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 Abstract: The study of biomarkers of dietary patterns including the Mediterranean diet (MedDiet) 19 

is scarce and could improve the assessment of these patterns. Moreover, it could provide a better 20 

understanding of health benefits of dietary patterns in nutritional epidemiology. We aimed to 21 

determine a robust and accurate biomarker associated with a high adherence to a MedDiet pattern 22 

that included dietary assessment and its biological effect. In this cross-sectional study, we included 23 

56 and 63 individuals with high (H-MDA) and low (L-MDA) MedDiet adherence categories, 24 

respectively, all from the Prevención con Dieta Mediterránea trial. A 1H-NMR-based untargeted 25 

metabolomics approach was applied to urine samples. Multivariate statistical analyses were 26 

conducted to determine the metabolite differences between groups. A stepwise logistic regression 27 

and receiver operating characteristic curves were used to build and evaluate the prediction model for 28 

H-MDA. Thirty-four metabolites were identified as discriminant between H-MDA and L-MDA. The 29 

fingerprint associated with H-MDA included higher excretion of proline betaine and 30 

phenylacetylglutamine, among others, and decreased amounts of metabolites related to glucose 31 

metabolism. Three microbial metabolites — phenylacetylglutamine, p-cresol and 4-32 

hydroxyphenylacetate — were included in the prediction model of H-MDA (95% specificity, 95% 33 

sensitivity and 97% area under the curve). The model composed of microbial metabolites was the 34 

biomarker that defined high adherence to a Mediterranean dietary pattern. The overall metabolite 35 

profiling identified reflects the metabolic modulation produced by H-MDA. The proposed biomarker 36 

may be a better tool for assessing and aiding nutritional epidemiology in future associations between 37 

H-MDA and the prevention or amelioration of chronic diseases. 38 
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1. Introduction 61 

High adherence to healthy dietary patterns is associated with lower risk of chronic diseases [1]. The 62 

measurement of dietary intake is an essential component in studies attempting to establish links 63 

between dietary exposure and health outcomes [1]. Currently, the quality and adherence of dietary 64 

patterns in nutritional epidemiology are measured by the use of self-reported questionnaires such as 65 

the dietary indexes/scores [2]. A healthy dietary score is based on dietary recommendations as a result 66 

of scientific consensus or as proposed by investigators using an evidence-based approach [3]. Several 67 

dietary scores have been developed and applied to populations to evaluate the role of diet in a more 68 

holistic perspective in the risk of mortality, cardiovascular disease (CVD) and cancer [4]. However, 69 

because dietary patterns are complex not only in terms of composition but also in terms of amounts 70 



and frequency of food intake, it is well recognized that, in addition to the conventional methods, the 71 

emergence of novel biomarkers of food exposure may help to improve the accuracy of the assessment 72 

of compliance and adherence [5]. In this regard, metabolomics has emerged as a valuable tool in 73 

nutrition research for the discovery of novel dietary biomarkers for both single foods [6,7] and food 74 

patterns [5,8] and, in addition, is able to evaluate their effect in the organism [9]. The use of these 75 

biomarkers is a more specific tool and complementary to traditional indexes/scores. Moreover, 76 

although progress has been made in the metabolite characterization of dietary patterns, most of the 77 

metabolomic studies have applied approaches based on multivariate analyses of food and nutritional 78 

data intake [10,11], leaving the complementary use of dietary scores and metabolomics as a new field 79 

to explore in dietary patterns characterization. Up to now, several Mediterranean diet (MedDiet) 80 

adherence scores have been described in the literature, such as the 9-item MedDiet score [12] or the 81 

Prevención con Dieta Mediterránea (PREDIMED) 14-item MedDiet score [13]. These scores were 82 

developed with the aim of appraising the adherence to a traditional MedDiet of several populations 83 

as well as to evaluate the effect of adherence to a MedDiet on microbiota composition [14], CVD risk 84 

factors [15], aging diseases [16] or total mortality [12]. The application of targeted and untargeted 85 

metabolomics approaches in the study of the effects of the protective mechanisms of a MedDiet on 86 

CVD has been poorly studied but is now beginning to attract more interest [9,17]. Furthermore, 87 

currently, there are some reports about metabolic profiling in biological samples (feces or urine) that 88 

enable the characterization of high adherence to a MedDiet pattern [14,18], but to our knowledge, 89 

there are no reports calculating a prediction model of MedDiet adherence. In addition, the study of 90 

biomarkers to explain the assessment of the pattern and gain a better understanding of its health 91 

benefits in nutritional epidemiology is limited. The characterization of dietary patterns by using 92 

metabolomic approaches is important because it would allow insights into the relationship between 93 

diet, taking into account the bioavailability of MedDiet bioactives, and the risk of chronic diseases 94 

