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Abstract 22 

In the transition zone between aquifers and aquitards, DNAPL pools of carbon 23 

tetrachloride and chloroform accumulate because of heterogeneity in this zone. 24 

Natural attenuation occur at pools and plumes, indicating that remediation might 25 

be possible. The aims of the study were: i) to assess the role of heterogeneity in 26 

the natural attenuation of these compounds, ii) determine degradation 27 

processes within this zone, and iii) identify dechlorinating microorganisms. For 28 

this, groundwater concentrations, redox-sensitive parameters, CSIA isotopic 29 

and DGGE molecular techniques were used. The main findings at depth of the 30 

transition zone were: (1) The important key control played by heterogeneity on 31 

natural attenuation of contaminants. (2) Heterogeneity caused the highly anoxic 32 

environment and dominant sulfate-reducing conditions, which accounts for more 33 

efficient natural attenuation. (3) heterogeneity also explains that the transition 34 

zone constitutes an ecotone. (4) The bacteria size exclusion is governed by the 35 

pore throat threshold and determines the penetration of dechlorinating 36 

microorganisms into the finest sediments, which is relevant, since it implies the 37 

need to verify whether microorganisms proposed for bioremediation can 38 

penetrate these materials. (5) Reductive dechlorination caused the natural 39 

attenuation of contaminants in groundwater and porewater of fine sediments. In 40 

the case of carbon tetrachloride, it was an abiotic process biogenically mediated 41 

by A. suillum, a bacterium capable of penetrating the finest sediments. In the 42 

case of chloroform, it was a biotic process performed by a Clostridiales 43 

bacterium, which is unable to penetrate the finest materials. (6) Both 44 

microorganisms have potential to be biostimulated to dechlorinate contaminants 45 

in the source and the plume in the transition zone. These outcomes are 46 
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particularly relevant given the longevity of DNAPL sources and have 47 

considerable environmental implications as many supply wells in industrial 48 

areas exploit aquifers contaminated by chlorinated solvents emerging from 49 

DNAPL pools accumulated on the low-conductivity layers in transition zones. 50 

 51 

Keywords 52 

geological and textural heterogeneity in the transition zone; carbon tetrachloride; 53 

chloroform; natural attenuation; reductive dechlorination; Azospira suillum 54 

 55 

1. Introduction 56 

Carbon tetrachloride (CT) and chloroform (CF) are chlorinated solvents that belong to 57 

the group of dense non-aqueous phase liquids (DNAPLs). Together with 58 

dichloromethane (DCM) and chloromethane (CM), they are known as chloromethanes. 59 

CT and CF have been widely used as precursors of refrigerants (Xiao et al., 2000), and 60 

are pollutants harmful to the ozone layer (Fraser et al., 2014), ecosystems, and human 61 

and animal health, as they are toxic and carcinogenic. As other chlorinated solvents, 62 

CT and CF DNAPLs and plumes are often found in industrial areas that have been 63 

subjected to strong anthropic pressure. 64 

Chlorinated solvents can last in the environment from decades to hundreds of years as 65 

a result of: (1) their low solubility as a free or residual phase; (2) their low natural 66 

attenuation (NA) rates when redox conditions are not sufficiently anoxic; (3) the 67 

different phases in which they can be partitioned (Pankow and Cherry, 1996); and (4) 68 

the portion of them that penetrate through molecular diffusion into the porewater of fine 69 

sediments (PWFS), as described in Parker et al. (2004). They cause considerable 70 

pollution episodes in groundwater (Mackay and Cherry, 1989; Cohen and Mercer, 71 



4 

1993; Pankow and Cherry, 1996). Their distribution in the subsurface is quite complex 72 

due to geological heterogeneity, which determines not only their distribution as 73 

DNAPLs at the source but also the morphology of the emanating plume (Imhoff et al., 74 

1994; Farthing et al., 2012). In the free phase, they migrate vertically through the most 75 

permeable formations, leaving a trail of immobile residual DNAPL that partially 76 

occupies the porosity at saturations below the residual saturation value in granular 77 

media (Hartog et al. 2010; ITRC, 2015; Fetter et al., 2017). This trail can be 78 

progressively dissolved and incorporated into the groundwater flow, while the free 79 

phase tends to accumulate as pools at different depths on layers of low hydraulic 80 

conductivity (Rivett et al., 2014) and at the bottom of the aquifer (Pankow and Cherry, 81 

1996; Luciano et al., 2010; Fjordbøge et al., 2017; Einarson et al., 2018), occupying a 82 

large portion of pores (ITRC, 2015) and making hydraulic conductivity decrease at the 83 

source (Fetter et al., 2017). 84 

This pattern is especially noteworthy in cases where a transition zone to a bottom 85 

aquitard exists in the lowermost part of an aquifer. In this zone, an intrinsically huge 86 

geological heterogeneity occurs because of the presence of numerous interstratified 87 

silty-clay levels between sands (Puigserver et al., 2013). This heterogeneity results in a 88 

great variability in hydraulic conductivity, and globally, in a whole low value of this 89 

parameter, which results in a low groundwater velocity and a minor supply of dissolved 90 

oxygen (DO). The low hydraulic conductivity reaches an even lower value because of 91 

the large percentage of porosity occupied by DNAPL when the source is in the 92 

transition zone. In this scenario, the subsequent lower velocity leads to a minor DO 93 

supply and to lesser groundwater flushing and dissolution rate at the source, which 94 

accounts for the greater longevity of sources and plumes in transition zones compared 95 

with other more conductive depths in the aquifer (Puigserver et al., 2016a, b). The 96 

accumulation of DNAPL pools in the transition zone has significant environmental 97 
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implications as many supply wells in the world exploit aquifers that, from the geological 98 

point of view, constitute deposits whose lower parts are transition zones. 99 

Cases have been described in which the high concentrations of CT and CF in the 100 

source can harm or partly inhibit microbial dechlorinating activity (Da Lima, and Sleep, 101 

2010). However, these pollutants, like other chlorinated solvents, can be degraded 102 

naturally by biotic and abiotic reductive dechlorination under appropriate redox anoxic 103 

conditions (Ramsburg et al., 2010) in the source and the plume (Hunkeler et al., 2011; 104 

Wanner et. al, 2016). Davis et al. (2003) reported the reductive abiotic dechlorination of 105 

CT to form CF in the presence of iron-reduced minerals. Penny et al. (2015) observed 106 

that only a minor portion of bacteria from anoxic media were capable of degrading CT 107 

in the laboratory. Puigserver et al. (2016c) identified Azospira suillum (formerly 108 

Dechlorosoma suillum, Achenbach et al., 2001) in microcosm experiments at 109 

laboratory scale with real field samples from the same site as this work and noted the 110 

unique presence of this microorganism (and another belonging to the order 111 

Clostridiales) when redox conditions became sulfate-reducing and the abiotic reductive 112 

dechlorination of CT to CF occurred. These examples corroborate that the assessment 113 

of the dominant redox conditions in sources and plumes is crucial to understanding the 114 

fate of these pollutants and to evaluate remediation strategies. In the case of the 115 

transition zone, the examples suggest that the minor supply of DO and the subsequent 116 

occurrence of anoxic conditions favor in situ biotic or abiotic remediation of the source 117 

and the plume. 118 

Christensen et al. (2000), in a review on the characterization of the dominant redox 119 

conditions in groundwater contaminant plumes, demonstrated that these conditions, 120 

which control the biotic and abiotic processes occurring in the environment, could be 121 

evaluated according to the relative distribution of contaminants with respect to the 122 

redox-sensitive inorganic species together with other parameters and approaches such 123 
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as redox potential (Eh), total organic carbon (TOC), and use of the Compound-Specific 124 

Isotope Analysis technique (CSIA). 125 

The aims of the current study were: i) to assess the role played by geological and 126 

textural heterogeneity in the transition zone in the degradation of CT and CF, ii) to 127 

determine the degradation processes of these compounds in this zone and evaluate 128 

the magnitude of NA processes, and iii) to identify the microorganisms involved in the 129 

NA of these compounds. To this end, a site was chosen for the current study where an 130 

unconfined aquifer was affected by CT and CF contamination. 131 

2. Site description 132 

The study site is located in the La Pineda petrochemical complex (Tarragona, Spain, 133 

100 km south of Barcelona), which became active in stages, beginning in 1960. Two 134 

main pollutants caused contamination by CT and CF in an unconfined granular aquifer. 135 

The pollution was detected in 1996 in one of the plants of the complex, although it is 136 

unknown when the contamination first appeared. These compounds were used in 137 

refrigerant production (Puigserver et al., 2013) and were stored independently in two 138 

tanks. Spillages, which occurred repeatedly, varied in duration and accumulated on the 139 

numerous layers of low hydraulic conductivity in the transition zone and on the geologic 140 

contact with the bottom aquitard. In addition, superimposed upon this contamination, 141 

other contamination episodes occurred in the past, resulting in a complex pattern of 142 

contamination characterized by a variety of compounds from different origins (other 143 

chloromethanes, chloroethenes, chloroethanes, BTEX, PAHs and metals). 144 

Furthermore, agricultural land uses upgradient of the petrochemical complex give rise 145 

to groundwater pollution by inorganic co-contaminants, nitrates, and sulfates related to 146 

fertilization practices. These electron acceptors migrate with groundwater flow and 147 

reach the industrial area, where the contamination by CT and CF exists. 148 

A substantial portion of the pollutants penetrated via molecular diffusion into the PWFS 149 

(Puigserver et al., 2013). Despite the considerable decrease in the concentrations of 150 
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CT and CF in groundwater between 1997 and 2009 (maximum values in 1997 of 771 151 

and 19,370 μg/L for CT and CF, respectively; and in 2009, of 308.2 and 552.1 μg/L, 152 

respectively), pollution continued to be above the parametric values due to the 153 

application of the pump-and-treat remediation system, which reached its limit of 154 

effectiveness (Puigserver et al., 2016a). 155 

The groundwater monitoring network (Figure 1) consists of 26 conventional 156 

piezometers and two multilevel wells (CMT 7 ports, Solinst). Conventional piezometers 157 

