/cell) 
∆fHo K 

(eV/cell) 
Bo 

(GPa) 
Bo

' 
 

 
GGA-PBE (PAW) a 

 
3.179 

 
3.554 

 
31.105 

 
2.554 

 
1.835 

 
21.68 

 
-2.971 

 
244 

 
3.89 

TB-LMTO-ASA b 3.197 3.561 31.520 2.565 1.846 17.01 -3.076 195 1.94 
GGA-PBE (USP) c 3.168 3.536 30.731 2.544 1.829 23.911 -3.055 238 3.84 
Experiment 3.169 d 3.531 d 30.710 2.543 1.830 21.14±0.40 e -3.33±0.07 e 245 f, 317 g - 
          

 

a This work. Bo and Bo' are derived from third-order Birch-Murnaghan state equation; ∆fH is calculated from  and 
Ecoh from  
b Theoretical data from Ref. 26. 
c Theoretical data from Ref. 27, which reports also similar values by using normconserving pseudopotentials or the LDA approximation. 
d Experimental data from Ref. 28. 
e Ecoh was derived from ∆fHo values at 0 K from Ref. 29.  
f Experimental data from Ref. 30. 
g Experimental data from Ref. 31. 

 

� 

Δ fH
ZrB2 = Ebulk(eq.)

ZrB2 − Ebulk(eq.)
Zr + 2Ebulk(eq.)

B[ ]

� 

Ecoh
ZrB2 = Eatom

Zr + 2Eatom
B[ ] −Ebulk(eq.)

ZrB2
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TABLE II. Interlayer relaxations of the outermost layers for Zr- and B-terminated (2x2)-ZrB2 (0001) surfaces. 

 

Termination Interlayer 
relaxation (%) a 

Number of layers 
4 5 10 11 

 
Zr 

 
∆d12 
∆d23 

∆d34 
∆d45 

∆d56 

∆d67 

 

 
-3.65 
1.25 

 
-4.18  (-4.85) c 

0.42  (0.71) 
-0.16 

 
-4.67 
0.33 
0.34 
0.39 
-0.07 

 
-4.49 (-5.10) b 
0.38  (0.51) 
0.31  (0.02) 
0.43 (-0.10) 
-0.12 (-0.03) 

      
B ∆d12 

∆d23 

∆d34 
∆d45 

∆d56 

-6.69 
1.98 

-7.83 (-8.68) c 
2.54 (2.31) 

0.70 
 

-7.19 
2.15 
0.35 
-0.31 
-0.40 

-7.21 (-8.02) 
2.19 (1.83) 
0.27 (0.10) 

-0.06 (-0.42) 
-0.25 (-0.60) 

 

a Defined as  (%) 

b Theoretical data from Ref. 35 using  an (1x1) unit cell. 
c Theoretical data from Ref. 36 using  an (1x1) unit cell. 

  

Δdij =
dij(slab)− dij(bulk)

dij(bulk)
⎛

⎝⎜
⎞

⎠⎟
×100
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TABLE III. Calculated GGA-PBE adsorption energies and geometries for one oxygen atom over the ZrB2 (0001) surface, with a four-layer slab model  

(relaxing the first two layers) and a (2 ´ 2) supercell on different sites for both face Zr- and B-terminations 

 

Site Ead (eV) a d(O-Zr) (Å) b d(O-B) (Å) b ∆z (Å) c z(O)(Å) d 
n (cm-1) e 

^ || 

    
 

 
Zr-terminated 
 

    

H1 8.53 2.129 2.984 0.077 1.162 462.8  348.5 348.2 
B1 7.96 2.042 3.238 0.065 1.321 521.3  467.8 173.1i  
T1 5.88 1.886 4.115 0.098 1.886 700.8 158.4i 155.8i 

     
B-terminated 

    

 
B2 

 
6.30 

 
3.311 

 
1.441 

 
0.144 

 
1.082 

 
706.1 

 
499.8 

 
246.0  

M2 5.28 3.128 1.375 0.108 1.076 762.3  263.7 308.6i  
T2 4.97 3.567 1.319 0.098 1.319 864.7 150.3i 191.1i  
H2 2.96 2.443 2.043 0.031 0.759 376.1 424.4i 425.4i 

         

 
a The atomic coverage is 1/8 (12.5%)  or 1/12 (8.3%) considering only the available most stable sites (i.e., H1 and B2) for Zr- or  
B-terminations, respectively. 
b The shortest O-Zr and O-B distances for each site and surface termination are shown. 
c Vertical z shift of the closest surface atoms to O adatom with respect the clean slab geometry.  
d The z coordinate of O adatom, taking z = 0 at the closest surface atoms. 
e Harmonic vibrational frequencies of the atomic adsorbate with respect to the rigid substrate, approximately classified as perpendicular  
and parallel modes. 
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TABLE IV. Calculated GGA-PBE adsorption energies and geometries for two oxygen atoms over the ZrB2 (0001) surface, with a four-layer slab model 
(relaxing the first two layers) and a (2 ´ 2) supercell on different sites for both face Zr- and B-terminations. 

