This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in *Environmental Science and Technology*, copyright © American Chemical Society after peer review. To access the final edited and published work see

http://pubs.acs.org/articlesonrequest/AOR-jneyhAjJQl5FAmd7Bgp3
C and Cl isotope fractionation of 1,2-dichloroethane displays unique $\delta^{13}C/\delta^{37}Cl$ patterns for pathway identification and reveals surprising C-Cl bond involvement during microbial oxidation

Jordi Palau,†,* Stefan Cretnik,‡ Orfan Shouakar-Stash,§ Martina Höche,‡ Martin Elsner,‡ Daniel Hunkeler‡

†Centre for Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland.
‡Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
§Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada.
TOC/Abstract art

![Graph showing the relationship between
\(\Delta\delta^{27}\text{Cl}_{sMos} \) and \(\Delta\delta^{13}\text{C}_{sMos} \).](image)

The graph illustrates the change in chlorine and carbon isotope compositions in relation to a specific reaction or process, likely indicative of a study or research area in chemistry or geoscience.
This study investigated dual element isotope fractionation during aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via oxidative cleavage of a C-H bond (*Pseudomonas* sp. Strain DCA1) versus C-Cl bond cleavage by SN2 reaction (*Xanthobacter autrophicus* GJ10 and *Ancylobacter aquaticus* AD20). Compound-specific chlorine isotope analysis of 1,2-DCA was performed for the first time and isotope fractionation $\varepsilon_{\text{bulk}}^{\text{Cl}}$ was determined by measurements of the same samples in three different laboratories using two GC-IRMS and one GC-quadrupole MS. Strongly pathway-dependent slopes ($\Delta \delta^{13}\text{C} / \Delta \delta^{37}\text{Cl}$), 0.78±0.03 (Oxidation) and 7.7±0.2 (SN2), delineate the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field. In contrast to different $\varepsilon_{\text{bulk}}^{\text{Cl}}$ values: -3.5±0.1‰ (Oxidation), -31.9±0.7‰ and -32.0±0.9‰ (SN2), the obtained $\varepsilon_{\text{bulk}}^{\text{Cl}}$ values were surprisingly similar for the two pathways: -3.8±0.2‰ (Oxidation), -4.2±0.1‰ and -4.4±0.2‰ (SN2). Apparent kinetic isotope effects of ^{13}C-AKIE=1.0070±0.0002 (Oxidation), ^{13}C-AKIE=1.068±0.001 (SN2) and ^{37}Cl-AKIE=1.0087±0.0002 (SN2) fell within expected ranges. In contrast, an unexpectedly large secondary ^{37}Cl-AKIE of 1.0038±0.0002 reveal a hitherto unrecognized involvement of C-Cl bonds in microbial C-H bond oxidation. Our 2D isotope fractionation patterns enable for the first time reliable 1,2-DCA degradation pathway identification in the field, which unlocks the full potential of isotope applications for this important groundwater contaminant.
INTRODUCTION

Chlorinated ethanes are among the most widespread contaminants in groundwater\(^1\) and 1,2-dichloroethane (1,2-DCA) has been found in 36% of 1,585 National Priorities List sites identified by the United States Environmental Protection Agency (2001).\(^2\) The presence of 1,2-DCA - an intermediate in plastics production - in groundwater is mainly a consequence of industrial activity.\(^2\) A number of laboratory\(^3-9\) and field\(^10, 11\) studies showed 1,2-DCA biodegradation under aerobic\(^3-6\) and anaerobic\(^4, 7-11\) conditions via different reaction pathways.\(^9\)

Under aerobic conditions, 1,2-DCA can be degraded either via nucleophilic substitution (S\(_\text{N}_2\))\(^5, 6\) or via oxidative cleavage of a C-H bond\(^3\) catalyzed by hydrolytic dehalogenase and monooxygenase enzymes, respectively (Scheme 1). Initial products of both reactions, 2-chloroethanol (S\(_\text{N}_2\)-reaction) and 1,2-dichloroethanol (Oxidation), are further degraded to ubiquitous end products, which hampers a direct identification of degradation pathways from metabolite analysis. Alternative approaches to detect, and identify 1,2-DCA transformation pathways in the subsurface are therefore warranted. This is crucial information in environmental field studies to assess 1,2-DCA natural attenuation.