(with depths ranging from 11 to 20 m, Figure 2A) consist of: 1) a first section of blind 158 

pipe (i.e., non-screened) reaching depths ranging from 10 to 12 m; 2) a second section 159 

of screened pipe that is open from the upper part of the aquifer (UPA) to its lower part, 160 

which is a transition zone to a bottom aquitard (TZBA)(see Section 4.1); and 3) a third 161 

short section of blind pipe for piezometers deeper than 17 m (depth where a clayey 162 

bottom aquitard exists). The two multilevel wells (S1UB and S2UB) are 220 m 163 

downstream of the source and are located 5 m apart (Figure 1). Port 7, the deepest of 164 

the seven ports of S1UB and S2UB, are 12.60 and 12.80 m deep, respectively. To 165 

construct these multilevel wells, boreholes B-S1UB and B-S2UB were drilled (22.00 166 

and 16.37 m deep, respectively) and equipped as multilevel wells. The analysis of the 167 

stratigraphic logs of the monitoring network allowed determination of the lithological 168 

and textural characteristics of the subsoil in the site area. Moreover, emplacement of 169 

the monitoring network allowed the study of variations in groundwater quality. 170 

According to the historical evolution of the concentrations of CT and CF along the flow 171 

path, there are two sources, including the main source (from conventional piezometer 172 

S5-P2 to P7) and a smaller, secondary source detected immediately upstream from P8 173 

(Figure 1 and Figure 2A). 174 

3. Materials and methods 175 

The methodological procedures shown in this section were followed to attain the 176 

objectives raised in the study (see Section 1). These procedures allow the assessment 177 
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of the role of geological and textural heterogeneity in the transition zone in degradation 178 

of CT and CF. To define that role, the determination of the dominant redox conditions 179 

and the identification of the biogeochemical processes occurring under these 180 

conditions were carried out. This was done along the flow and with depth comparing 181 

the results in the UPA (a very homogeneous hydrostratigraphic unit) with the TZBA (an 182 

extremely heterogeneous unit). For this, the groundwater sampling to analyze redox-183 

sensitive species allowed: i) identifying the dominant redox conditions, ii) verifying if NA 184 

of CT and CF was occurring, and iii) if NA was more efficient in the TZBA. The 185 

determination of the NA rate of these compounds (λ) and the isotopic enrichment factor 186 

(ε) allowed quantifying the magnitude of this degradation. The results acquired from the 187 

bacterial community analysis, permitted: i) the identification pf the hydrostratigraphic 188 

unit where microbial diversity and abundance were greater, and ii) identifying which 189 

were the microorganisms involved in degradation of CT and CF. The integration of 190 

these results with the previous referring to the biogeochemical processes and redox 191 

conditions in which these processes occurred, allowed determining in which 192 

hydrostratigraphic unit the dechlorinating microorganisms were more efficient and 193 

under what redox conditions they achieved this task. 194 

3.1 Dominant redox conditions and degradation processes 195 

To assess the dominant redox conditions in the subsurface of the studied site, the 196 

guidelines established by Christensen et al. (2000) and subsequently implemented by 197 

many other authors (Rotiroti et al., 2018; Weatherill et al., 2018) were followed in the 198 

current work. They consist in characterizing the dominant redox processes in 199 

groundwater, which allowed identification of the dominant redox conditions under which 200 

these processes occurred. These dominant redox conditions determine the redox zone 201 

to which the environment is assigned. These redox zones refer to the classical model 202 

that, from the thermodynamic point of view, establishes a vertical sequence of the 203 

dominant electron acceptors in natural water and sediment systems. In this model, in 204 



9 

descending potential of metabolic energy yield, oxygen, nitrate/nitrite, Mn4+/Mn2+, 205 

Fe3+/Fe2+, sulfate/sulfide, and CO2/CH4 are the successive oxidizing agents with 206 

increasing depth (i.e., with a gradient in redox conditions that varies from completely 207 

oxidizing to extremely reducing). 208 

Analyses of groundwater samples in conventional piezometers and multilevel wells in 209 

the monitoring network allowed the study of the variability of groundwater quality and to 210 

determine the dominant redox conditions and degradation processes along the flow 211 

path in the transition zone and with depth, respectively. Samples taken in conventional 212 

piezometers represent all flow lines crossing the section of screened pipe in the 213 

influence area of the sampling pump at the depth to which it is placed. Analytical 214 

results are therefore, an integrated value of the mentioned flow lines. In contrast, 215 

groundwater taken in the sampling ports (4 cm long) of multilevel wells allowed 216 

obtaining greater accuracy in the representation of results with depth. The following 217 

parameters and concentrations were determined along the flow path and with depth: 218 

(1) temperature, electrical conductivity and pH, which were measured on site when 219 

sampling; (2) Eh and DO, which were recorded on site, as well as other redox-sensitive 220 

parameters (TOC, nitrate, nitrite, Mn2+, Fe2+, and sulfate, which were analyzed in the 221 

laboratory); and (3) chloromethanes. 222 

In addition, the CSIA technique was applied to the groundwater samples from the same 223 

piezometers and wells as a tool to study and characterize the degradation processes of 224 

CT and CF (US EPA, 2008) by determining their isotopic fractionation (δ13C values). 225 

The CSIA technique is a powerful tool in the characterization of the degradation 226 

processes of chlorinated solvents (US EPA, 2008). In general, the degradation of a 227 

compound more easily affects molecules with light isotopes, resulting in a relative 228 

enrichment in molecules with heavy isotopes in the groundwater (12C and 13C, 229 

respectively in the case of CT and CF). Furthermore, δ15N and δ18O values of nitrate, 230 

and δ34S and δ18O of sulfate were also used to identify denitrifying and sulfate-reducing 231 



10 

processes (the reduction potential of these inorganic compounds is greater than that of 232 

CT and CF, and therefore the degradation of the last two compounds is partially 233 

inhibited). 234 

The λ and ε values to evaluate the extent of degradation of CT between two 235 

conventional wells A and B separated from each other by a distance d (in meters) were 236 

calculated along the flow path in the source area and along the centerline of the plume. 237 

The equation λ = ln(f)/d (Hunkeler et al., 2008) was used to calculate the rate of 238 

attenuation (λ, in m-1). In this equation, f is the remaining fraction of the contaminant in 239 

well B (located downgradient from well A), therefore, f = CB / CA, where CA is the 240 

concentration in well A and CB is the concentration in well B. In turn, the isotope 241 

enrichment in 3C (ε, in ‰) was calculated using the following equation: ε = (α - 1)·1000 242 

(Hunkeler et al., 2008), where α = (1000 + δ13CA)/(1000 + δ13CB) is the isotope 243 

fractionation factor of 3C, in which subscripts A and B refer to wells A and B, and δ13C 244 

refers to CT. These two equations were also used to analyze the rate of attenuation 245 

and the enrichment factor of CT with depth in the two multilevel wells in the plume. In 246 

this case, the maximum concentration at the source (in conventional piezometer P7, 247 

Figure 4A.C) was taken as CA, whereas CB in the UPA and TZBA (Figure 2A) were the 248 

average concentrations in the sampling ports of the multilevel wells (1, 3 and 4 for the 249 

UPA and 5, 6 and 7 for the TZBA). The values of λ and ε for the case of CF were also 250 

calculated using the previous equations (with δ13C referred to CF). 251 

The λ and ε values of nitrate and sulfate between two conventional wells were also 252 

calculated along the flow path in the source area and along the centerline of the plume, 253 

as well as from the source area to the sampling ports of multilevel wells in the UPA and 254 

TZBA. In all these cases, the background concentration of these co-contaminants in 255 

the zone upgradient of the main source of CT and CF were taken as CA. The δ15N and 256 

δ34S values were used to calculate the ε value of nitrate and sulfate, respectively. 257 

3.1.1 Sampling protocols and procedures 258 
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Conventional piezometers in the monitoring network that approximately followed a 259 

profile along the centerline of the source and plume (Figure 1 and Figure 2A) were 260 

used to sample groundwater from the TZBA. In these piezometers, groundwater was 261 

pumped from the depth of the contact TZBA-BA (similar to that of port 7, the deepest of 262 

multilevel wells). Multilevel wells S1UB and S2UB were used to sample groundwater 263 

with depth in the plume (ports 1 to 4 at the UPA, and ports 5 to 7 at the TZBA). In 264 

addition, groundwater and fine sediments were sampled in wells and boreholes to 265 

determine dissolved TOC contents and particulate organic matter, respectively, 266 

upgradient of the petrochemical complex at the depth of the TZBA. Groundwater 267 

samples were taken using an Eijkelkamp peristaltic pump and an Integra Solinst 268 

Bladder pump (Georgetown, Ontario, Canada) depending on the depth of the 269 

piezometers and multilevel wells. A flow cell (Solinst) was used to ensure intact redox 270 

conditions during the purging and sampling operations and when measuring 271 

physicochemical parameters on site. Aqueous samples were collected in 100-mL VOC 272 

glass serum bottles (Supelco Analytical) for concentration analyses and in 120-mL 273 

amber screw-cap bottles (Supelco Analytical) for carbon isotope analyses. Sodium 274 

azide (N3Na; Fluka, Tres Cantos-Madrid, Spain) was added to the groundwater 275 

samples immediately upon collection to inhibit bacterial activity following procedures 276 

reported by Trevors (1996). For TOC concentrations, 120-mL amber screw-cap bottles 277 

(Supelco Analytical) were used (analytical quality hydrochloric acid, Merck, was used to 278 

acidulate these samples up to a pH of 3). The groundwater samples for nitrate and 279 

sulfate analyses were collected in 150-mL translucent plastic bottles, and Pyrex glass 280 

bottles were used for δ15Nnitrate, δ18Onitrate, δ34Ssulfate, and δ18Osulfate analyses. 281 

