1

2 IBERIAN CURED-HAM CONSUMPTION IMPROVES ENDOTHELIAL 3 FUNCTION IN HEALTHY SUBJECTS

4

J. SABAN-RUIZ^{1,2,3,} M. FABREGATE-FUENTE^{1,2}, R. FABREGATE-FUENTE¹, A. ANDRESCASTILLO¹, A. PALOMINO-ANTOLIN¹, D. BARRIO-CARRERAS¹, L. MARTINFERNANDEZ¹, F. ALTAMIRANO¹, C. FERNANDEZ-FERNANDEZ¹, C. ANDRES-LACUEVA⁴

8

9 1. Endothelial and Cardiometabolic Medicine Unit, Internal Medicine Service, Ramon y Cajal 10 University Hospital, Madrid, Spain; 2. Ramon y Cajal Health Research Institute (IRYCIS), Madrid, 11 Spain; 3. Faculty of Medicine, University of Alcala, Madrid, Spain; 4. Biomarkers and 12 Nutrimetabolomic Lab., Nutrition and Food Science Department, XaRTA, INSA, Pharmacy School, 13 University of Barcelona, Barcelona, Spain. Corresponding author: Jose Saban-Ruiz, Unidad de 14 Patología Endotelial. Edificio Consultas Externas. Planta 0. Hospital Ramón y Cajal. Carretera de 15 Colmenar Km 9,100. 28034 Madrid, Spain, Telephone number: +34 913368947, Fax number: +34 16 917293072, psaban@gmail.com.

18 Abstract: Objectives: Previous studies have shown that dietary components such as oleic acid or 19 polyphenols exert beneficial effects on endothelium. We aimed to assess the impact of regular 20 consumption of Iberian cured-ham (ICH) on endothelial function. Design: An open-label, 21 randomized controlled parallel study. Setting: Volunteers recruited through advertisements at a 22 hospital in Madrid, Spain. Participants: 102 Caucasian adults (76.8% females) aged 25-55 years, 23 and free from cardiometabolic disease. Intervention: Participants were randomized to an ICH-24 enriched ad libitum diet or an ad libitum diet without ICH for 6 weeks. Subjects in ICH group were 25 randomly provided with either acorn- or mixed-fed ICH, and followed up for an additional 6-week 26 period under their usual diet. Measurements: Clinical parameters, biomarkers of endothelial function 27 and oxidative stress, microvascular vasodilatory response to hyperemia and arterial stiffness were 28 measured before and after the intervention. Results: After 6 weeks, a larger decrease in PAI-1 was 29 observed in subjects consuming ICH compared to the Control group (-6.2±17.7 vs. 0.3±1.4 ng/ml; 30 p=0.020). Similarly, microvascular vasodilatory response to hyperemia showed a significant increase 31 (112.4±391.7 vs. -56.0±327.9%; p=0.007). However, neither oxidative stress, hemodynamic nor 32 clinical parameters differed significantly over the study. Additionally, after stopping ICH 33 consumption, improvements in PAI-1 remained for 6 additional weeks with respect to baseline 34 (p=0.006). Conclusion: The present study demonstrates, for the first time, that regular consumption of ICH improves endothelial function in healthy adults. Strategies aimed to preserve or improve the 35 36 endothelial function may have implications in vascular aging beyond the prevention of the 37 atherothrombotic disease.

38 Key words: Iberian cured-ham, endothelial function, fibrinolysis, vascular aging, polyphenols.

39 INTRODUCTION

The endothelium is a metabolically active organ playing a critical role in the regulation of vascular
wall homeostasis (1). Loss of balance between endothelial-derived vasodilatory and vasoconstrictory
factors is associated with progressive changes (2) including pro-inflammatory, pro-oxidant,

proliferative and prothrombotic status, as well as an abnormal modulation of vascular tone, all of
which characterize the endothelial dysfunction (ED) (3). ED is recognized as a critical, early,
modifiable step in the development and progression of atherosclerosis (4).

A large number of studies (5-8) have investigated the role of diet and dietary components on the endothelial function. These include the Mediterranean diet (MD), a traditional food pattern which has been associated with a lower incidence of cardiovascular disease (9). Constituents of MD such as virgin olive oil and nuts, both high in unsaturated fatty acids and phenolic compounds, have been demonstrated to favorably impact on oxidative stress and endothelial function (10-12).

51 Dry-cured ham is a traditional product based on preservation of pork food through salting and curing,
52 with a strong presence in countries in the Mediterranean area since ancient time.