Scheme 1
Compound specific isotope analysis (CSIA) is an innovative tool to investigate degradation pathways of organic contaminants. Isotope ratios of individual compounds, measured either by gas chromatography isotope ratio mass spectrometry (GC-IRMS) or GC-quadrupole mass spectrometry (GC-qMS), are reported using the delta notation:

\[\delta^{hE}_{\text{sample}} = \frac{R^{(hE/\text{I}E)}_{\text{sample}}}{R^{(hE/\text{I}E)}_{\text{standard}}} - 1 \]

(1)

where \(R \) is the isotope ratio of heavy (\(^{h}\)E) and light (\(^{I}\)E) isotopes of element E (e.g., \(^{13}\)C/\(^{12}\)C and \(^{37}\)Cl/\(^{35}\)Cl). The isotope fractionation (\(\varepsilon \)) expresses by how much \(^{h}\)E/\(^{I}\)E is smaller (negative values) or larger (positive values) in the average of freshly formed products compared to the substrate from which they are produced. Transformation-induced isotope fractionation is generally larger than the one related to phase transfer processes such as sorption or volatilization. Bulk (i.e. compound-average) \(\varepsilon \) values can be calculated using a modified form of the Rayleigh distillation equation:

\[\ln \frac{R_t}{R_0} = \ln \left(\frac{\delta^{hE_t+1}}{\delta^{hE_0+1}} \right) = \varepsilon_{\text{bulk}} \cdot \ln f \]

(2)

where \(R_t \) and \(R_0 \) are the current and initial isotope ratios respectively, and \(f \) is the compound remaining fraction.
Previous laboratory experiments showed that for 1,2-DCA different carbon $\varepsilon_{\text{bulk}}$ values of -29.2 and -3.9‰ reflected different reaction pathways: hydrolytic dehalogenation (C-Cl bond cleavage via S_N2) versus oxidation (C-H bond cleavage) respectively (Scheme 1). Knowledge of in situ contaminant biodegradation reactions is essential to evaluate the fate and long term impact of 1,2-DCA in groundwater. For aerobic biodegradation of 1,2-DCA isotope data are particularly important as no characteristic products accumulate. However, while isotope fractionation of one element alone can provide pathway distinction in laboratory experiments (where mass balances can be established and $\varepsilon_{\text{bulk}}$ values be determined), this is not possible under field conditions. Here, evidence from a second element and a dual isotope approach is necessary to distinguish 1,2-DCA degradation pathways. As observed experimentally, for a given compound, combined isotope analysis of two elements (e.g., $\delta^{13}\text{C}$ vs. $\delta^{37}\text{Cl}$) during the course of a reaction generally yields a linear trend in a dual element isotope plot with a slope characteristic of the reaction mechanism. The reason is that the dual element isotope slope ($\lambda = \Delta\delta^{13}\text{C} / \Delta\delta^{37}\text{Cl}$, where $\Delta\delta^{13}\text{C}$ and $\Delta\delta^{37}\text{Cl}$ are changes in isotope ratios during degradation) reflects isotope fractionation of both elements. Therefore, different slopes are expected from distinct reaction pathways involving different bonds with different elements.

Currently, there is increasing interest in dual element isotope analysis for improved differentiation of transformation mechanisms and several authors pointed out that complementary mechanistic insight for 1,2-DCA aerobic biodegradation reactions could be achieved by the additional analysis of chlorine and/or hydrogen isotope ratios. The reason is that isotope fractionation can be traced back to underlying kinetic isotope effects, which are highly reaction-specific. During enzymatic degradation molecules containing the light isotope at the reactive site (e.g., ^{35}Cl) typically exhibit a higher reaction rate (e.g., ^{35}Cl) than those with a
heavy isotope (e.g., ^{37}Cl) resulting in a kinetic isotope effect of $\text{KIE} = \frac{35k}{37k}$.22 When a C-Cl bond is broken a (primary) chlorine leaving group KIE would be expected, whereas in the oxidation reaction chlorine atoms sit next to the reacting bond so that only a secondary KIE would be expected (Scheme 1). Secondary isotope effects at positions next to the reacting bond are generally much smaller than primary isotope effects.12

Until recently, Cl-CSIA of chlorinated aliphatic compounds was not feasible, however, because a direct method that would produce a suitable Cl-containing measurement gas inside a chromatographic separation gas was lacking. However, new analytical methods were developed based on the measurement of selected isotopologue ions or isotopologue ion fragments in unconverted analyte molecules using both continuous flow GC-IRMS23 and GC-qMS.24-26 In addition, a theoretical framework provided the theoretical justification for such evaluation of isotope fractionation from ion-current ratios of molecular and fragment-ion multiplets.27 A recent interlaboratory study took the next step and demonstrated that comparable $\delta^{37}\text{Cl}$ values were obtained when analyzing a set of pure trichlorethene (TCE) standards on eight different instruments.28 Since the technology is so new, however, a comparative study would also be desired which shows that comparable ε_{Cl} values are obtained when analyzing degradation samples on different instruments and in different laboratories. No such study has been conducted yet. Most notably, Cl-CSIA studies have so far been applied to only few compounds, because two isotopically distinct compound-specific standards are necessary for every new substance.28 This has restricted applications primarily to chlorinated ethylenes18, 19, 29-34 so that - to our knowledge - dual element isotope data are currently non-existent for chlorinated ethanes.