Groundwater samples for Mn and Fe were collected in 14-mL transparent plastic vials. 282 

The samples were conserved at 4 °C. The sampling and conservation protocols 283 

indicated in Puls and Barcelona (1996) and Johnston (2006) were used during 284 

transport and at the laboratory. The field blanks that were taken (blanks of 285 

instrumentation, conservation reagents, and transportation to laboratory) are indicated, 286 
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among other aspects, in these protocols. In addition to these blanks, each sample of 287 

groundwater was taken in duplicate to have a good control of the analytical results in 288 

the laboratory. 289 

PWFS is water fundamentally immobile and enclosed inside the tiny pores of fine 290 

sediments of the formation (silty sands, silts and clays, and clayey and silty matrices of 291 

coarse sediment). PWFS and the corresponding fine sediment fraction were sampled 292 

at different depths from boreholes B-S1UB and B-S2UB (drilling procedures and core 293 

recovering protocols are described in Puigserver et al., 2013). The purpose of these 294 

samples was to analyze the diversity and abundance of microbial communities and to 295 

identify the microorganisms involved in CT and CF degradation in the PWFS. 296 

3.1.2 Laboratory analytical methods, techniques and instrumentation 297 

The samples were analyzed at laboratories of the Scientific and Technological Centers 298 

of Barcelona University. These laboratories implement a quality management system 299 

based on the ISO 9001:2015 standard. This implies that a strict laboratory control 300 

sampling protocol was followed, which included the use of laboratory blanks and 301 

standard reference materials. 302 

As a quality control of the laboratory analytical results, the absolute relative percent 303 

difference (RPD%) calculation between the field duplicates was used as a measure for 304 

evaluation of the precision of these results. For this calculation, the absolute value of 305 

the difference between the analytical results of the two duplicates is divided by the 306 

absolute value of the average of the two results. The value obtained is expressed as a 307 

percentage multiplying it by 100: 308 

RPD% = [|D1 – D2| / ((|D1 + D2|) / 2)] x 100 309 

where |D1 – D2| and |D1 + D2| are the absolute values of the difference and 310 

summation of the duplicate sample results, respectively. 311 
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The RPD% values for CT concentrations between 1.7 and 0.2 µmol/L varied from 4.57 312 

to 13.03%, respectively; and for concentrations between 0.2 and 0.014 µmol/L, it varied 313 

from 13.03% to 15.48%. In the case of CF, the RPD% values for concentrations 314 

between 10.7 and 0.3 µmol/L varied from 2.67 to 4.77%, respectively; and for 315 

concentrations between 0.3and 0.02 µmol/L varied from 4.77 to 15.01%. For DCM 316 

between 0.3and 0.042 µmol/L varied from 4.69 to 11.98%, respectively; and between 317 

0.042 and 0.021 µmol/L varied from 11.98 to 13.10%. For CM between 1.0 and 0.13 318 

µmol/L varied from 6.35 to 12.27%, respectively; and between 0.13and 0.033 µmol/L 319 

varied from 12.27 to 15.74%. 320 

As regards the 13C isotopic composition of chloromethanes, only the RPD% values for 321 

CT and CF were calculated, given the very low concentrations of DCM and CM. The 322 

δ13CCT maximum, average, and minimum RPD% values, were 1.41, 0.92, and 0.28%, 323 

respectively. In the case of δ13CCF, those values were 1.29, 0.91, and 0.27%, 324 

respectively. 325 

The RPD% values for δ15NNitrate and δ18ONitrate, and for δ34SSulfate and δ18OSulfate, were 326 

also calculated. The δ15NNitrate maximum, average, and minimum RPD% values were 327 

2.63, 1.20, and 0.56%, respectively; and for δ18ONitrate, they were 7.50, 2.83, and 328 

0.45%, respectively. The δ34SSulfate maximum, average, and minimum RPD% values 329 

were 4.59, 1.78, and 0.52%, respectively; and for δ18OSulfate, they were 5.01, 2.38, and 330 

0.56%, respectively. 331 

The chloromethanes concentrations were measured using gas chromatography-mass 332 

spectrometry (GC-MS). The limits of quantification (LOQ), as a measure of sensitivity 333 

of results, were (in μmol/L): 0.0075 (CT), 0.0159 (CF), 0.0171 (DCM), and 0.0297 334 

(CM). 335 

A protocol based on the extraction of VOCs by direct adsorption from the aqueous 336 

phase was used to determine the δ13C of chloromethanes. The extraction was 337 

conducted by inserting an adsorbent fiber (SPME fiber assembly 75 mm 338 
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carboxen/polydimethylsiloxane (PDMS), Supelco (Madrid, Spain)) into the water 339 

sample, which was stored in a 100-mL amber glass bottle (Supelco Analytical) and 340 

closed with a silicone septum and agitated for 30 min to adsorb the chloromethanes. 341 

The determination of δ13C was performed using gas chromatography-combustion 342 

isotope ratio mass spectrometry (GC-CIRMS) following the protocol described in Palau 343 

et al. (2007) and using a Delta C Finnigan (an earlier name of Thermo Fisher Scientific, 344 

Inc.) MAT IRMS spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). 345 

TOC was analyzed using a TOC-5000 TOC analyzer (Shimadzu). The sulfate, nitrate, 346 

and nitrite concentrations were analyzed following the EPA 9056 protocol using ion 347 

chromatography. The pretreatment protocols used to determine the nitrate and sulfate 348 

isotopic compositions were those indicated in Dogramaci et al. (2001) for determining 349 

δ34Ssulfate and δ18Osulfate, and in Silva et al. (2000) and Fukada et al. (2003) for obtaining 350 

δ15Nnitrate and δ18Onitrate. The resulting precipitates were analyzed using isotope ratio 351 

mass spectrometry (IRMS). 352 

3.2 Bacterial community analysis 353 

To assess the diversity and abundance of microorganisms with depth, in the case of 354 

biotic degradation, denaturing gradient gel electrophoresis (DGGE) analyses were 355 

conducted in the groundwater samples obtained from ports of the multilevel wells 356 

S1UB and S2UB and in the samples of PWFS from fine sediment cores recovered from 357 

boreholes B-S1UB and B-S2UB.This technique involves the separation pattern of 358 

polymerase chain reaction (PCR)-amplified 16S rDNA gene fragments in 359 

polyacrylamide gels with a linearly increasing gradient of denaturants (Muyzer et al., 360 

1993). The number of DGGE bands corresponds to the number of main members in 361 

the microbial community. Although ideally, one band on the gel corresponds to one 362 

species (Cycoń et al., 2013), and hence, the number of bands is an indicator of the 363 

sample’s diversity. The relative abundance of a microorganism can be estimated by 364 
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measuring the brightness intensity of its bands relative to the intensity of all the bands 365 

in the analyzed samples. 366 

The sampling protocols and procedures used to obtain fine sediments from the cores of 367 

the boreholes B-S1UB and B-S2UB are described in Puigserver et al. (2013). DGGE 368 

electrophoresis of PCR-amplified 16S rRNA genes was run in denaturing acrylamide 369 

gels and stained prior to photography following standard methodologies. Unweighted 370 

DGGE band data were used to assess the diversity in each groundwater and PWFS 371 

sample, i.e., the presence or absence of DGGE bands in each lane sample. Weighted 372 

data were used to evaluate the abundance of a microbial community in a lane sample 373 

considering the brightness intensity of each band relative to the intensity of bands in all 374 

the analyzed samples, including the lanes of two DGGE band markers, denoted as 375 

operational taxonomic unit 6 (OTU 6) and 15 (OTU 15) in the current work. These two 376 

OTUs correspond to the two microorganisms that Puigserver et al. (2016c) found to be 377 

involved in CT and CF degradation (A. suillum and a Clostridiales bacterium, 378 

respectively, see Section 1). 379 

To identify the presence of these microorganisms at the field scale (i.e. with depth in 380 

groundwater from multilevel wells S1UB and S2UB, and in PWFS from boreholes B-381 

S1UB and B-S2UB), results of DGGE analyses were combined with those obtained in 382 

a clone library analysis. Detailed information on the microbiological and clone library 383 

analysis is described in the Supplementary Data (SD). 384 

4. Results and discussion 385 

4.1 Geological and hydrogeological framework 386 

The aquifer is composed of Quaternary prograding alluvial fan deposits, at the base of 387 

which, there is a transition zone that corresponds to sheet flood deposits associated 388 

with the alluvial fans. Groundwater flows towards the Mediterranean Sea, according to 389 

the slight dip of the subsoil layers (Figure 2A) to the southeast. The water table 390 
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oscillates between 5.5 and 9 m below ground level, with an average maximum water 391 

table oscillation of 1.5 m over the year. The geological cross-section in Figure 2A 392 

shows the non-saturated zone above the water table, which is composed of 393 

paleochannels of gravels and sands. This figure also shows the three 394 

hydrostratigraphic units defined at this site: (1) the upper part of the aquifer (UPA), 395 

which is also dominated by paleochannels of sands and gravels with interbedded 396 

layers of sands with fine matrix, although from the geological and textural point of view, 397 

this unit is homogeneous as a whole); (2) the lowermost part of the aquifer, which 398 

corresponds to the transition zone down to the bottom aquitard (TZBA, 2.30 m 399 

thickness), constitutes the sheet floods of the alluvial fans, and is a unit that 400 

geologically and texturally is highly heterogeneous, and is composed of numerous 401 

interstratified layers of millimeter and centimeter scale, formed by silty-clays between 402 

fine to coarse sands and gravels with variable fine matrix content; and (3) the bottom 403 

aquitard (BA), which is composed of red clays, at a depth of 14 m. 404 

Figure 2B displays the lithological, textural, and hydraulic conductivity differences 405 

between the UPA and TZBA (the weighted average hydraulic conductivities at B-S1UB 406 

were 160 and 1 m/d, respectively; and at B-S2UB, 230 and 4 m/d, respectively). 407 