Iberian cured-ham (ICH) is produced from Iberian pigs, a free-range reared genotype native to South-53 western Spain and South-eastern Portugal. Nutritional characteristics of ICH depend mainly on pig 54 feed, which can be based only on acorn and pasture ("acorn-fed") or also including compound feeds 55 56 ("mixed-fed"). ICH is particularly rich in unsaturated fatty acids, especially in oleic acid (from 50% to 55% of its fat content in mixed- and acorn-fed types respectively), and polyphenols (mainly gallic 57 58 and ellagic acid derivatives and quercetin) (13). Only a few studies have attempted to assess the 59 effects of regular consumption of dry-cured ham on atherogenic risk factors, reporting beneficial 60 actions on lipid panel (14) and lipid peroxidation (15). More recently, consumption of dry-cured ham 61 was not associated with a higher risk of cardiovascular disease, hypertension or weight gain (16).

62 The current study is therefore the first to assess the effects of regular consumption of ICH on 63 endothelial function. Within the context of a regular dietary pattern in healthy adults, it would provide 64 value in understanding how ICH affects early cardiovascular risk markers.

65 The primary aim of the current study was to assess whether regular consumption of ICH improves 66 PAI-1, a circulating marker of endothelial function, compared with a control group following their 67 usual diet. Secondary objectives were to identify its effects on microvascular endothelial function, oxidative stress biomarkers and arterial stiffness. We also aimed to describe whether there was a
lasting effect on endothelium after stopping the consumption of ICH.

70 Materials and methods

71 Experimental design

This study was an open-label, randomized controlled parallel study conducted at a cardiovascular risk
unit of a university hospital in Madrid, Spain.

74 Participants were asked to stop the consumption of ICH, as well as to maintain their previous intake 75 of foods high in oleic acid or polyphenols, such as crude virgin olive oil, green tea or red berries from 76 one week before baseline, and thereafter for the duration of the study. At baseline, participants were 77 randomized to either ICH group, consisting of an ICH-enriched ad libitum diet for 6 weeks, or Control 78 group, following an ad libitum diet without ICH. For subjects in ICH group, one of two possible types 79 of ICH, acorn-fed or mixed-fed, were randomly assigned and provided as daily servings (50g). They 80 were also counseled by a nutritionist about strategies for equivalently substituting calories from ICH 81 in their regular diet. All participants were advised to follow their otherwise usual dietary and physical 82 activity patterns throughout the study. Within 3 weeks after the randomization, participants were 83 contacted to ensure compliance with the study protocol. After the 6-week intervention period, 84 subjects in ICH group were followed up for an additional 6-week period under their usual diet, 85 without ICH. Study measurements were made at baseline and after 6 weeks for all participants, and after 12 weeks only for ICH group. 86

87 Subjects

A total of 142 healthy volunteers, free from cardiometabolic disease, were recruited through advertisements at Ramon y Cajal University Hospital in Madrid, Spain. Participants were required to be Caucasian adults aged 25–55 years with a body mass index (BMI) between 18.5 and 30 kg/m2, willing to daily consume ICH and to comply with study protocol, and able to provide written informed consent. Participants were excluded if they had been diagnosed with atherosclerotic vascular disease, diabetes, hypertension, dyslipidemia, metabolic syndrome (17), hyperferritinemia, or having at least one of the following risk factors: HDL-cholesterol ≤35 mg/dL, LDL-cholesterol ≥130 mg/dL,
triglycerides ≥150 mg/dL, hemoglobin A1c ≥5,7%, fasting plasma glucose ≥100 mg/dL. Moderate
to heavy smokers (>10 cigarettes/day) were also excluded. Additionally, any other condition that
could interfere with study participation, such as pregnancy, alcohol or drug abuse, mental disorders,
anemia, kidney, pulmonary or liver disease, was excluded. Of the 142 respondents, 38 failed to
complain with incursion/exclusion criteria: 29 lipid profile, 8 BMI, 1 age. Two participants withdrew
before randomization, leaving 102 to be randomized.

101 Clinical measurements

Height and body weight were measured while wearing light clothing and no shoes, and BMI (kg/m2) 102 103 was calculated. Waist circumference was measured in the standing position, midway between the 104 lowest rib and iliac crest, directly on the skin. Body fat mass percentage was measured using the 105 bioelectrical impedance method (Omron BF300). Systolic (SBP) and diastolic (DBP) blood pressure were measured in the sitting position after 5 min of rest, using an automated sphygmomanometer 106 107 (Omron 705CP), the mean of three measurements was used. Medical history, 1st-degree family 108 history of cardiovascular disease (parents or siblings <55 years in men and <65 in women), physical 109 inactivity (<90 min/week of walking), smoking status and food frequency (18), were recorded at 110 baseline.