This study, therefore, aimed (i) to establish for the first time dual element (C & Cl) isotope analysis of the chlorinated ethane 1,2-DCA; (ii) to perform the Cl isotopic analysis in three
different laboratories (i.e. Waterloo, München and Neuchâtel), using two different GC-IRMS and one GC-qMS, in order to investigate the consistency of ε_{Cl} values obtained with different instruments and analytical methods; (iii) to investigate carbon and chlorine isotope fractionation during aerobic biodegradation of 1,2-DCA with three pure strains to determine whether the dual isotope slopes are sufficiently different to potentially distinguish between hydrolytic dehalogenation (SN2) and oxidation (C-H bond cleavage) in the field.

MATERIALS AND METHODS

Pure cultures preparation

Three pure strains with known initial biotransformation mechanisms were used for the batch experiments: *Pseudomonas* sp. Strain DCA1 (Oxidation), *Xanthobacter autotrophicus* GJ10 and *Ancylobacter aquaticus* AD20 (SN2 reaction). *X. autotrophicus* GJ10 (DSMZ 3874) and *A. aquaticus* AD20 (DSMZ 9000) were purchased (DSMZ, Braunschweig, Germany) and *Pseudomonas* sp. Strain DCA1 was kindly provided by Dr. Elizabeth Edwards (Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada). The growth medium was prepared as described by Hunkeler and Aravena (2000).35

Cultures and experiments were prepared in 250 mL glass bottles, which contained 185 mL of medium and were capped with Mininert-Valves (Vici Precision Sampling, Baton Rouge, LA, US). Cultures were amended with 1,2-DCA (Fluka, $\geq 99.5\%$ purity) and incubated in the dark at room temperature and under continuous shaking (100 rpm). Headspace 1,2-DCA concentrations were monitored throughout the incubation period. Before starting the experiments the cultures
were transferred three times. Each subculture was spiked with pure 1,2-DCA four times before a 15 mL aliquot was transferred to 170 mL of autoclaved fresh medium. The spike volume was 9 µL of pure 1,2-DCA for the first and second subcultures and 22.5 µL for the third, leading to aqueous phase concentrations of 0.6 and 1.5 mM, respectively.

Experiment sampling

All experiments were conducted in triplicate. Experiments and controls were amended with 22.5 µL of pure 1,2-DCA, corresponding to the chlorine isotopic working standard (δ^{37}Cl$_{0}$-CHYN2 = +0.8 ± 0.1‰), to produce an initial aqueous concentration of 1.5 mM. Bottles were shaken upside down to prevent leakage of gas phase through the valve. After 1h of shaking, samples representing the initial concentration were collected. For concentration and isotopic analysis, aqueous samples (1.5 mL) were taken at selected time points and preserved frozen in 2 mL vials with NaN$_3$ (1 g/L). Two abiotic control bottles were prepared with 185 mL of autoclaved mineral medium and samples were collected and preserved like in the experiments. For each culture experiment, sample triplicates were shipped frozen to the University of Waterloo (Canada) and to the Helmholtz Zentrum München (Germany) for chlorine isotope measurements.

Isotopic and concentration analysis

Five pure 1,2-DCA isotopic working standards, one for carbon and four for chlorine, were used for instrument monitoring and external calibration of sample raw δ^{37}Cl values to the international Standard Mean Ocean Chloride (SMOC) scale. The isotopic signature of the carbon standard (δ^{13}C$_{VPDB} = -29.47 ± 0.05‰$) was determined beforehand using an elemental analyzer coupled to an IRMS. Regarding the chlorine standards, CHYN1 and CHYN2 (δ^{37}Cl$_{SMOC}$ = +6.30 ±
0.06% and +0.84 ± 0.14‰, respectively) were characterized relative to SMOC in München by IRMS after conversion of 1,2-DCA to methyl chloride according to Holt et al. (1997). IT2-3001 and IT2-3002 (δ37Cl\textsubscript{SMOC} = +0.83 ± 0.09‰ and -0.19 ± 0.12‰, respectively) were calibrated against the CHYN standards using a GC-IRMS in Waterloo and a GC-qMS in Neuchâtel, respectively.

A detailed description of analytical methods is available in the Supplementary Information (SI). Carbon isotopes ratios were measured by GC-IRMS and precision based on the working standard δ13C value reproducibility was 0.5‰ (1σ). Chlorine isotopic analysis was performed using the following instruments: 1) Waterloo - a 6890 GC (Agilent, Santa Clara, CA, US) coupled to a continuous flow IsoPrime IRMS (Micromass, Manchester, UK; currently Isoprime Ltd, UK), 2) München - a TRACE™ GC (Thermo Fisher Scientific, Milan, Italy) directly coupled to a Finnigan MAT 253 IRMS (Thermo Fisher Scientific, Bremen, Germany) and, 3) Neuchâtel - a 7890A GC coupled to a 5975C quadrupole MS (Agilent, Santa Clara, CA, US). The instrument used in Neuchâtel will be referred to in the following text as qMS and those used in Waterloo and München as IRMS-1 and IRMS-2, respectively.