Furthermore, large differences in transmissivity occur between the UPA and the TZBA 408 

(5.25 and 590 m2/d, respectively). These differences in hydraulic conductivity and 409 

transmissivity derive from the different degree of geological and textural homogeneity-410 

heterogeneity between both hydrostratigraphic units.The UPA and TZBA maintain their 411 

homogenous and heterogeneous character, respectively, throughout the monitored 412 

zone, as evidenced by the detailed analysis of stratigraphic logs of boreholes in the 413 

monitoring network (Figure 2B). More information on the geological and 414 

hydrogeological framework is provided in the SD. 415 

 416 
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 417 

Figure 1. Water table map (in m above mean sea level) and contaminant CF plume. 418 
LOQ: limit of quantification. Dashed line: centerline of the source-plume (with the 419 
projection of piezometers that follow this line). B-S1UB and B-S2UB are the boreholes 420 
drilled to construct multilevel wells S1UB and S2UB, respectively. 421 

 422 
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 423 

Figure 2. (A) Geological cross-section along the centerline of the plume showing the 424 
hydrostratigraphic units defined and piezometers and wells of monitoring network. (B) 425 
Variation with depth (m below ground) of the lithological and textural characteristics, 426 

and hydraulic conductivity (m/day) of the two studied hydrostratigraphic units (UPA and 427 
TZBA). Thickness of bars are the hydraulic conductivity (in a decimal log scale). BA 428 

(Bottom Aquitard). 429 

 430 
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4.2 Degradation processes and dominant redox conditions in the TZBA along 431 

the flow path 432 

4.2.1 Eh values and redox-sensitive parameters and chloromethanes 433 

A summary of the Eh values and concentrations of redox–sensitive parameters (DO, 434 

TOC, nitrate, nitrite, Mn2+, Fe2+, and sulfate) in the TZBA along the flow path, from 435 

upgradient of the main source to the front of the plume (Figure 1), is presented in 436 

Figure 3. This figure shows that the most highly reducing conditions occurred in the 437 

area of the main DNAPL source (Eh ranged between -63 and -134 mV, Figure 3A). 438 

Various elements converge in the main source area that make redox conditions highly 439 

anoxic in this area at the TZBA: i) the intrinsically high geological and textural 440 

heterogeneity in the TZBA, which implies a low hydraulic conductivity (see Section 4.1 441 

and Figure 2B) and little DO supply with groundwater flow; ii) the fact that a large 442 

portion of pores in the UPA and TZBA are occupied by DNAPL at different saturations 443 

(ITRC, 2015), leading to a greater decrease in hydraulic conductivity (Fetter, et al., 444 

2017) and contributing even more to a decline in the supply of DO; and iii) the 445 

consumption of what little DO remains to oxidize the high TOC contents in groundwater 446 

(which ranged between 124.9 and 25.2 mg/L, Figure 3H) and particulate organic matter 447 

in subsurface sediments. The TOC values are consistent with the high organic carbon 448 

background associated with the petrochemical activities at the site reported by 449 

Puigserver et al. (2013). A non-negligible part of this background is formed by natural 450 

dissolved and particulate organic matter, as evidenced by groundwater and fine 451 

sediments sampled at the depth of the TZBA upgradient of the petrochemical 452 

complex). 453 

Although nitrate and sulfate are two co-contaminants that cause diffuse contamination 454 

of groundwater across the whole region, their concentrations tended to decrease in the 455 

TZBA along the flow path upgradient of the source, with low λ and ε values of 0.00048 456 

and 0.00032 m-1, and -1.45 and -0.89‰ respectively for nitrate and sulfate. These λ 457 
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values were lower than those along the flow path in the DNAPL source area (0.0039 458 

and 0.0075 m-1, and -8.66 and -7.88‰ respectively for nitrate and sulfate), where 459 

nitrite, Mn2+, and Fe2+ tended to increase. All these elements agree with the mentioned 460 

redox conditions in the source area. 461 

Low Eh and DO values were observed along the centerline of the plume in the TZBA 462 

(Figure 3A,B). This agrees with the high geological and textural heterogeneity of the 463 

TZBA throughout the site (Section 4.1), which leads to: i) low hydraulic conductivity and 464 

flow velocity, ii) little DO supply by groundwater, and iii) the consumption of this DO to 465 

oxidize the dissolved TOC and natural organic matter in the TZBA, giving rise to high 466 

anoxic conditions here and in the central part of the plume. This shows that geological 467 

and textural heterogeneity is the key control that accounts for the high anoxic 468 

conditions in the environment. 469 

In contrast, Eh and DO values increased towards the periphery and frontal part of the 470 

plume, showing the input of DO by hydrodynamic dispersion, which agrees with the 471 

higher values of nitrate, sulfate, and TOC, and with the lower values of nitrite, Mn2+, 472 

and Fe2+ in these parts. 473 

 474 
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 475 

Figure 3. Summary of Eh values and concentrations of redox–sensitive parameters 476 
(DO, TOC, nitrate, nitrite, Mn2+, Fe2+, and sulfate) in the TZBA along the flow path (ss = 477 
CT secondary pool of DNAPL-source). Red line represents the centerline. Blue line is 478 
the average of peripheral zones. 479 

 480 

Figure 4¡Error! No se encuentra el origen de la referencia. displays a summary of 481 

the concentrations of chloromethanes and isotopic compositions of CT and CF in the 482 

TZBA along the flow path. The highest concentration values of CT, CF, DCM, and CM 483 
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were recorded principally at the main source. An increase in the concentrations of CT 484 

and CF occurred downgradient of the main source at piezometer P8 (Figure 4A,C). 485 

This finding reveals the existence of a small DNAPL pool, which is the secondary 486 

source mentioned in Section 2. This source is isolated from the area of the main 487 

DNAPL source and is located between piezometers P5 and P8. 488 

 489 

 490 

Figure 4. Summary of concentrations of chloromethanes and isotopic composition of 491 
CT and CF in the TZBA along the flow path (ss = CT secondary pool of DNAPL-492 
source). Red line represents the centerline. Blue line is the average of peripheral 493 
zones. 494 

 495 
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4.2.2 Evidence of major degradation processes and dominant redox conditions 496 

In this section, the major redox-dependent transformation processes occurring in the 497 

TZBA along the flow path are analyzed. The integration of these results allows 498 

determination of the dominant redox conditions. 499 

Figure 5A shows that values of isotopic composition of nitrate fit to a denitrification line 500 

originated in the field of the use of manure as fertilizer. The dominant redox conditions 501 

in the zone upgradient of the source at the depth of the TZBA were denitrifying (Figure 502 

6B), as denitrification was the only redox dependent process identified in this area. 503 

Nitrate and nitrite largely decreased and increased, respectively, in the TZBA along the 504 

flow path between the main and secondary source (Figure 3C,D). In addition, the 505 

heaviest δ15Nnitrate and δ18Onitrate values in the conventional piezometers (27.14 and 506 

21.82 ‰, respectively) were observed at the front of the plume. However, the highest 507 

attenuation rate of nitrate and isotope enrichment factor for 15N along the flow path, 508 

occurred in the main DNAPL source area (with λ and ε values of 0.0039 m-1 and -509 

8.66‰, respectively). All these results, as well as the increase in Mn2+and Fe2+ (Figure 510 

3E,F), the decrease in sulfate (Figure 3G), and the low Eh and DO values (Figure 511 

3A,B), are evidence that reduction processes of nitrate occurred in the TZBAalong the 512 

flow path, especially along the main source area. The lower rate of attenuation and 513 

isotope enrichment factor observed for nitrate downgradient of the source along the 514 

centerline of the plume (λ and ε values of 0.0020 m-1 and -4.27‰) denoted that 515 

denitrification still occurred (Figure 6A). 516 

 517 
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 518 

Figure 5. (A) Denitrification line in the TZBA along the flow path and with depth. (B) 519 
Sulfate-reduction line in the TZBA along flow path and with depth. 520 

 521 

While Mn2+ and Fe2+ were low upgradient of the DNAPL source area (Figure 3E,F), 522 

with values that corresponded to background values, they increased in the source and 523 

immediately downgradient of this area. These observations, the low Eh and DO values 524 

(Figure 3B), and the reductive dechlorination and sulfate-reduction processes (see 525 

below) provide evidence that reduction occurred for the oxidized minerals of 526 

manganese and iron along the flow path in sediments of the TZBA (Figure 6A). 527 

While CT and CF, and the other chloromethanes concentrations were below the LOQ 528 

in the TZBA along the flow path upgradient of the main source, a large increase was 529 

progressively recorded in the source area, where the highest values of CT and CF 530 

were recorded (Figure 4A,C). This increase was accompanied by the isotopic 531 

fractionation of these compounds (Figure 4B,D) as well as the formation of DCM and 532 

CM (Figure 4E,F), demonstrating that degradation of CT and CF occurred. A similar 533 

pattern of isotopic fractionation was observed downgradient of the main source, 534 

although the highest attenuation rates and isotope ε values of CT and CF in the TZBA 535 

along the flow path also occurred at the source, with λ values of 0.0684 and 0.0671 m-536 

1, respectively; and ε values of -3.58 and -2.67‰, respectively. Although δ13CCT and 537 
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δ13CCF increased in the source area (Figure 4B,D), the aforementioned ε values, are 538 

underestimated since light CT is continuously dissolved from the CT contained in the 539 

DNAPL source and incorporated into the groundwater flow. As regards CF, the 540 

increase in fractionation of this compound, caused by its transformation into DCM, 541 

must be added to similar effects as those described for CT (i.e., light CF incorporating 542 

into groundwater from the CF contained in the DNAPL source) and by the CF 543 

proceeding from CT transformation. Given that the described degradation process of 544 