111 Laboratory measurements

Overnight fasting blood samples and first-void urine samples were collected and processed.
Concentrations of total cholesterol, triglycerides, HDL-C, LDL-C, blood glucose, uric acid and urine
creatinine were analyzed in the certified local laboratory using standard procedures. Aliquots for
biomarker assessment were stored at -80°C until all participants completed the study. Biomarkers
were measured using commercial cytokine enzyme-linked immunosorbent assays: Plasminogen
activator inhibitor-1 (PAI-1) (ng/ml), Meranini; Thiobarbituric acid reactive substances (TBARS)
(µM/L), Cayman; F2-isoprostanes (ng/ml), Northwest.

119 Microvascular endothelial function

120 Laser-Doppler flowmeter DRT4 (Moor Instruments, UK) was used to measure ischemic reactive hyperemia. With the subject lying in the supine position in a room with stable temperature (20-22°C), 121 the laser probe was placed close to the wrist, distal from a blood pressure cuff placed above the elbow. 122 123 Skin temperature was controlled using a probe heated to a thermoneutral temperature (33°C). After a 5-min resting period, basal capillary flow (arbitrary perfusion units) was measured for 3 min. 124 125 Thereafter, 3-min distal ischemia was induced by inflating the cuff to suprasystolic pressure. 126 Subsequently, the cuff was deflated and the flow during reactive hyperemia was recorded for 3 min. 127 Ischemic reactive hyperemia index (IRHi) was calculated as: 100 x (peak hyperemic flow – baseline 128 flow) / (baseline flow), and expressed as a percentage.

129 Central pressure and arterial stiffness

130 Central blood pressure parameters were measured by applanation tonometry using the SphygmoCor 131 system (AtCor Medical, Australia) over the radial artery, with the subject in the sitting position. The 132 augmentation index (AIx@75), an indirect measure of arterial stiffness, was calculated as 133 augmentation pressure divided by pulse pressure $\times 100$ to give a percentage, and normalized to heart 134 rate at 75 bpm (19).

135 Sample size The main outcome variable was the difference between baseline and after 6 weeks for 136 PAI-1 (ng/ml). Based on previous data, a sample size of 52 subjects in each group was needed to have 80% power to detect a difference in PAI-1 levels of 5 units (SD: 9 units), using the Student's t-137 138 test for independent samples, considering a statistical significance value of 0.05. Analysis of total 139 phenolic content 6 samples (2.5g) of each of both acorn- and mixed-fed ICH were assessed for total phenolic content, according to Folin- Ciocalteu method (20). Gallic acid was used as a standard and 140 141 ellagic acid as a reference, since ellagitannins are located deeper in ICH. *Ethics* Protocol and consent 142 form were approved by the Ramon y Cajal Hospital Clinical Research Ethics Committee (Madrid, 143 Spain). Signed informed consent was obtained from all study participants before study enrolment. 144 Those who completed the study received non-monetary compensation for their participation (a batch of ICH). Statistical analyses Statistical analyses were performed using SPSS 15 for Windows (SPSS, 145 146 Inc., Chicago, IL, USA). Values were expressed as percentages or as mean \pm standard deviation (SD).

147 Prior to hypothesis testing, data were examined for normality. Differences at baseline between groups 148 were assessed by student t-test for independent samples. Changes within ICH after 12 weeks were 149 tested according to t-test for paired samples. Primary and secondary outcomes at 6-weeks were tested 150 using univariate analysis of variance, adjusting for baseline values. The alpha level of significance 151 was p<0.05. Results Baseline characteristics A total of 102 participants started the study; however 152 two participants withdrew from the ICH group (n=1 withdrew consent; n=1 became pregnant during 153 the trial), leaving 100 participants to complete the study. One was excluded from data analysis due 154 to incomplete biological samples. Finally the analyzed study population included 99 subjects (48 in 155 the ICH group and 51 controls). Subjects from the ICH group were also randomized to consume 156 either acorn-fed (n=26) or mixed-fed (n=22) ICH. The mean age was 40.2 ± 8.7 years, with a predominance of females (76.8%). Sedentary subjects constitute 13.1% of the study population, and 157 158 33.3% had 1st-degree family history of cardiovascular disease. 21.2% were current light smokers and 159 6.1% ex-smokers (>1 year). At baseline, there were no statistically significant differences between 160 the control and the intervention (ICH) group in age (40.5 ± 8.9 versus 39.9 ± 8.5 years), gender 161 distribution (82.4% vs. 70.8% females) or clinical characteristics (Table 1). In addition, the mean age 162 of the women was also similar in both groups. Changes after 6 weeks When assessing the mean 163 adjusted change in PAI-1 over 6 weeks, there was a diet effect (p=0.020). Those in the ICH group 164 had a larger decrease in PAI-1 (-6.2 \pm 17.7 ng/ml) compared to controls (0.3 \pm 1.4 ng/ml) (Table 2). Similarly, subjects in the ICH group showed a significant increase (p=0.007) in the ischemic reactive 165 166 hyperemia index (IRHi) (112.4 \pm 391.7%), when compared to the Control group (-56.0 \pm 327.9%). 167 Otherwise, neither oxidative biomarkers nor central hemodynamic parameters differed significantly 168 between both groups over the study. Similarly, none of the clinical variables reported in Table 1 showed significant differences between subjects in both groups over 6 weeks. 169