For analyzing 1,2-DCA, two ions of the molecular group (100, 102 m/z) were measured with the IRMS-2, whereas the two most abundant fragment ions (62, 64 m/z) were used for the IRMS-1 and the qMS. For 1,2-DCA the intensities of the most abundant fragment ion peaks are much higher than those of the parent ion peaks. Both ion couples (100, 102 and 62, 64 m/z) correspond to isotopologue pairs ([37Cl\textsubscript{2}12C\textsubscript{2}1H\textsubscript{4}]+, [37Cl\textsubscript{2}13C\textsubscript{2}1H\textsubscript{4}]+ and [37Cl\textsubscript{2}13C\textsubscript{2}1H\textsubscript{3}]+, [35Cl\textsubscript{2}12C\textsubscript{2}1H\textsubscript{3}]+, respectively) that differ by one heavy chlorine isotope. The isotope ratio (R) can be obtained from the ratio of these isotopologues according to eq. 3.27
where ^{37}p and ^{35}p are the probabilities of encountering ^{37}Cl and ^{35}Cl, n is the number of Cl atoms, k is the number of ^{37}Cl isotopes, $^{37}\text{Cl}_{(k)}^{35}\text{Cl}_{(n-k)}$ and $^{37}\text{Cl}_{(k-1)}^{35}\text{Cl}_{(n-k+1)}$ represent the isotopologues containing k and $(k-1)$ heavy isotopes, respectively, and “I” indicates the peak intensity of each ion.

For the qMS, isotope ratios were calculated using eq. 3 and raw $\delta^{37}\text{Cl}$ values were determined by referencing versus an external 1,2-DCA working standard according to eq. 1. In this case the standard was dissolved in water and measured like the samples in the same sequence. In IRMS-1 and IRMS-2 raw $\delta^{37}\text{Cl}$ values were determined by automatic evaluation of sample’s target ion peaks against the ion peaks of the 1,2-DCA monitoring gas, which was introduced by a dual inlet system during each sample run providing an anchor between sample measurements. Subsequently, a two point linear calibration of raw $\delta^{37}\text{Cl}$ values to SMOC scale was performed in each laboratory using two external working standards, i.e. IT2(3001 and 3002) for IRMS-1 and CHYN(1 and 2) for IRMS-2 and qMS. The analysis schemes applied in each laboratory are available in SI. For the measurements with the qMS, samples and standards were diluted to a similar concentration and each of them was measured ten times, leading to a precision (1σ) on the analysis of standards of ±0.3‰. For IRMS-1 and IRMS-2 precision on the analysis of standards was ±0.1‰ (1σ). The $\delta^{37}\text{Cl}$ of controls remained constant (+0.7 ± 0.2‰, n = 12) at $\delta^{37}\text{Cl}_0$ within the analytical uncertainty throughout the experiment.
Concentrations of 1,2-DCA were measured by headspace analysis using a TRACE™ GC-DSQII MS (Thermo Fisher Scientific, Waltham, MA, US) in single ion mode (51, 62, 64, 98 and 100 m/z). Concentrations were determined using a five point calibration curve. The estimated total relative error on analysis of external standards interspersed along the sequence was ±4%. Concentrations were corrected for 1,2-DCA volatilization to the bottle headspace using Henry’s law and Henry coefficients. An aqueous phase 1,2-DCA concentration decrease smaller than 5%, due to change of headspace to solution ratio during the experiment, was estimated. The average concentration of controls remained constant throughout the experiments (1.55 ± 0.03 mM, ±1σ, n = 12) indicating that compound losses through the valves and caps during bottles shaking and samples preservation were insignificant.

Calculation of apparent kinetic isotope effects (AKIE)

Kinetic isotope effects are position specific whereas \(\varepsilon_{\text{bulk}} \) values are calculated from compound-average isotope data. Therefore, observable \(\varepsilon_{\text{bulk}} \) values have to be converted into apparent kinetic isotope effects (AKIEs) in order to obtain information about the underlying reaction mechanisms. For the calculation of AKIEs a hypothesis about the reaction mechanism, or assumed reaction mechanism, is necessary. The effects of non-reacting positions within the molecule, as well as of intramolecular competition, are then taken into account using eqs. 4 and 5, respectively,

\[
\varepsilon_{\text{rp}} \approx \frac{n}{x} \cdot \varepsilon_{\text{bulk}} \tag{4}
\]
where ε_{rp} is the isotopic fractionation at the reactive position, n is the number of atoms of the element considered, x is the number of reactive sites and z the number of identical reactive sites undergoing intramolecular competition. In symmetric molecules such as 1,2-DCA all atoms are in equivalent reactive positions ($n = x$) and, therefore, ε_{rp} is directly obtained from eq 2. The isotope fractionation values were quantified by least square linear regression according to eq 2 without forcing the regression to the origin. As demonstrated Elsner and Hunkele (2008), the Rayleigh equation (eq. 2) can also be applied to calculate the isotopic fractionation of chlorine despite the higher natural abundance of 37Cl compared to 13C.