CT and CF occurred in parallel with the reduction of nitrate, natural oxidized 545 

manganese and iron minerals, and sulfate (see below), and consequently under highly 546 

anoxic redox conditions (see Section 4.2.1), it is plausible to affirm that it corresponds 547 

to reductive dechlorination of chloromethanes (Figure 6A). This process overlapped 548 

with the aforementioned biogeochemical process of denitrification, and despite the fact 549 

that the reduction potential of nitrate is greater than that of CT and CF, degradation of 550 

these compounds was not inhibited because of the highly anoxic conditions. The 551 

increase in CT that was observed between piezometers P5 and P8 (Figure 4¡Error! No 552 

se encuentra el origen de la referencia.A, i.e., in the secondary source, see Section 553 

4.2.1) corresponded to an isotopic composition of this compound with a δ13CCT value of 554 

-39.30‰ in P8 (Figure 4¡Error! No se encuentra el origen de la referencia.B), which 555 

was similar to that of the main source in S5-P2 (-39.98‰). By contrast, the isotopic 556 

composition of CF in P8 (δ13CCF of -43.60‰, ¡Error! No se encuentra el origen de la 557 

referencia.D) was heavier than that of the main source in S5-P2 (δ13CCF of -44.92‰). 558 

This finding suggests that the secondary pool is composed only of CT-DNAPL and that 559 

the increase in CF is caused by the degradation of CT. This pattern supports the fact 560 

that the DNAPL leaks originated from two different tanks, one for CT and the other for 561 

CF (see Section 2). 562 

In the main DNAPL source, the ratio of the average molar concentration of CT to that of 563 

CF was 1 mole of CT per 9.25 moles of CF. By contrast, in the TZBA along the axial 564 
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zone of the plume (and in its peripheral area, where conditions were not as reducing), 565 

the ratio was 1 mole of CT per 2.32 moles of CF. In addition, isotopic fractionation of 566 

CT was not recorded (Figure 4¡Error! No se encuentra el origen de la referencia.B), 567 

and low concentrations of DCM and CM were measured in the plume (Figure 4¡Error! 568 

No se encuentra el origen de la referencia.E,F), thus indicating a larger 569 

transformation of CT to CF (and successively, DCM and CM) in the source than in the 570 

plume (Figure 6A). By contrast, a decrease in the CF concentration (Figure 4¡Error! 571 

No se encuentra el origen de la referencia.C) accompanied by the isotopic 572 

fractionation of this compound (Figure 4¡Error! No se encuentra el origen de la 573 

referencia.D) occurred along the centerline of the plume, which gave rise to an 574 

attenuation rate and an isotope enrichment factor between conventional piezometer P7 575 

(at the main source) and P3 (at the front of the plume) with λ and ε values of 0.0098 m-1 576 

and -0.89‰, respectively. 577 

Figure 5B shows that the δ34Ssulfate and δ18Osulfate values fit a sulfate-reduction line 578 

originating in the sulfate-based fertilizers field). Sulfate largely decreased in the TZBA 579 

along the flow path between the main and secondary sources (Figure 3G). Moreover, 580 

the heaviest δ34Ssulfate and δ18Osulfate values (22.75 and 19.80‰, respectively) were 581 

observed at the front of the plume. Nevertheless, as in the case of nitrate, CT, and CF, 582 

the highest rate of attenuation and enrichment factor for sulfate in the DNAPL source 583 

area were the highest (with λ and ε values of 0.0075 m-1 and -7.88‰, respectively). All 584 

these observations and the low Eh and DO values (Figure 3A,B) demonstrate that 585 

sulfate-reduction occurs along the flow path in the main source (Figure 6A) and 586 

downgradient in the plume, where the environment was highly anoxic (Figure 6B). This 587 

indicates that dominant redox conditions are sulfate-reducing in the source and the 588 

plume at the depth of the TZBA (Figure 6B), according to the thermodynamic model 589 

described by Christensen et al. (2000)(see Section 3.1). 590 
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The sulfate-reduction process requires more extreme reducing conditions than do the 591 

rest of the other processes occurring in the main source and the plume (Figure 6A). 592 

This accounts for the smaller concentrations of Fe2+ and Mn2+ and their smaller 593 

increase than those observed downgradient of the source (Figure 3E,F) since the 594 

precipitation of these metals in a reduced state occurs under these reducing conditions 595 

as carbonates and sulfides (rhodochrosite MnCO3 and siderite FeCO3; manganous 596 

sulfide MnS, ferrous sulfide FeS and pyrite FeS2). A core sampling survey carried out 597 

by Puigserver et al. (2013) in boreholes B-S1UB and B-S2UB registered high values of 598 

Mn and Fe in sediments of the TZBA at depths similar to those of the source of CT and 599 

CF, which could be evidence of precipitation of the Mn and Fe minerals. 600 

At the depth of the TZBA, the rate of attenuation observed for sulfate downgradient of 601 

the source was lower than at the source (λ value of 0.0030 m-1), demonstrating that the 602 

sulfate-reduction process still occurred in the plume (Figure 6A), and even in the 603 

peripheral zone (Figure 3G), regardless of the environment was less anoxic because 604 

Eh and DO progressively increased (Figure 3A,B). 605 

In summary, the dominant sulfate-reducing redox conditions control the processes 606 

occurring along the flow path at the depth of the TZBA in the study site, including the 607 

reductive dechlorination of CT and CF (Figure 6B). This process takes place at a very 608 

high rate in the main DNAPL source in a highly anoxic environment (Figure 6B, with 609 

DO ranging between 0.20 and 0.65 mg/L). The high geological and textural 610 

heterogeneity in the TZBA (see Section 4.1) that led to low DO supply and its 611 

subsequent consumption in the oxidization of the dissolved TOC and natural organic 612 

matter in fine sediments, gave rise to the anoxic conditions (see Section 4.2.1) that 613 

favored the reductive dechlorination of chloromethanes. 614 

 615 
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 616 

Figure 6. Major identified processes and dominant redox conditions in the TZBA along 617 
the flow path. Analyses based on results shown in Figure 3, Figure 4 and Figure 5. 618 
Possible precipitation of carbonate and sulfide minerals of Mn and Fe could occur in 619 
the main source. 620 

 621 

4.3 Degradation processes and dominant redox conditions with depth 622 

The following is a detailed perspective of two biogeochemical profiles of groundwater 623 

depth in the UPA and TZBA, obtained in the two multilevel wells (S1UB and S2UB) 624 

located in the axis of the chloromethanes plume 220 m downgradient of the main 625 

DNAPL source (Figure 1). 626 

 627 

4.3.1 Eh values and redox-sensitive parameters and chloromethanes 628 

A summary of the variation of Eh values and concentrations of redox-sensitive 629 

parameters (DO, TOC, nitrate, nitrite, Mn2+, Fe2+, and sulfate) with depth is shown in 630 

Figure 7. Eh and DO decreased at the depths of the UPA (ports 1 to 4, Figure 7A,B), 631 

which is consistent with reducing conditions and with the fact that nitrate and sulfate 632 

concentrations decreased and nitrite, Mn2+, and Fe2+ increased (Figure 7). However, 633 

the most highly anoxic conditions occurred at depths of the TZBA (ports 5 to 7), with an 634 

average Eh value of -24 mV, which coincided with a high average TOC value of 32.4 635 

mg/L, whose oxidation favored DO consumption. This TOC content was close to that of 636 
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the average values of conventional piezometers P5 and P8 at the depth of the TZBA 637 

(27.4 mg/L), which are nearby S1UB and S2UB. As in the source, TOC concentrations 638 

in the plume agree with the high organic carbon background at the site and with the 639 

abundant natural particulate and dissolved organic matter in the numerous interbedded 640 

layers of fine material of the TZBA, which again denotes that the great geological and 641 

textural heterogeneity of this hydrostratigraphic unit is the key control that gives rise to 642 

highly anoxic conditions (similar to those at the main source, see Section 4.2.1). Under 643 

these highly anoxic conditions, concentrations of nitrate and sulfate decreased from 644 

port 5 to 7 (Figure 7D,E; with average values of 28.8 mg/L and 38.3 mg/L, 645 

respectively), whereas nitrite, Mn2+ and Fe2+ tended to increase (Figure 7F,G,H; with 646 

average values of 1.9 mg/L, 1.3 mg/L, and 2.4 mg/L, respectively). 647 
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 648 

Figure 7. Variation of Eh values and concentrations of redox–sensitive parameters 649 
(DO, TOC, nitrate, nitrite, Mn2+, Fe2+, and sulfate) with depth. UPA (Upper Part of the 650 
Aquifer). TZBA (Transition Zone to the BottomAquitard). 651 

 652 

As for chloromethanes, Figure 8 displays a summary of their concentrations and the 653 

isotopic composition of CT and CF with depth. The highest values of CT were found at 654 

the top of the TZBA (port 5), whereas the highest values of CF, DCM, and CM were 655 

recorded at the bottom of this unit (ports 6 and 7). 656 

 657 
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 658 

Figure 8. Variation of concentrations of chloromethanes and isotopic composition of 659 
CT and CF with depth. UPA (Upper Part of the Aquifer). TZBA (Transition Zone to the 660 
Bottom Aquitard). 661 

 662 

4.3.2 Evidence of major degradation processes and dominant redox conditions 663 

Figure 9A shows the major redox-dependent transformation processes that occurred 664 

and the redox conditions that were dominant with depth in the UPA and TZBA (Figure 665 

9B). 666 

As with along the flow path in the TZBA, denitrification of nitrate was recorded with 667 

depth (Figure 5A). The vertical concentration profiles of nitrate and nitrite (Figure 7E,F) 668 

showed a higher decrease of nitrate and an increase of nitrite in the TZBA (ports 5 to 7) 669 

compared to those in the UPA (ports 1 to 4), where denitrification from the zone 670 

upgradient of the DNAPL source to ports of multilevel wells in the plume occurred at a 671 

lower attenuation rate and isotope enrichment factor than in the TZBA (with λ of nitrate 672 

and ε for15N values of 0.0037 and 0.0069 m-1, and -13.38 and -19.91‰, respectively in 673 
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the UPA and TZBA). All these results, in addition to the increase in Fe2+ (Figure 7G), 674 

the decrease in sulfate (Figure 7D), and the low Eh and DO values in the depth profile 675 

of the TZBA (Figure 7A,B), are evidence that, although denitrification, does occur in the 676 