170 Secondary analyses: type of ICH and follow-up period With regard to the type of ICH, different 171 behaviors were observed in the main endothelial outcomes between subjects eating acorn- and mixed-172 fed ICH (Figure 1). Similar trends were seen in PAI-1 after 6 weeks for both ICH (-7.7 \pm 19.2 vs. -173 4.4 \pm 16.1 ng/ml) despite of different baseline values, while only subjects who consumed acorn-fed 174 ICH exhibited an improving trend according to IRHi (259.5 \pm 358.6 vs. -43.8 \pm 373.6%). After the

- 175 end of regular consumption of ICH, PAI-1 values remained significantly lower for 6 additional weeks
- 176 with respect to baseline (15.8 ± 12.1 ng/ml at week 12, p=0.006). IRHi also showed an improving

trend (522.3 \pm 317.8% at w12), though this did not reach statistical significance (Figure 1).

178 *Total phenolic content in ICH* The analysis for total phenolic content in ICH showed that the acorn-179 fed samples were higher in polyphenols than the mixed-fed $(1.43 \pm 0.09 \text{ vs. } 1.06 \pm 0.20 \text{ }\mu\text{g/g ICH}).$

Discussion To the best of our knowledge, this is the first study to demonstrate that regular 180 181 consumption of Iberian cured-ham improves endothelial function in healthy adults. One of the most 182 important observations in this study involves a significant decrease in PAI-1 levels, the primary 183 endpoint, after regular consumption of ICH. Plasminogen activator inhibitor-1 is an anti-fibrinolytic 184 (21) peptide which, under physiological conditions, is produced by hepatocytes, adipose tissue and 185 endothelium. In response to a variety of noxious stimuli, endothelial synthesis of PAI-1 increases 186 markedly, leading to a hypofibrinolytic and prothrombotic state which characterizes the endothelial 187 dysfunction (3). Beneficial effects of ICH on endothelial function, and particularly on PAI-1 levels, could be related to its high content in monounsaturated fatty acids (MUFA), mainly oleic acid (13). 188 189 Previous studies using MUFA support findings of a fall in PAI-1 (22, 23). Moreover, Mediterranean 190 diet (MD), an acid oleic-rich diet, has been also demonstrated to lower basal levels of PAI-1 (24). 191 Interestingly, most of the fat content of genuine Mediterranean diet (MD) is derived from virgin olive 192 oil, which, like ICH, also contains a range of non-fat micronutrients with a high biological potency, 193 including phenols (12). Presence of phenolic compounds in virgin olive oil has been associated with 194 antithrombotic properties (24) and improvements in endothelial function (10).

With regard to microvascular vasodilatory response to post-ischemic hyperemia, our results are in line with the currently available evidence supporting beneficial effects of regular consumption of several dietary compounds, as unsaturated fatty acids and polyphenols, on endothelium-dependent vasodilation (5-8). It should be noted however that almost all of these studies are based on a macrovascular measurement of endothelial function, flow-mediated dilatation (FMD) (25). Because of the different physiological role of conduit arteries and small vessels, important differences should be considered between micro- and macrovascular endothelial function, as both only show a weak

202 correlation with each other (26). Even so, Ruano et al. (10) documented short-term improvements in microvascular function during the postprandial state after the intake of virgin olive oil. It is worth 203 noting that differences in endothelial function between genders have been reported (27). Even though 204 205 a greater FMD in females may be accounted for by their smaller vessel size (28), in premenopausal women, HDL and estrogen have been related to endothelial nitric oxide synthase (eNOS) stimulation 206 207 (29). In our study, despite a predominance of women, the results do not seem to be influenced by gender distribution, as both the percent of females and the mean age of the women were similar in 208 209 the two groups. Thus, our biochemical (PAI-1) and hemodynamic (IRHi) findings jointly provide evidence of a role for ICH on vascular dysfunction in small vessels. 210

When both endothelial measurements (PAI-1 and IRHi) are shown separately according to the type of ICH, apparently different responses were observed. Improvements in PAI-1 were consistent with a slightly higher content of phenols and MUFA in acorn-fed ICH. Meanwhile, unexpectedly, only participants who consumed acorn-fed ICH seemed to improve IRHi, even though the study was not designed to find differences between both types of ICH. A comprehensive appraisal would be required to clarify this point, considering that vasodilation of the microvasculature involves not only nitric oxide, but also other vasodilatory factors such as prostaglandins (30).