RESULTS AND DISCUSSION

Chlorine isotope fractionation values from different instruments

Table 1. Chlorine isotopic fractionation (ε_{Cl}) values from pure cultures and p-values for paired t-test between instruments used.

<table>
<thead>
<tr>
<th></th>
<th>IRMS-1</th>
<th></th>
<th>IRMS-2</th>
<th>qMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^a</td>
<td>r^2b</td>
<td>Average</td>
<td>Variancec</td>
<td>Average</td>
</tr>
<tr>
<td>A. aquaticus</td>
<td>3</td>
<td>≥ 0.96</td>
<td>-4.37</td>
<td>0.01</td>
<td>-4.32</td>
</tr>
<tr>
<td>X. autrophicus</td>
<td>3</td>
<td>≥ 0.98</td>
<td>-4.343</td>
<td>0.005</td>
<td>-3.960</td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>3</td>
<td>≥ 0.95</td>
<td>-4.08</td>
<td>0.03</td>
<td>-3.64</td>
</tr>
</tbody>
</table>
Number of replicates. Correlation coefficient of least-squares regression according to eq. 2. The variance among triplicate experiments was determined from the variance of regression for each ε_i as $s_{\varepsilon}^2 = (s_{\varepsilon1}^2 + s_{\varepsilon2}^2 + s_{\varepsilon3}^2)/9$. IRMS-1 vs. IRMS-2 / IRMS-1 vs. qMS / IRMS-2 vs. qMS.

Chlorine isotope fractionation values ($\varepsilon_{\text{bulk}}^{\text{Cl}}$) measured with different instruments were compared in Table 1. Results show excellent regressions (i.e., $r^2 \geq 0.95$) for the data from triplicate experiments when measured on the same instrument (entries in Table 1). In contrast, variation was greater when data from different instruments was compared. The $\varepsilon_{\text{bulk}}^{\text{Cl}}$ values from different instruments were compared using paired t-tests carried out with SigmaPlot™. The p-values were above a significant level of 0.05, with the exception of the p-value for *X. autrophicus* between IRMS-1 ($\varepsilon_{\text{bulk}}^{\text{Cl}} = -4.3\%$) and IRMS-2 ($\varepsilon_{\text{bulk}}^{\text{Cl}} = -4.0\%$) (Table 1). This result indicates that, in general, there is no statistically significant difference in $\varepsilon_{\text{bulk}}^{\text{Cl}}$ values at the 95% confidence level. The comparison of p-values for different instrument pairs does not show systematic differences, suggesting that $\varepsilon_{\text{bulk}}^{\text{Cl}}$ variation between laboratories could be in part related to minor effects during sample handling. The effect of scatter in data points at late stages of reaction on calculated $\varepsilon_{\text{bulk}}^{\text{Cl}}$ (Figure 1) could also explain the small differences. However, removing these data points did not significantly improve the agreement.

C and Cl isotope fractionation and dual isotope slopes
Figure 1. For each culture C and Cl isotopes data from triplicate experiments were combined in Rayleigh plots. For chlorine, isotope data from different instruments were also combined. The uncertainty for the carbon and chlorine ε values corresponds to the ± 95% confidence interval calculated from standard deviation of regression slope. For chlorine, dashed lines represent the 95% C.I. of regression parameters.

Degradation experiments lasted between 12h (A. aquaticus) and 21h (X. autrophicus) and 1,2-DCA transformation above 90% was reached for all the replicates. Carbon and chlorine ε_{bulk} values (R^2 ≥ 0.95) (Figure 1) were determined as indicated above (eq. 2). Transformation of 1,2-DCA by A. aquaticus and X. autrophicus by a haloalkane hydrolytic dehalogenase reaction resulted in a strong enrichment of 13C in the remaining substrate, showing a δ13C shift of approximately 98‰ at 95% degradation. The obtained ε$^{C}_{bulk}$ and ε$^{Cl}_{bulk}$ values for both cultures are the same within 95% confidence intervals and ε$^{C}_{bulk}$ values fall within the ranges determined
from previous studies16, 35, 41 (Table 2). As compared with carbon, a lower $\varepsilon_{\text{bulk}}^{\text{Cl}}$ value of approximately -4.3‰ was determined for both cultures ($\varepsilon_{\text{bulk}}^{\text{C}} / \varepsilon_{\text{bulk}}^{\text{Cl}} = 7.4$). Degradation of 1,2-DCA by \textit{Pseudomonas sp}. Strain DCA1 in an enzymatic monooxygenase reaction resulted in a smaller carbon $\varepsilon_{\text{bulk}}^{\text{C}}$ (-3.5‰) compared to nucleophilic (S\textsubscript{N}2) reaction (Figure 1). This result is consistent with the previously reported value (Table 2).16 For Cl, a $\varepsilon_{\text{bulk}}^{\text{Cl}}$ value close to those associated with primary Cl isotopic effects was measured ($\varepsilon_{\text{bulk}}^{\text{C}} / \varepsilon_{\text{bulk}}^{\text{Cl}} = 0.9$). This value is unusually high given that from known mechanism a secondary isotope effect is expected (see further discussion in the next Section).