UPA, this process is more relevant in the TZBA (Figure 9B). 677 

The Fe2+ and Mn2+ concentrations varied little in the UPA, but increased in the TZBA, 678 

especially Fe2+, indicating the occurrence of Fe-reduction processes (Figure 9A). 679 

In multilevel wells S1UB and S2UB, gradual increases in CT from port 1 to 4 in the 680 

UPA and decreases from 5 to 7 in the TZBA (Figure 8A) were recorded. As reported by 681 

Puigserver et al. (2013) at this site, these maximums in groundwater coincided with two 682 

CT concentration peaks in the PWFS of boreholes B-S1UB and B-S2UB, which were 683 

caused by the secondary small DNAPL pool of CT (see Section 4.2.1). Although CT in 684 

groundwater decreased in the TZBA, δ13CCT values also decreased with depth (Figure 685 

8C), demonstrating that the input of dissolved CT from the secondary pool (which is 686 

isotopically light) masks the isotopic fractionation of this compound in groundwater in 687 

ports 5 to 7 of the TZBA. The CF concentrations and δ13CCF values increased with 688 

depth in ports 1 to 4 of the UPA (Figure 8B,C). This isotopic fractionation of CF in the 689 

UPA was accompanied by a slight increase in the DCM concentration, along with the 690 

formation of CM (Figure 8D). As for the TZBA, an increase in CF, DCM, and CM was 691 

detected, along with isotopic fractionation of CF (Figure 8B,C,D). Furthermore, the 692 

variation of concentrations of chloromethanes in groundwater at the TZBA occurred in 693 

parallel to a similar variation of these compounds in PWFS (Puigserver et al., 2013), 694 

particularly in sediments found at the depth of port 7 of multilevel wells. All these 695 

elements and the increase with depth of CF, DCM, and CM in ports 5 to 7 of the TZBA, 696 

as well as the sulfate-reducing conditions prevailing in the TZBA along the flow path 697 

(see Section 4.2.2) and with depth (see below), are evidence that the reductive 698 

dechlorination of CT and CF (and of DCM) is a more substantial process in the TZBA 699 

than in the UPA, with higher attenuation rates and isotope ε values for CT and CF from 700 
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the source zone to ports 5 to 7 of multilevel wells in the TZBA (λ and ε of 0.0044 m-1 701 

and -3.42‰, respectively for CT, and of 0.0045 m-1 and -2.72‰, respectively for CF) 702 

than in the UPA in ports 1 to 4 (λ and ε of 0.0029 m-1 and -0.81‰, respectively for CT, 703 

and of 0.0006 m-1 and -1.15‰ for CF, respectively). 704 

As along the flow path, sulfate evolution with depth showed that the sulfate-reduction 705 

process also occurred (Figure 5B). The sulfate variation from the zone upgradient of 706 

the DNAPL source to the plume at depths in the sampling ports in the multilevel wells, 707 

registered a greater decrease at ports 5 to 7 in the TZBA than at ports 1 to 4 in the 708 

UPA (Figure 7D). These differences correspond to different attenuation rates and 709 

enrichment factors between the two hydrostratigraphic units, with higher attenuation 710 

rate and isotope enrichment factor in the TZBA than in the UPA (λ of sulfate and ε for 711 

34S values of 0.0085 and of 0.0060 m-1, and -17.10 and -12.63‰, respectively). 712 

As in the main DNAPL source (see Section 4.2.2), groundwater of ports 5 to 7 in the 713 

TZBA showed dominant sulfate-reducing redox conditions in an environment that was 714 

more anoxic than in the UPA (Figure 9B). All these results, along with the increase in 715 

Fe2+ (Figure 7G), the decrease in sulfate, and the low Eh and DO values (Figure 7A,B), 716 

reveal that although sulfate-reduction also occurs in the UPA, this process is 717 

particularly noteworthy in the TZBA. 718 

This highly anoxic environment in the TZBA explains the very low increases in 719 

Mn2+concentrations in the TZBA compared to the UPA (Figure 7H), since manganese 720 

in a reduced state could precipitate as carbonate (rhodochrosite MnCO3) and as 721 

manganous sulfide (MnS). Evidence of precipitation of Mn minerals could be the high 722 

aforementioned Mn values in sediments along the flow path at the depth of the TZBA 723 

(see Section 4.2.2). 724 

In summary, depth profiles obtained with multilevel wells S1UB and S2UB in the TZBA 725 

confirm that reductive dechlorination of CT and CF is controlled by the dominant 726 

sulfate-reducing redox conditions (as was observed along the flow path in the zone of 727 
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the plume close to conventional piezometer P8). Moreover, these profiles allow 728 

affirming that these redox conditions occur in a highly anoxic environment (Figure 9B), 729 

since DO contents from ports 5 to 7 (Figure 7B) varied between 0.25 and 0.75 mg/L. 730 

As is the case along the flow path, the great geological and textural heterogeneity in 731 

the TZBA is the key control that accounts for the very low DO content (see Section 732 

4.2.1), and consequently, also for the sulfate-reducing conditions and the highly anoxic 733 

environment. 734 

These conditions are close to those along the flow path in the main source area (Figure 735 

6B). Accordingly, attenuation rates and isotope enrichment values of CT with depth in 736 

the TZBA (λ and ε calculated between the maximum concentration in the source 737 

(piezometer P7) and ports of multilevel wells in the TZBA, see Section 3.1) were close 738 

to those in the main source along the flow path (λ and ε with depth of 0.0044 m-1 and -739 

3.42‰, respectively; and λ and ε in the main source of 0.0684 m-1 and -3.58‰, 740 

respectively, see Section 4.2.2). Similarly, for the case of CF, attenuation rates and 741 

isotope enrichment were close to those of the main source (λ and ε with depth of 742 

0.0045 m-1 and -2.72‰, respectively; and λ and ε of 0.0671 m-1 and -2.67‰, 743 

respectively, see Section 4.2.2). 744 

By contrast, attenuation rates (Figure 9A) and isotope enrichment values of CT and CF 745 

were higher in the TZBA than in the UPA. Thus, λ and ε values of 0.0044 m-1 and -746 

3.42‰, respectively for CT; and 0.0045 m-1 and -2.72‰, respectively for CF were 747 

obtained in the TZBA; whereas, λ and ε values of 0.0029 m-1 and -0.81‰, respectively 748 

for CT; an 749 

d 0.00406 m-1 and -1.15‰, respectively for CF were obtained in the UPA. 750 

 751 
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 752 

Figure 9. Major identified processes and dominant redox conditions with depth. 753 
Analysis based on results shown in Figure 7and Figure 8. Possible precipitation of 754 
carbonate and sulfide minerals of Mn could occur in the TZBA. 755 

 756 

4.4 Microbe diversity and abundance in groundwater and PWFS with depth 757 

Analyses of the DGGE profiles of the set of samples of groundwater and PWFS 758 

uncovered a total of 29 bands (results on diversity and abundance in each DGGE 759 

profile are referred to this quantity, Table 1). Of these, the profiles of groundwater in the 760 

UPA showed in general greater average diversity and abundance (i.e., greater number 761 

of bands and greater brightness of bands, respectively of microbial communities in this 762 

hydrostratigraphic unit than in the TZBA, Table 1). This finding supports that the top of 763 

the UPA, which is found immediately below the water table oscillation zone, constitutes 764 

an ecotone in the subsurface (i.e., a natural zone where exchanges between two 765 

ecological systems of adjacent microbial communities occur), as demonstrated by 766 

Goldscheider et al. (2006) in unconfined aquifers. Furthermore, a large microbial 767 

diversity (value of 13), detected at port 3 of S1UB (central part of the UPA at 9.50 m 768 

deep), coincided with high microbial diversity (value of 6) in the PWFS sampled at a 769 

similar depth in borehole B-S1UB (sample M1 at 9.61 m depth), where a geological 770 

contact between coarse and fine materials occurred. 771 
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In the TZBA, the contact surfaces between the different texture materials also 772 

constitute ecotones (as described by Goldscheider et al., 2006). However, as 773 

mentioned above, a decrease in the average diversity and abundance was observed 774 

with depth in groundwater compared to what was observed in the UPA (Table 1). This 775 

decrease was more drastic in the TZBA of S1UB than in S2UB, which is consistent with 776 

the lower grain size in S1UB (and accounts for its lower hydraulic conductivity, see 777 

Section 4.1 and Figure 2B), as reported by Puigserver et al. (2013) for this site. The 778 

high amount of fine sediments and the variable matrix content of coarser sediments in 779 

the TZBA (see Section 4.1) makes it convenient to compare the grain size and average 780 

diameter of pore throats with the size of microorganism cells in the subsoil. Thus, the 781 

classical sedimentological literature provides grain sizes smaller than 2 µm for clays, 782 

and sizes ranging from 2 to 50 µm for silts. Moreover, Shuangfang et al. (2018), in a 783 

study on pore throat diameters in fine sediments, reported diameter values ranging 784 

from 0.09 to 0.86 μm for clayey and silty sediments, which are coherent with grain 785 

sizes of fine sediments. The maximum of this range of pore throat diameters, rounded 786 

to 0.9 μm, could be considered as the pore throat threshold that inhibits the migration 787 

of bacteria through groundwater. The results recorded by different authors for the size 788 

of most subsoil cell bacteria range between 0.2 and 5 μm (Alexander, 1978; Amodu, 789 