218 The assessment of the effect of ICH on oxidative stress (OE) was also among our secondary 219 objectives. Neither TBARS nor F2-isoprostane/creatinine ratio showed significant differences 220 between groups after 6 weeks. Although there is much evidence supporting that OE contributes to atherogenesis (31), the association between consumption of antioxidant-rich foods and reduction in 221 OE markers is less overt. Previously, a small study (15) conducted in older adults showed that 222 223 including ICH in the diet reduced lipid peroxidation. However, our results are consistent with several other well-conducted studies that failed to demonstrate dietary effects on OE (32, 33). Self-regulatory 224 mechanisms as cellular and circulating enzymes and antioxidants could be involved in this 225 226 relationship (34), making specifically designed studies necessary. In addition, our study took place in a Mediterranean country where, on average, diet is high in fruits and vegetables, what could 227 228 contribute to explain the discrepancies between findings regarding endothelial function and OE.

However, consumption of antioxidant-rich foods has shown to decrease OE in individuals with low dietary fruit and vegetable intake (35).

231 Although endothelial function is a determinant factor of large artery hemodynamics (36), in our study 232 neither central blood pressure nor augmentation index significantly differed between groups. Arterial 233 stiffness depends not only on endothelium, but also, even more importantly, on structural elements 234 within the arterial wall as well as on vessel pressure. Thus, in our study, changes in constituents such 235 as collagen and elastin might be limited due to a short period of intervention. Moreover, ICH is high 236 in salt, estimated at 1200mg/100g (13), which could adversely impact on blood pressure. However, 237 as blood pressure changes did not differ between both groups, the possibly expected hypertensive 238 response might have been offset by a favorable action at vascular level (37).

239 Given ICH's fatty acid composition and energy profile (13), there is a common concern about whether 240 ICH consumption leads to undesired weight gain. In our study, participants' anthropometric measures 241 did not change significantly from baseline, considering that the inclusion of ICH in the diet -242 50g/daily representing less than 200 kcal- was framed within the total caloric content. Moreover, Ruiz-Canela et al. (16), after 6 years of follow-up among a 13,293 initially healthy subjects, reported 243 244 no evidence of any association between the consumption of dry-cured ham and weight gain. 245 Moreover, in our study metabolic parameters including lipid profile also remain unaffected. A 246 previous study (14) reported a favorable impact of ICH on LDL and HDL cholesterol. However, in 247 that case an additional source of the oleic acid – olive oil- was included, which could explain these apparently discordant findings. It is also noteworthy that triglycerides and uric acid remained 248 unaltered. 249

Furthermore, we observed that the improvement in endothelial function persisted for at least 6 weeks after completion of ICH consumption. Likewise it has been previously described that an "endothelial memory" exists following vascular stress (38, 39), our findings may suggest that this memory could conversely act as a sustained benefit after stopping the intervention. This fact would be in line with the metabolic legacy described, in the longer term, for statin therapy (40) and antidiabetic treatment (41). In this regard, it has been hypothesized that bioactive food components can influence epigenetic phenomena, either by inhibiting or modifying enzymatic reactions involved in DNA methylation orhistone alterations (42).

258 Overall, the improvement in endothelial function, as observed after regular ICH consumption, may 259 have exciting implications in slowing down the process of aging beyond the prevention of the 260 atherothrombotic disease, according to the modern vascular theory of aging (43). Current evidence 261 (44) supports vascular oxidative stress and inflammation as the major mechanisms by which aging 262 leads to age-associated endothelial dysfunction, even in the absence of clinical cardiovascular disease 263 or its major risk factors (45). A number of interrelated processes underlie these mechanisms, such as 264 increased bioactivity of endothelial vasoconstrictor and hypofibrinolytic molecules, activation of 265 nuclear factor kappa B (NF- κ B) signaling pathway and formation of advanced glycation end-products 266 (AGEs) (46-50).

267 We acknowledge several potential limitations to be considered in our study. First, given the nature of 268 the tested food, the use of an active or placebo comparator was not possible. Similarly, the compliance 269 assessment was limited. Even though a prescribed standardized diet could have allowed us to control 270 for dietary variables, we decided to interfere as little as possible in their life-style patterns throughout the study in order to strengthen the real-life applicability of our findings. Second, the results regarding 271 the two types of ICH should be carefully examined, as the study was not designed to assess 272 273 differences between both types, but rather to provide additional insights on the role of different 274 sources and compositions. Finally, the study was performed solely in Spanish healthy subjects, mostly women, so it is uncertain whether our findings could be extrapolated to different populations. 275 The longer-term effects of ICH on endothelial function in patients with cardiovascular disease also 276 277 remain to be examined in future studies.