A linear relation between $\delta^{13}\text{C}$ and $\delta^{37}\text{Cl}$ was obtained for all the strains ($r^2 \geq 0.97$) and strongly different slopes ($\Lambda = \Delta\delta^{13}\text{C} / \Delta\delta^{37}\text{Cl} \approx \varepsilon_{\text{bulk}}^{\text{C}} / \varepsilon_{\text{bulk}}^{\text{Cl}}$) were determined for the S\textsubscript{N}2 reaction ($\Lambda = 7.7 \pm 0.2$) and oxidation ($\Lambda = 0.78 \pm 0.03$) (Figure 2). The slopes obtained from \textit{X. autrophicus} and \textit{A. aquaticus} degradation experiments were the same within 95\% confidence intervals. Therefore, the large Λ difference among the investigated reactions enables the use of a dual isotope approach to identify the different pathways in the field. In contrast, a single element approach based only on carbon isotope data would lead to ambiguous interpretations because a certain extent of isotope fractionation (e.g. $\Delta\delta^{13}\text{C}$) could have been caused by a strongly isotope fractionating reaction that has proceeded little, or a weakly isotope fractionating reaction that has proceeded further (or an unknown combination of both). Unlike in lab experiments where $\varepsilon_{\text{bulk}}^{\text{C}}$ values can be determined,16 insight into pathways would therefore be elusive in the field. The starkly contrasting trends of Figure 2 show how isotopic analysis of chlorine as second element can resolve this issue. The large difference between determined slopes also enables to identify if both pathways occur in the field. In ideal situations, the proportion of both competing pathways
could be estimated based on dual isotope data.42, 43 A dual isotope analysis can also be helpful in microbial laboratory experiments for substantiating conclusions about prevailing mechanisms.

Figure 2. Carbon and chlorine δ isotope values from triplicate experiments and all used instruments (i.e. IRMS-1, IRMS-2 and qMS) were combined in a dual isotope plot. Symbols are as follows: blue (A. *aquaticus*), red (X. *autrophicus*), green ($Pseudomonas$ *sp.*), circles (IRMS-1), squares (IRMS-2) and diamonds (qMS). The slopes of the linear regression lines (solid lines) give the Λ values (\pm95% C.I.) and the dashed lines correspond to the 95% confidence intervals. Error bars of δ^{13}C values are smaller than the symbols.

Interpretation of 13C- and 37Cl-AKIEs for oxidation and S\textsubscript{n}2-type reactions
Table 2. Measured carbon and chlorine isotopic fractionation values (in ‰) and apparent kinetic isotopic effects.

<table>
<thead>
<tr>
<th>Reaction mechanism</th>
<th>Observed</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϵ^c_{bulk}</td>
<td>$^{13}\text{C-AKIE}$</td>
</tr>
<tr>
<td>A. aquaticus S$_2$</td>
<td>-32.0 ± 0.9</td>
<td>1.068 ± 0.002</td>
</tr>
<tr>
<td>X. autrophicus S$_2$</td>
<td>-31.9 ± 0.7</td>
<td>1.068 ± 0.002</td>
</tr>
<tr>
<td>Pseudomonas sp. C-H bond cleavage</td>
<td>-3.5 ± 0.1</td>
<td>1.0070 ± 0.0002</td>
</tr>
</tbody>
</table>

a See Rayleigh plots in Figure 1. The uncertainty corresponds to the 95% confidence interval calculated from standard deviation of regression slope. b Calculated according eq. 5. The uncertainty was estimated by error propagation.

Hydrolytic dehalogenation (S$_2$) reaction

Determined ϵ_{bulk} values were used to estimate the AKIEs (Table 2) according to eq. 5, which assumes that secondary isotopic effects can be neglected. For S$_2$ reaction, $^{13}\text{C-AKIEs}$ were calculated using $z = 2$ since both C-Cl bonds compete for reaction. $^{13}\text{C-AKIEs}$ agreed well with the typical $^{13}\text{C-KIE}$ range for a S$_2$ reaction (1.03 – 1.09)21 (Scheme 1). Abe et al. (2009)41 determined the $^{13}\text{C-AKIE}$ of 1,2-DCA in batch degradation experiments prepared with cell free extract from X. autrophicus GJ10. These authors obtained an average value (1.0597) close to the $^{13}\text{C-AKIE}$ observed in this study (1.068), suggesting that there was no significant masking of the intrinsic KIE during compound transport thorough the cell membrane. This conclusion is in
agreement with the Streitwieser limit for \(^{13}\text{C}-\text{KIE}\) in C-Cl bonds \((1.057)\), and could explain in part the relatively narrow range of reported \(\varepsilon^c_{\text{bulk}}\) values \((-28.7\) to \(-33.0\%)\) for both pure cultures using the haloalkane hydrolytic dehalogenase reaction (Table 2). Hirschorn et al. (2007) measured a similar \(^{13}\text{C}-\text{AKIE}\) \((1.05)\) for 1,2-DCA in laboratory biodegradation experiments under nitrate reducing conditions by an enrichment culture from a contaminated site, which was interpreted as transformation via hydrolytic dehalogenation.