Ojumu and Ntwampel, 2013; Portillo et al., 2013; Joergensen and Wichern, 2018). The 790 

pore throat threshold diameter of 0.9 μm is greater than the value of 0.2 μm, 791 

corresponding to the size of the smallest cells. This is why a considerable portion of 792 

microorganisms (those greater than 0.9 μm) are physically unable to penetrate into the 793 

fine sediments and into the fine matrix of coarse sediments and in the TZBA, which 794 

accounts for the decline in diversity and abundance observed in multilevel wells in this 795 

unit (Table 1). 796 

This is an important outcome for any contamination scenario in the subsoil, because 797 

biostimulation or bioaugmentation actions cannot be conducted if a significant part of 798 
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the microorganisms living in the aquifer cannot penetrate the fine sediments of the 799 

transition zone (or the fine sediments at other depths in the aquifer). The relevance of 800 

this lies in the need to verify whether the microorganisms proposed to biostimulate, or 801 

those that are intended to be introduced in bioaugmentation actions, can migrate 802 

through the finest subsoil materials before implementing such remediation strategies. 803 

In the case of the site studied, Figure 10A,B,C,D shows that the two microorganisms 804 

involved in the degradation of CT and CF (see Section 4.5) are small enough to flow 805 

with groundwater and, in the case of A. suillum, to penetrate into the PWFS in the 806 

TZBA (Figure 10C). 807 

In summary, from the point of view of the structure of microbial communities, the 808 

geological and textural heterogeneity is one of the elements that determine the 809 

diversity and abundance of microorganisms in the subsurface. In addition, these 810 

heterogeneities, especially textural heterogeneity, are factors that condition the 811 

penetration of dechlorinating microorganisms into fine and less-conductive materials of 812 

the TZBA, where they are responsible for the natural attenuation of CT and CF (see 813 

Section 4.5.2), which penetrated via molecular diffusion into the less fine and less-814 

conductive materials. 815 

  816 
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 817 

          

   Diversity  Abundance 

   (average values)  (average values) 
   A B  C 

  
Hydrostratigraphic 

unit 

Number 
of bands 

in 
profiles 

Percentage 
values 

 

Brightness intensity 
of bands in profiles 

  (%) 
 

(on a 0-100 scale) 

Multilevel 
wells 
(GW) 

S1UB 
UPA 7.5 25.86  42.78 

TZBA 3.7 12.64  34.99 
         

S2UB 
UPA 5.3 18.10  43.08 

TZBA 5.0 17.24  36.73 
          

Boreholes 
(PWFS) 

B-S1UB 
UPA 3.5 12.05  46.60 

TZBA 5.0 17.24  40.60 
         

B-S2UB 
UPA 2.8 9.66  40.87 

TZBA 2.0 6.90  34.82 

 818 

Table 1. Average values of diversity and abundance of microbial communities in the 819 
two studied hydrostratigraphic units. Values obtained from analysis of DGGE profiles of 820 
groundwater samples in multilevel wells S1UB and S2UB and PWFS in boreholes of 821 
these multilevel wells. 822 

 823 

4.5 Microorganisms involved in the degradation of CT and CF 824 

4.5.1 Identification of OTU 6 and OTU 15 in the upper part of the aquifer 825 

The combination of DGGE results with those of the clone library analysis (see Section 826 

3.2 and the SD) allowed identification of the band corresponding to A. suillum (OTU 6) 827 

in the groundwater of all S1UB ports in the UPA (ports 1 to 4, Figure 10A). This 828 

indicates that A. suillum is a planktonic microorganism transported into the 829 

groundwater flow (like many bacteria in the subsurface ecosystem, Herrmann et al., 830 

2019) that probably comes from areas located upgradient of the DNAPL source, even 831 

from beyond the petrochemical complex. By contrast, this band was only present in 832 
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ports 2 and 4 in S2UB, although their abundance was similar in the two multilevel wells 833 

(Figure 10A). OTU 6 was not identified in the DGGE profiles of PWFS in B-S1UB and 834 

B-S2UB (in that case, in the fine matrix of interbedded sands collected at the UPA, 835 

Figure 10C). The cause of this absence is the small portion of fine matrix in these 836 

sands, which prevents the accumulation of this microorganism inside the matrix (see 837 

below Section 4.5.2). 838 

 839 



40 

 840 

Figure 10. Abundance of OTU 6 (A. suillum) and OTU 15 (Clostridiales bacterium). (A) 841 
and (B), in groundwater samples in multilevel wells. (C) and (D) in porewater of fine 842 
sediment samples. “np” = not presence of the microorganism. (E) and (F) Variation of 843 
Eh and isotopic composition of CF, respectively. 844 
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 845 

The presence of OTU 6 in the groundwater of UPA (Figure 10A) coincided with the 846 

following: (1) an increase of CT with depth (Figure 8A) due to the dissolution of the 847 

secondary source of CT (see Section 4.2.2) and a decrease of the δ13CCT value (Figure 848 

8C) due to the input of unfractionated CT from the secondary source; and (2) the 849 

denitrification and sulfate-reduction processes with depth (Figure 6A; see Section 850 

4.3.2). The presence of OTU 6 and the occurrence of denitrification agree with 851 

Achenbach et al. (2001), who reported that A. suillum uses nitrate as an electron 852 

acceptor. 853 

As for the bacterium of the order Clostridiales (OTU 15) in the UPA, this microorganism 854 

was present in all ports of S1UB in this hydrostratigraphic unit (ports 1 to 4) and in 855 

almost all of S2UB (Figure 10B); hence, it is also a planktonic microorganism. 856 

Moreover, OTU 15 presented greater abundance in the two multilevel wells than did 857 

OTU 6 (Figure 10B). The presence of OTU 15 in the groundwater of this unit coincided 858 

with: (1) an increase in the δ13CCF value (Figure 10F) and the presence of DCM (Figure 859 

8D), which are elements supporting the reductive dechlorination of CF in the UPA; and 860 

(2) the aforementioned denitrification process with depth (Figure 9A) under sulfate-861 

reducing dominant redox conditions (Figure 9B) with Eh values progressively more 862 

negative (Figure 10E). These findings agree with those of Grostern et al. (2010), Chan 863 

et al. (2012), and Justicia-Leon et al. (2014), who reported that the Clostridiales order 864 

of bacteria includes the genus Dehalobacter, which gives rise to reductive 865 

dechlorination of CF (and isotopic fractionation of this compound) to form DCM. 866 

Furthermore, Justicia-Leon et al. (2014) demonstrated that the biodegradation of CF to 867 

DCM occurs under anoxic conditions, including those of denitrification. Similar to the 868 

case of OTU 6, OTU 15 was not identified in the sediment samples collected in the 869 

UPA in B-S1UB and B-S2UB. Furthermore, it was only present in one sample in the 870 

TZBA (Figure 10D), which indicates that, unlike A. suillum, the ability to penetrate the 871 
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fine materials of the Clostridiales microorganism was hindered, probably because of a 872 

.cell size larger than the pore throat threshold diameter value of 0.9 μm (see Section 873 

4.4). 874 

4.5.2 Role of OTU 6 and OTU 15 in degrading CT and CF in the transition zone 875 

The band corresponding to A. suillum (OTU 6) was only identified in port 5 of S1UB 876 

and port 7 of S2UB in the groundwater at the TZBA (Figure 10A), which again shows 877 

that A. suillum is a planktonic microorganism (see Section 4.5.1). In contrast, this band 878 

was identified at several depths in the DGGE profiles of PWFS in this unit (Figure 10C) 879 

and with a greater abundance than that in groundwater ports 5 of S1UB and 7 of S2UB 880 

(Figure 10A), which is evidence that the cell size of A. suillum is small enough to 881 

penetrate into the finest sediments (see Section 4.4¡Error! No se encuentra el origen 882 

de la referencia.), where it accumulates and remains attached to the surface of 883 

mineral grains. This microorganism is an anaerobic, nitrate-dependent bacterium that 884 

rapidly uses the Fe(II) content of natural sediments as an electron donor under anoxic 885 

conditions and nitrate as the electron acceptor (Achenbach et al., 2001) to produce 886 

mixed-valence Fe(II)-Fe(III) byproduct precipitates, which are unstable iron minerals 887 

that correspond to green rusts (Chaudhuri et al., 2001; Lack et al., 2002; Weber et al., 888 

2006; Nam et al.; 2016). Studies by different authors have confirmed the abiotic 889 

reductive dechlorination process of CT in the presence of green rusts (Liang and 890 

Butler, 2010; Yin et al., 2017), which are common natural electron donors in aquifers 891 

(Matocha, Dhakal and Pyzola, 2012) capable of degrading CT to CF, DCM, CM, and 892 

CH4 (O'Loughlin, Kemner and Burris, 2003). Although the occurrence of green rusts 893 

was not determined in the present study, the following indirect indications that suggest 894 

their occurrence and role as natural reducing agents of CT to form CF were confirmed 895 

in the TZBA: (1) A. suillum was present, especially in the PWFS of the TZBA (with an 896 

abundance greater than that in the UPA, Figure 10C); (2) the very high denitrification 897 

rate and enrichment factor (λ and ε values of 0.0069 m-1 and -19.91‰, respectively) 898 
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and the Fe-reduction of iron oxidized minerals, which delivers Fe2+ to the environment 899 

(Figure 7G); (3) the decrease of CT in groundwater (Figure 8¡Error! No se encuentra 900 

el origen de la referencia.A, from ports 5 to 7) and in the fine sediments (data shown 901 

in Puigserver et al., 2013); (4) the high values in the attenuation rate and enrichment 902 

factor of CT in the TZBA (λ and ε of 0.0044 m-1 and -3.42‰, respectively), which 903 

contrast with those of CT in the UPA (0.0029 m-1 and -0.81‰); (5) the increase of CF in 904 

groundwater in ports of the two multilevel wells at the TZBA (Figure 8¡Error! No se 905 

encuentra el origen de la referencia.B) and in fine sediments at a similar depth to 906 

that of ports 6 and 7 of this unit (Puigserver et al., 2013); (6) the high rate of sulfate-907 

reduction and enrichment factor (λ and ε of 0.0085m-1 and -17.10‰, respectively); and 908 