278 Conclusions

The present study demonstrates for the first time that regular consumption of Iberian cured-ham (ICH) improves endothelial function in healthy adults. These improvements in PAI-1 levels and microvascular response to hyperemia were independent of classical cardiovascular risk factors, and seemed to remain for a 6-week period after stopping ICH consumption. Moreover, our study also indicates that ICH may be included in the diet without weight gain or increasing triglyceride levels at least in the short term.

Given the increasing numbers of older adults and associated health care burden, effective strategies are needed to preserve or improve the endothelial function. In this regard, our results would seem particularly compelling, even though further and longer-term studies are needed to clarify the mechanisms involved in the relationship between nutrients, epigenetics, ageing and endothelium.

289 Disclosure summary: The authors have nothing to disclosure.

290 Founding source: This work was partially supported by the Interprofessional Association of the

291 Iberian Pig (ASICI), which had no role in the conduct of the research. The Biomedical Research

292 Foundation from IRYCIS, as institution, received the funding support.

Ethical standard: The study complies with the current ethical standards for investigation involving
human participants in Spain

295 References

- 296 1. Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catapano A, et al. From endothelial
 297 dysfunction to atherosclerosis. Autoimmun Rev. 2010;9:830-4.
- 298 2. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med.
 299 1994;330:1431-8.
- 300 3. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical
 301 relevance. Circulation. 2007;115:1285-95.
- 302 4. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation.
 303 2004;109:III27-32.
- 304 5. Landberg R, Naidoo N, van Dam RM. Diet and endothelial function: from individual components
- to dietary patterns. Curr Opin Lipidol. 2012;23:147-55.

- 306 6. Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular
 307 disease. Am J Clin Nutr. 2001;73:673-86.
- 308 7. Davis N, Katz S, Wylie-Rosett J. The effect of diet on endothelial function. Cardiol Rev.
 309 2007;15:62-6.
- 8. Egert S, Stehle P. Impact of n-3 fatty acids on endothelial function: results from human
 interventions studies. Curr Opin Clin Nutr Metab Care. 2011;14:121-31.
- 9. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of
 cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279-90.
- 314 10. Ruano J, Lopez-Miranda J, Fuentes F, Moreno JA, Bellido C, Perez-Martinez P, et al. Phenolic
- 315 content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J
- 316 Am Coll Cardiol. 2005;46:1864-8.
- 317 11. Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martinez P, Arranz S,
 318 et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory
 319 biomakers related to atherosclerosis. Pharmacol Res. 2012;65:577-83.
- Medina-Remon A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E, et al. Effects of
 total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk
 cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis. 2015;25:60-7.
- 323 13. Jimenez-Colmenero F, Ventanas J, Toldra F. Nutritional composition of dry-cured ham and its
 324 role in a healthy diet. Meat Sci. 2010;84:585-93.
- 325 14. Rebollo AJG, Botejara EM, Cansado AO, Morales PJ, Bellido MM, Sánchez AF, et al. Effects of
- 326 consumption of meat product rich in monounsaturated fatty acids (the ham from the Iberian pig) on
- 327 plasma lipids. Nutrition Research. 1998;18:743-50.
- 328 15. Mayoral P, Martinez-Salgado CS, Santiago JM, Rodriguez-Hernandez MV, Garcia- Gomez ML,
- 329 Morales A, et al. Effect of ham protein substitution on oxidative stress in older adults. J Nutr Health
- 330 Aging. 2003;7:84-9.

16. Ruiz-Canela Lopez M, Bes-Rastrollo M, Zazpe I, Martinez JA, Cuervo M, Martinez- Gonzalez
MA. [Cured ham and incidence of cardiovascular events, arterial hypertension or weight gain]. Med
Clin (Barc). 2009;133:574-80.

334 17. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and
335 management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and
336 Blood Institute Scientific Statement. Circulation. 2005;112:2735-52.

18. Fernandez-Ballart JD, Pinol JL, Zazpe I, Corella D, Carrasco P, Toledo E, et al. Relative validity
of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain.
Br J Nutr. 2010;103:1808-16.

340 19. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart

rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525 Pt 1:263-70.

342 20. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates
343 in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2:875-7.

344 21. Brodsky SV, Malinowski K, Golightly M, Jesty J, Goligorsky MS. Plasminogen activator
345 inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential.
346 Circulation. 2002;106:2372-8.

347 22. Perez-Jimenez F, Castro P, Lopez-Miranda J, Paz-Rojas E, Blanco A, Lopez- Segura F, et al.
348 Circulating levels of endothelial function are modulated by dietary monounsaturated fat.
349 Atherosclerosis. 1999;145:351-8.

23. Lopez-Segura F, Velasco F, Lopez-Miranda J, Castro P, Lopez-Pedrera R, Blanco A, et al.
Monounsaturated fatty acid-enriched diet decreases plasma plasminogen activator inhibitor type 1.
Arterioscler Thromb Vasc Biol. 1996;16:82-8.