Similarly to carbon isotope effects, \(^{37}\text{Cl}-\text{AKIE}\) were obtained from eq. 5 with \(z = 2\). The calculated \(^{37}\text{Cl}-\text{AKIE}\) \((1.009)\) corresponded well to the typical \(^{37}\text{Cl}-\text{KIE}\) range for a \(\text{S}_2\) reaction but very close to the upper end \((1.006-1.009)\) (Scheme 1). However, the \(^{37}\text{Cl}-\text{AKIE}\) measured in this study is above the theoretical primary isotope effect for 1,2-DCA enzymatic dehalogenation reported by Lewandowicz et al. (2001) \((^{37}\text{Cl}-\text{KIE} = 1.0065)\). These authors also measured experimentally the leaving group \(^{37}\text{Cl}-\text{AKIE}\) for 1,2-DCA \((1.0045)\) and 1-chlorobutane \((1.0066)\) dechlorination catalyzed by haloalkane hydrolytic dehalogenase (extracted from \(X. \text{ autrophicus}\) GJ10). In this former study the experimental \(^{37}\text{Cl}-\text{AKIE}\) was determined by the isotopic analysis of the released \(\text{Cl}^-\) during 1,2-DCA dechlorination and, therefore, it represents the primary \(^{37}\text{Cl}-\text{AKIE}\). According to Lewandowicz et al. (2001) and Paneth (2003) an explanation for the lower \(^{37}\text{Cl}-\text{AKIE}\) of 1,2-DCA compared to 1-chlorobutane could be that the dehalogenation step is reversible and the hydrolysis of the enzyme-bound intermediate is responsible for the overall irreversibility of the reaction. In addition, in a recent study that investigated 1,1-dichloroethane and 1,1,1-trichloroethane biodegradation by whole cell and cell free extract systems, \(^{13}\text{C}-\text{AKIEs}\) for both chlorinated ethanes during degradation by cell free extracts were unexpectedly lower than those determined in whole cell experiments. The higher \(^{37}\text{Cl}-\text{AKIE}\) of 1.009 compared to the theoretical primary \(^{37}\text{Cl}-\text{KIE}\) could be explained by the
contribution of a \(\beta \)-secondary isotopic effect given that, in our study, the \(^{37}\text{Cl} / ^{35}\text{Cl} \) ratios were measured in the remaining 1,2-DCA and, secondary isotopic effects were neglected in the primary AKIE calculation (eq. 5). The magnitude of the \(\beta \)-secondary \(^{37}\text{Cl} \)-KIE can be estimated from the average of KIE\(_i\) in both Cl molecular positions according to eq. 6.\(^{12}\)

\[
\varepsilon_{\text{bulk}}^{\text{Cl}} \approx \frac{1}{2} \cdot \left(\frac{1}{\text{KIE}_{\text{primary}}^{\text{Cl}}} + \frac{1}{\text{KIE}_{\text{secondary}}^{\text{Cl}}} \right) - 1
\]

Plugging in the \(\varepsilon_{\text{bulk}}^{\text{Cl}} \) value measured in our study (-4.3 ‰) and the reported theoretical primary Cl isotopic effect of 1.0065,\(^{46, 47}\) a \(\beta \)-secondary \(^{37}\text{Cl} \)-KIE of 1.0021 was estimated. Equation 6 assumes that \(\varepsilon_{\text{bulk}}^{\text{Cl}} \) is not significantly masked by non-fractionating rate limiting processes preceding the reaction step. This is a likely assumption in our case judging by the relatively high carbon and chlorine AKIEs (see discussion above and Table 2). Secondary \(^{13}\text{C} \)-KIEs are generally much smaller than primary isotope effects and, therefore, they are usually omitted in \(^{13}\text{C} \)-AKIE calculations.\(^{21}\) However, for chlorine, secondary KIEs as large as primary isotope effects have been recently determined theoretically during \(S_N2 \) reactions that proceed with chlorine transfer between two heavy atoms.\(^{45}\) In addition, in a recent experimental study that investigates TCE multi-isotope fractionation during biotic reductive dechlorination,\(^{32}\) daughter products depleted in \(^{37}\text{Cl} \) relative to their immediate parent compounds were interpreted as evidence of significant secondary Cl effects related to nucleophilic substitution reaction. The conclusions of these recent studies\(^{32, 45}\) support the hypothesis that large \(\beta \)-secondary \(^{37}\text{Cl} \)-KIE occurs during this study.
Oxidative C-H bond cleavage