(7) the dominant sulfate-reducing redox conditions (Figure 9B) and highly anoxic 909 

environment at the TZBA (Figure 10E) as a consequence of the intrinsically high 910 

geological and textural heterogeneity in this hydrostratigraphic unit (see Section 4.3.1). 911 

All these indications are consistent with the precipitation of green rusts that are 912 

biogenically formed by A. suillum, and the subsequent abiotic reductive dechlorination 913 

of CT by the green rust. Thus, the reductive dechlorination of CT observed in the TZBA 914 

would correspond to an abiotic process that was biogenically mediated by A. suillum. 915 

With respect to the bacterium of the order Clostridiales in the TZBA, it is reasonable to 916 

refer again to the genus Dehalobacter mentioned in Section 4.5.1. In this section, the 917 

authors reported that Dehalobacter is a genus of the order Clostridiales capable of 918 

giving rise to reductive dechlorination of CF, accompanied by isotopic fractionation, to 919 

form DCM. This finding agrees with the laboratory-scale observations of Puigserver et 920 

al. (2016c) and with the field-scale observations of the present study, in which a 921 

bacterium of the order Clostridiales was involved in the biotic reductive dechlorination 922 

of CF to form DCM and CM (Figure 8D).¡Error! No se encuentra el origen de la 923 

referencia. 924 

4.6 Key control of heterogeneity in the TZBA on the NA of CT and CF 925 
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A sequence of successively dependent factors representing the conceptual model of 926 

the fate of CT and CF in the TZBA (Figure 11) reveals that the high geological and 927 

textural heterogeneity in the TZBA compared to the homogeneity in the UPA is the 928 

most important key control exerted on the greater efficiency of the NA of CT and CF in 929 

the TZBA than in the UPA. 930 

 931 

 932 

Figure 11. Conceptual model that represents how A. suillum and the Clostridiales 933 
bacterium interact with the biogeochemical environment. 934 

 935 

The high geological heterogeneity in the TZBA, with the presence of numerous 936 

interbedded layers of silty-clays, sands, and gravels with variable fine matrix content in 937 

this unit (see Section 4.1), accounts for the high textural heterogeneity observed, with 938 

abundant textural contrasts between fine and coarse materials. These contrasts result 939 

in hydraulic conductivity differences between adjacent layers (Figure 2B), which for the 940 

whole TZBA derive in a low hydraulic conductivity and transmissivity (much lower than 941 

those in the UPA, see Section 4.1). 942 
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According to Goldscheider et al. (2006), contact surfaces between different texture 943 

materials become ecotones (a zone where exchanges among two adjacent microbial 944 

ecosystems occur, see Section 4.4). Since the TZBA constitutes a succession of 945 

numerous texture changes, it can be agreed that this zone as a whole is an ecotone 946 

product of the high geological and textural heterogeneity. 947 

Given the low transmissivity in the TZBA, DO supplied to the source and the plume by 948 

groundwater flowing through the coarser grain size layers is little (especially at the 949 

source, where much of the pores are partially occupied by DNAPL, see Section 4.3.1). 950 

In addition to DO, other compounds and elements are provided by groundwater flow: i) 951 

more electron acceptors (nitrate, sulfate, CT, CF, and their metabolites), ii) electron 952 

donors (such as dissolved organic matter), and iii) nutrients and other components 953 

needed by microbes living in groundwater and in the fine grained less-conductive 954 

layers, where a large favorable substrate of dissolved and particulate organic matter 955 

exists (Naganna, Deka, and Hansen, 2017) acting as carbon and energy sources for 956 

microorganisms. The large amount of organic carbon acting as an electron donor 957 

causes the small amount of DO that reaches the source and plume to be consumed. 958 

This demonstrates the role played by the geological and textural heterogeneity in the 959 

development of suitable conditions for the NA of CT and CF, since the consumption of 960 

the supplied DO gives rise to a highly anoxic environment (see Sections 4.2.1and 961 

4.3.1) under which the dominant redox conditions become sulfate-reducing (see 962 

Sections 4.2.2 and 4.3.2). 963 

These redox conditions, along with components supplied by groundwater and organic 964 

matter substrate in the fine material layers, are suitable for A. suillum and the 965 

bacterium of the order Clostridiales to give rise to the natural reductive dechlorination 966 

of CT and CF (and metabolites). They are planktonic microorganisms transported with 967 

groundwater (see Section 4.5.1) along the levels of coarse materials in the TZBA. A. 968 

suillum is small enough to penetrate the finest materials, while the larger cell size of the 969 
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Clostridiales bacterium hinders its ability to penetrate those finer materials (see Section 970 

4.5.2). Therefore, geological and textural heterogeneity also control the subsurface 971 

distribution of microorganisms that degrade CT and CF. 972 

5. Conclusions 973 

The most important key control exerted on the greater efficiency of natural attenuation 974 

of CT and CF in the TZBA than in the UPA is the high geological and textural 975 

heterogeneity in the transition zone, resulting from the numerous interbedded silty-clay 976 

layers between fine to coarse sands and gravels with variable fine matrix content. 977 

This geological and textural heterogeneity is responsible for the highly anoxic 978 

environment under sulfate-reducing dominant redox conditions at the source and the 979 

plume. The following factors give rise to the development of conditions suitable for 980 

degradation of CT and CF: i) low hydraulic conductivity and transmissivity, which 981 

implies a small DO supply with groundwater flow through the coarser grain size layers, 982 

and ii) consumption of what little remains of the DO by the high amount of dissolved 983 

and particulate organic matter in the finer grain size layers, acting as a carbon and 984 

energy source for microorganisms. 985 

As a consequence of the geological and textural heterogeneity, the transition zone 986 

constitutes an ecotone, which conditions the diversity and abundance of the microbial 987 

ecosystem. Moreover, the pore throat threshold is one of the textural parameters of the 988 

of subsurface sediments, and is, therefore, also determined by the geological and 989 

textural heterogeneity in the transition zone. This parameter also controls the 990 

subsurface distribution of microorganisms, since bacteria size exclusion causes a 991 

decrease in the diversity and abundance of microbial communities. Thus, the bacterium 992 

of the order Clostridiales, which is a planktonic microorganism that migrates with the 993 

groundwater flow and performs the reductive dechlorination of CF to DCM in the 994 

coarse and more-conductive materials, is unable to penetrate the finest materials in the 995 

transition zone, probably because its cell size is larger than the pore throat threshold 996 
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value. By contrast, A. suillum, which is also a planktonic microorganism involved in the 997 

reductive dechlorination of CT and CF in groundwater, is able to enter into the finer and 998 

less-conductive materials because its cell size is less than the pore throat threshold. 999 

Once inside the PWFS, A. suillum accumulates and remains attached to the surface of 1000 

mineral grains (which accounts for its great abundance in fine materials), where it is 1001 

implicated in the degradation of the CT and CF that penetrated via molecular diffusion 1002 

from the more-conductive materials. 1003 

Bacteria size exclusion determines, therefore, the penetration of dechlorinating 1004 

microorganisms into the finest and less-conductive materials and should be an 1005 

important issue to consider for any contamination scenario in which bioremediation 1006 

strategies such as biostimulation or bioaugmentation are proposed. These strategies 1007 

may be ineffective if a significant part of the microorganisms involved cannot enter into 1008 

the finest contaminated sediments. The relevance of this lies in the need to verify 1009 

whether the microorganisms involved can physically migrate through the finest 1010 

sediments before implementing the remediation strategies. 1011 

The natural attenuation of CT observed in the transition zone is an abiotic reductive 1012 

dechlorination process in the presence of green rusts biogenically generated by A. 1013 

suillum. Different evidence indicates the generation of green rusts precipitates as a 1014 

byproduct of the biogenic activity of A. suillum and the role of these Fe-minerals as 1015 

natural reducing agents of CT to form CF, DCM, and CM (and possibly CH4) in the 1016 

transition zone. These proofs indicate that the necessary conditions exist in this zone 1017 

for A. suillum to give rise to green rusts using the Fe(II) content of sediments as 1018 

electron donors and nitrates as electron acceptors under anoxic conditions: a) the 1019 

greater abundance of A. suillum in the transition zone than in the upper part of the 1020 

aquifer; b) the dominant sulfate-reducing redox conditions and highly anoxic 1021 

environment at the transition zone; c) the Fe-reduction of iron oxidized minerals, which 1022 

delivers Fe2+ to the environment; and d) a high denitrification rate and enrichment 1023 
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factor for 15N. This evidence also shows that the formation of green rusts in the 1024 

transition zone is also a consequence of the intrinsically high geological and textural 1025 

heterogeneity in this hydrostratigraphic unit. 1026 

Given the favorable conditions for natural attenuation of CT and CF in the transition 1027 

zone, A. suillum and the Clostridiales bacterium have a potential to be biostimulated to 1028 

promote the remediation of CT and CF in the source and the plume in this 1029 

hydrostratigraphic unit. 1030 

Two important questions are derived from the present study that should be answered 1031 

when designing aquifer biostimulation or bioaugmentation schemes: (1) Which 1032 

indigenous microorganisms are involved in the natural attenuation of contaminants? (2) 1033 

Under which dominant redox conditions are these microorganisms more efficient? (3) 1034 

In the case of fine materials into which pollutants penetrate by molecular diffusion, is 1035 

the size of their cells greater than the threshold value? In this case, it would be possible 1036 

to combine biostimulation and bioaugmentation schemes to avoid the rebound effect. 1037 

This information is of particular relevance in cases in which a DNAPL source in the 1038 

aquifer is in a transition zone (given the longevity of the sources in these cases). These 1039 

factors have important environmental implications for two reasons: (1) many supply 1040 

wells exploit aquifers in basins in which land uses are devoted to industries related to 1041 

the frequent use or handling of chlorinated solvents and (2) from the geological point of 1042 

view, these basins are frequently filled with clastic sediments that constitute alluvial fan 1043 

deposits and sheet floods that correspond to transition zones with numerous fine-1044 

grained layers above which DNAPL pools accumulate. 1045 
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