353 24. Delgado-Lista J, Garcia-Rios A, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F. Olive oil

and haemostasis: platelet function, thrombogenesis and fibrinolysis. Curr Pharm Des. 2011;17:778–

355 785.

- 25. Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation
 in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction.
 J Am Coll Cardiol. 1994;24:1468-74.
- 26. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The
 assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:75367.
- 362 27. Skaug EA, Aspenes ST, Oldervoll L, Mørkedal B, Vatten L, Wisløff U, et al. Age and gender
 363 differences of endothelial function in 4739 healthy adults: the HUNT3 Fitness Study. Eur J Prev
 364 Cardiol. 2013;20:531-40.
- 365 28. Sader MA, Celermajer DS. Endothelial function, vascular reactivity and gender differences in the
 366 cardiovascular system. Cardiovasc Res. 2002;53:597-604.
- 367 29. Gong M, Wilson M, Kelly T, Su W, Dressman J, Kincer J, et al. HDL-associated estradiol
 368 stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J Clin Invest.
 369 2003;111:1579-87.
- 370 30. Kellogg DL, Jr, Zhao JL, Coey U, Green JV. Acetylcholine-induced vasodilation is mediated by
 371 nitric oxide and prostaglandins in human skin. J Appl Physiol. 2005;98:629–32.
- 372 31. Meigs JB, Larson MG, Fox CS, Keaney JF, Jr., Vasan RS, Benjamin EJ. Association of oxidative
 373 stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes
 374 Care. 2007;30:2529-35.
- 375 32. O'Reilly JD, Mallet AI, McAnlis GT, Young IS, Halliwell B, Sanders TA, et al. Consumption of
 flavonoids in onions and black tea: lack of effect on F2-isoprostanes and autoantibodies to oxidized
 LDL in healthy humans. Am J Clin Nutr. 2001;73:1040-4.
- 378 33. Duffy SJ, Keaney JF, Jr., Holbrook M, Gokce N, Swerdloff PL, Frei B, et al. Short-and long-term
 black tea consumption reverses endothelial dysfunction in patients with coronary artery disease.
 Circulation. 2001;104:151-6.

- 381 34. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in
 382 cardiovascular diseases. Circ J. 2009;73:411-8.
- 383 35. Khan F, Ray S, Craigie AM, Kennedy G, Hill A, Barton KL, et al. Lowering of oxidative stress
 improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables:
 a randomized controlled trial of antioxidant- and polyphenol-rich blackcurrant juice. Free Radic Biol
 Med. 2014;72:232-7.
- 387 36. McEniery CM, Wallace S, Mackenzie IS, McDonnell B, Yasmin, Newby DE, et al. Endothelial
 388 function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy
 389 humans. Hypertension. 2006;48:602-8.
- 37. Ferrara LA, Raimondi AS, d'Episcopo L, Guida L, Dello Russo A, Marotta T. Olive oil and
 reduced need for antihypertensive medications. Arch Intern Med. 2000;160:837-42.
- 38. Kamat CD, Thorpe JE, Shenoy SS, Ceriello A, Green DE, Warnke LA, et al. A long-term
 «memory» of HIF induction in response to chronic mild decreased oxygen after oxygen
 normalization. BMC Cardiovasc Disord. 2007;7:4.
- 395 39. Ihnat MA, Thorpe JE, Kamat CD, Szabo C, Green DE, Warnke LA, et al. Reactive oxygen species
 396 mediate a cellular 'memory' of high glucose stress signalling. Diabetologia. 2007;50:1523-31.
- 397 40. Ford I, Murray H, McCowan C, Packard CJ. Long-Term Safety and Efficacy of Lowering Low-
- 398 Density Lipoprotein Cholesterol With Statin Therapy: 20-Year Follow-Up of West of Scotland
- 399 Coronary Prevention Study. Circulation 2016;133:1073-80.
- 400 41. Murray P, Chune GW, Raghavan VA. Legacy effects from DCCT and UKPDS: what they mean
- 401 and implications for future diabetes trials. Curr Atheroscler Rep. 2010;12:432-9.
- 402 42. Choi SW, Friso S. Epigenetics: A New Bridge between Nutrition and Health. Adv Nutr. 2010;1:8403 16.
- 404 43. Le Couteur DG, Lakatta EG. A vascular theory of aging. J Gerontol A Biol Sci Med Sci.
 405 2010;65:1025-7.