 

Sites Ead (eV) a d(O-Zr) (Å) b d(O-B) (Å) b d(O-O) (Å) ∆z (Å) c z(O)(Å) d 
n (cm-1) e 

^ || 

    
 

 
Zr-terminated 
 

 
   

H1 + H1(A)  7.83 1.981, 1.981 3.054, 3.054 2.461 0.135 1.161, 1.161 663.1 
561.6 

395.2 
239.5 

193.9 
106.8 

H1 + H1(B)  8.37 2.086, 2.087 2.977, 2.977 3.179 0.115 1.114, 1.114 481.7 
467.6 

378.8 
341.8 

327.1 
319.2 

H1 + H1(C)  8.45 2.112, 2.112 2.973, 2.973 3.671 0.164 1.045, 1.045 454.3 
438.0 

414.0 
413.7 

378.5 
378.1 

    
 

 
B-terminated 
 

 
    

B2 + B2(A)  6.45 3.456, 3.458 1.379, 1.379 2.305 0.986 0.399, 0.401 891.5 
725.2 

584.7 
538.9 

378.8 
233.5 

B2 + B2(B) 6.19 3.243, 3.315 1.396,1.412 2.751 0.363 0.740, 0.853 737.1 
704.4 

559.6 
540.6 

284.8 
247.3 

B2 + B2(C)  6.09 3.322, 3.322 1.433, 1.433 3.179 0.182 1.024, 1.023 688.9 
654.5 

571.1 
539.5 

270.7 
206.7 

B2 + B2(D)  6.23 3.299, 3.300 1.439, 1.439 3.179 0.121 1.096, 1.095 725.6 
708.5 

553.4 
503.0 

248.1 
240.5 

 
a Adsorption energy per O atom. The atomic coverage is 2/8 (25.0%)  or 2/12 (16.7%) considering only the available most stable sites (i.e., H1 and B2) for Zr- or B-
terminations, respectively. Values for both O adatoms  (e.g., H1 and H1(A)) are given separated by a comma. 
b The shortest O-Zr and O-B distances for each site and surface termination are shown. 
c Vertical z shift of the closest surface atoms to O adatom with respect the clean slab geometry.  
d The z coordinate of O adatom, taking z = 0 at the closest surface atoms. 
e Harmonic vibrational frequencies of the atomic adsorbates with respect to the rigid substrate, approximately classified as perpendicular and parallel modes. 
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TABLE V. Calculated GGA-PBE energies and geometries for O2 interaction over the ZrB2 (0001) surface, with a four-layer  

slab model (relaxing the first two layers) and a (2 ´ 2) supercell on the B-terminated face. 

 

Sites E (eV) a d(B-B) (Å) d(O-B) (Å) d(O-O) (Å) n (cm-1)b 

^ || 
        

MIN1  2.63 1.926 1.492, 1.492 1.436 648.4 
576.8 

841.1 
269.9 

292.7 
97.0 

TS1 0.39 1.856 3.188, 3.188 1.237 1505.6 
71.6i 

63.1 
56.3 

28.3 
26.1 

TS2 0.27 1.943 1.446, 1.446 1.680 642.3 
635.3 

246.5 
87.6 

152.5 
639.3i 

 
a Adsorption energy (Ead)  for the minimum and energy barriers (∆V¹) respect to the closest minimum for both transition states.  
b Harmonic vibrational frequencies of the atomic adsorbates with respect to the rigid substrate, approximately classified as  
  perpendicular and parallel modes. 
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TABLE VI. Calculated GGA-PBE energies and geometries for Eley-Rideal reaction over the ZrB2 (0001) surface,  

with a four-layer slab model (relaxing the first two layers) and a (2 ´ 2) supercell on the B-terminated face. 

 

Sites E (eV) a d(B-B) (Å) d(O-B) (Å) d(O-O) (Å) n (cm-1)b 

^ || 
        

MIN2  0.60 2.029 1.493, 1.493 1.366 941.4 
373.2 

633.4 
213.5 

176.5 
75.1 

TS3 0.51 1.963 2.244, 2.246 1.255 1331.2 
137.2i 

285.4i 
54.3 

201.3 
130.1 

 
a Adsorption energy (Ead)  for the minimum and energy barrier (∆V¹) respect to O(g) + O(ad) . 
b Harmonic vibrational frequencies of the atomic adsorbates with respect to the rigid substrate, approximately classified as  
  perpendicular and parallel modes. 
 
 