As in the hydrolytic reaction, during oxidation both C atoms also compete for reaction and thus the 13C-AKIE was calculated using $z = 2$ in eq. 5 (Table 2). The obtained 13C-AKIE agrees well with the typical 13C-KIE for C-H bond cleavage ($1.01 - 1.03$)21 (Scheme 1). Primary 13C-KIEs generally increase with increasing mass of the bonding partner (i.e. 13C-KIE$\text{C-H} < ^{13}$C-KIEC-Cl).21

For Cl, the unexpectedly high $\varepsilon_{\text{bulk}}^{\text{Cl}}$ suggests the contribution of secondary 37Cl-KIEs from both Cl atoms. In the absence of primary chlorine isotopic effect, the secondary 37Cl-AKIE can also be evaluated using eq. 5. In this case $z = 1$ since no specific bond containing Cl is broken and there is, therefore, no intramolecular competition for this bond. The resultant secondary 37Cl-AKIE (1.004) represents the average secondary isotope effect of all positions. This result supports the large β-secondary 37Cl-KIE estimated above for the nucleophilic reaction. This finding suggests that significant secondary 37Cl-KIEs are also associated with enzymatic oxidation via C-H bond cleavage. Until now, oxidative cleavage of a C-H bond has been believed to affect primarily the C-H bond and to leave chlorine substituents largely unchanged.

This common assumption is challenged by the observed large chlorine isotope fractionation in C-H bond cleavage, where involvement of a C-Cl bond would not be expected. This indicates an intriguing role of the chlorine atoms which still remain to be resolved. Hypothetical contribution of chlorine isotope fractionation during binding of 1,2-DCA molecules to the enzyme could be an additional explanation.

Further insight can possibly be obtained in future studies that address 2H / 1H isotope analysis. Recently, Shouakar-Stash and Drimmie (2013)49 developed and online methodology for H-CSIA
of TCE and 1,2-cis-dichloroethene, however, this analytical method is still not implemented for chlorinated ethanes.

Implications for application of CSIA to environmental studies

One of the main applications of CSIA to field studies is the estimation of contaminant biodegradation extent and rate. For this purpose compound specific $\varepsilon_{\text{bulk}}$ values from laboratory experiments are necessary. For a given compound, different $\varepsilon_{\text{bulk}}$ values are generally associated with distinct biodegradation pathways, which in turn are sometimes related to different subsurface redox environments. Therefore, redox conditions are usually used as criteria to constrain the range of reported $\varepsilon_{\text{bulk}}$ values. However, for 1,2-DCA different degradation pathways associated with distinct $\varepsilon_{\text{bulk}}$ values may even be active under aerobic conditions. In addition, the hydrolytic dehalogenation pathway of 1,2-DCA has been observed under oxygen and nitrate reducing conditions alike (see above). In this context, the identification of the active degradation pathway in the field is crucial to choose the appropriate $\varepsilon_{\text{bulk}}$ value for quantification of degradation. This study demonstrates that dual isotope slopes are strongly different for nucleophilic substitution (S_N2) and oxidation (C-H bond cleavage) reactions, which opens the possibility to identify them using a dual isotope approach. Following this approach isotopic data from the field site can be directly and intuitively interpreted.

Significant secondary chlorine isotopic effects were determined for the investigated reactions. These results indicate that primary ^{37}Cl-AKIEs derived from CSIA could be higher than reported primary ^{37}Cl-KIEs (e.g. from computational studies) if secondary isotopic effects are omitted in the calculations. Hence, mechanistic interpretations based on the comparison with primary ^{37}Cl-KIEs should be made with caution.
Finally, chlorine $\varepsilon_{\text{bulk}}$ values measured with three different instruments, two GC-IRMS and one GC-qMS, showed a fairly good agreement varying at most by $\pm 3.8\%$ (SD of the mean). Even though the agreement was not perfect these results lend confidence to the methods used and encourage the application of CI-CSIA to investigate the fate of chlorinated compounds at contaminated sites. However, further research and methodological developments are still required to improve CI-CSIA data agreement between different laboratories.

ASSOCIATED CONTENT

Supporting Information

A detailed description of analytical methods is available. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author*

Jordi Palau
Centre d'Hydrogéologie et de Géothermie, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
E-mail: jordi.palau@ub.edu

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
ACKNOWLEDGEMENTS

References

33. Palau, J.; Marchesi, M.; Chambon, J. C.; Aravena, R.; Canals, A.; Binning, P. J.; Bjerg, P. L.; Otero, N.; Soler, A., Multi-isotope (carbon and chlorine) analysis for fingerprinting and