- 406 44. Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci
 407 (Lond). 2011;120:357-75.
- 408 45. Rodriguez-Manas L, El-Assar M, Vallejo S, Lopez-Doriga P, Solis J, Petidier R, et al. Endothelial
 409 dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell.
 410 2009;8:226-38.
- 411 46. Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, et al. Vascular endothelial
- 412 dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ
 413 Physiol. 2009;297:H425-32.
- 414 47. Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during
- 415 aging: role of NF-κB. J Appl Physiol. 2008;105:1333–41.
- 416 48. Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products
 417 contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65:963-75.
- 418 49. Yamamoto K, Takeshita K, Kojima T, Takamatsu J, Saito H. Aging and plasminogen activator
- 419 inhibitor-1 (PAI-1) regulation: implication in the pathogenesis of thrombotic disorders in the elderly.
- 420 Cardiovasc Res. 2005;66:276-85.
- 421 50. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new
 422 perspectives. J Gerontol A Biol Sci Med Sci. 2010;65:1028-41.
- 423
- 424

Figure 1

Behavior of the two endothelial outcomes (PAI-1 and IRHi) throughout the entire study period, including the follow-up period for ICH group. Results given as mean for the two main groups, and also separated within the ICH group according to the type of ICH (acorn- or mixed-fed). PAI-1, plasminogen activator inhibitor-1; ICH, Iberian cured ham; IRHi, ischemic reactive hyperemia index

425

426

427

Table 1
Baseline and 6-week measurements amongst the study population

	Baseline		Week 6	
	Control	ICH	Control	ICH
Weight (kg)	65.7 ± 10.8	65.3 ± 12.1	65.4 ± 10.8	65 .1 ± 12.3
BMI (kg/m2)	23.8 ± 2.9	23.6 ± 3.2	23.6 ± 3.0	23.5 ± 3.2
Waist circumference (cm)	80.9 ± 9.3	83.7 ± 8.0	81.6 ± 8.3	82.5 ± 8.4
Body fat (%)	27.6 ± 6.3	27.4 ± 6.8	27.2 ± 6.9	26.3 ± 6.0
SBP (mmHg)	110.3 ± 11.4	112.7 ± 9.5	109.0 ± 9.9	109.0 ± 12.4
DBP (mmHg)	72.6 ± 8.4	75.3 ± 7.8	69.9 ± 7.9	70.7 ± 6.7
Total cholesterol (mg/dl)	176.4 ± 24.9	183.1 ± 21.6	174.9 ± 23.2	179.9 ± 27.1
HDL-cholesterol (mg/dl)	57.7 ± 12.2	56.9 ± 13.0	57.6 ±11.8	56.1 ± 12.9
LDL-cholesterol (mg/dl)	105.0 ± 18.9	110.9 ± 19.1	103.2 ± 19.7	106.8 ± 20.1
Triglycerides (mg/dl)	67.2 ± 27.5	74.7 ± 34.8	69.5 ± 25.0	73.2 ± 35.2
Fasting plasma glucose (mg/dl)	77.8 ± 8.5	76.4 ± 8.7	77.4 ± 7.8	76.0 ± 8.7
Uric acid (mg/dl)	4.5 ± 1.2	4.5 ± 1.1	4.5 ± 1.3	4.6 ± 1.2

Values are mean ± standard deviation. ICH, Iberian cured ham; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Table 2 Main outcomes at baseline and week 6

	Group	Baseline	Week 6
Biomarkers			
PAI-1 (ng/ml)*	Control	23.3 ± 16.1	23.7 ± 15.8
	ICH	23.7 ± 18.7	17.5 ± 16.5
TBARS (µM)	Control	6.3 ± 3.4	6.7 ± 4.6
	ICH	6.3 ± 4.4	6.5 ± 3.6
F2-isoprostane/creatinine	Control	134.6 ± 76.5	130.3 ± 78.4
ratio (ng/mmol)	ICH	133.7 ± 76.2	151.7 ± 82.8
Microvascular endothelial fun	ction		
IRHi (%)†	Control	449.1 ± 244.0	393.1 ± 205.6
	ICH	463.9 ± 183.2	576.3 ± 355.6
Pulse wave analysis			
Central SBP (mmHg)	Control	102.9 ± 11.1	100.3 ± 11.2
	ICH	104.1 ± 9.7	98.2 ± 11.0
Central DBP (mmHg)	Control	73.9 ± 8.9	69.8±8.9
	ICH	76.0 ± 8.5	69.6±6.8
Augmentation Index at 75	Control	23.0 ± 13.6	23.5 ± 10.4
bpm - AIx@75 (%)	ICH	24.5 ± 11.4	24.6 ± 15.2

Values are mean ± standard deviation. PAI-1, plasminogen activator inhibitor-1; ICH, Iberian cured ham; TBARS, thiobarbituric acid reactive substances; IRHi, ischemic reactive hyperemia index; SBP, systolic blood pressure; DBP, diastolic blood pressure. * p<0.05, † p<0.01 between groups (analyzed using univariate analysis of variance, adjusting for baseline values).