[14,19]. In the current study, we aimed to determine a robust and accurate urinary biomarker 95 

associated with a high adherence to MedDiet pattern that included dietary assessment and its 96 



biological effect on the organism by using a 1H-NMR-based untargeted metabolomics approach 97 

which can be usefully applied in nutritional epidemiology. 98 

2. Subjects and methods 99 

2.1. Study population and study design 100 

The PREDIMED study is a multicenter, randomized, parallel and controlled clinical trial conducted 101 

in Spain and aimed at assessing the effects of a MedDiet on primary prevention of CVD. Full details 102 

of the design and methods have been published elsewhere [20,21]. Briefly, the study population 103 

included men (55–80 years) and women (60–80 years) without a previous history of CVD at 104 

enrolment but with either type 2 diabetes mellitus or at least three or more of the following CVD risk 105 

factors: current smoking, hypertension, high low-density lipoprotein cholesterol, low high-density 106 

lipoprotein cholesterol, overweight/ obesity or family history of premature CVD. Exclusion criteria 107 

were the presence of any severe chronic illness, alcohol or drug abuse, body mass index (BMI; in 108 

kg/m2) ≥40, and allergy or intolerance to olive oil or nuts. The trial was registered at 109 

http://www.controlledtrials. com (ISRCTN35739639). For the current work, we conducted a cross-110 

sectional study with baseline dietary data and urine samples of 119 individuals recruited in 2 111 

PREDIMED trial centers (Hospital Clinic of Barcelona and University of Valencia). At baseline, one 112 

morning urine sample was collected from all participants and immediately aliquoted and stored at −113 

80°C until the day of analysis. 2.2. Assessment of Mediterranean diet adherence and other 114 

parameters In order to appraise the adherence to a MedDiet among participants, the validated 14-115 

item PREDIMED MedDiet score questionnaire was administered. In detail, the MedDiet score 116 

questionnaire consists of 12 questions on food consumption frequency and 2 questions on food intake 117 

habits considered characteristic of the Spanish MedDiet [13]. Each item/question is scored as 1 or 0 118 

according to whether it is met or not, respectively (Supplementary Table 1). Thus, the total MedDiet 119 

score ranges from 0 to 14 points, meaning that the higher the score, the higher the adherence to a 120 

MedDiet. The MedDiet adherence scorewas calculated for all participants and usedfor their 121 

subsequent stratification, which was done by using the proposed cutoff values previously reported in 122 



the PREDIMEDstudy. [15]:MedDiet score ≤7 indicated low MedDiet adherence (L-MDA) (n=63), 123 

and MedDiet score ≥10 (n=56) indicated high MDA (H-MDA). All participants were also asked to 124 

complete a validated semiquantitative 137-item food frequency questionnaire (FFQ) [22] and the 125 

Spanish version of the Minnesota Leisure-Time Physical Activity Questionnaire [23]. Trained 126 

dieticians in the PREDIMED study administered all questionnaires, including the PREDIMED 127 

MedDiet score questionnaire. The nutrient composition and energy intakes were calculated from the 128 

FFQ data by using Spanish food composition tables [24]. Also, anthropometrical measurements were 129 

taken directly by qualified nurses.  130 

2.3. Metabolite profiling 131 

1H-NMR analysis and spectra processing were performed by following previous methodology [8]. 132 

Briefly, the urine samples were thawed, vortexed and centrifuged at 13,200 rpm for 5 min. From each 133 

supernatant, a volume of 300 μl was taken and diluted with 200 μl of H2O/D2O and mixed with a 134 

buffer solution [8]. The optimized pH of the buffer was set at 7.0, with a potassium deuteroxide 135 

solution, to minimize variations in the chemical shifts of the 1H-NMR resonances. This mixture was 136 

transferred to a 5-mm NMR tube. 1H-NMR spectra acquisition was performed using a Varian-Inova 137 

500-MHz NMR spectrometer with presaturation of the water resonance using a NOESYPRESAT 138 

pulse sequence. The spectra data processed were binned to 1165 variables with bin widths of 0.005 139 

ppm and integrated with ACD/NMR Processor 12.0 software (Advanced Chemistry Development, 140 

Toronto, Canada). The spectral region containing water (δ 4.75–5.00 ppm) was excluded before 141 

normalization to avoid spectral interference. Integrated spectra were row-wise normalized by sum 142 

using MetaboAnalyst 3.0 (www.metaboanalyst.ca), a web server designed to permit comprehensive 143 

metabolomics data analysis. Metabolites were identified following a multistep procedure as 144 

previously reported [8]. This multistep includes (a) comparison of the experimentalNMRspectra with 145 

those in the library of ChenomxSuite 8.1 profiler software (Chenomx, Inc., Edmonton, Canada), 146 

which includes access to the Human Metabolome Database (HMDB) library [25]. Other databases 147 

such as the Biological Magnetic Resonance Data Bank and the MadisonMetabolomics 148 



ConsortiumDatabase were also consulted along with existing NMR-basedmetabolomics literature. 149 

(b) At the same time, the NMR peak assignments were correlated using Pearson's correlation 150 

coefficient (r≥0.7, P≤.05) to confirmthemultiplicity and identify clusters of metabolites which were 151 

then compared to databases with NMR data [8,25]. Biological interpretation was made by consulting 152 

the HMDB and Kyoto Encyclopedia of Genes and Genomes databases. 2.4. Statistical analyses 153 

Demographic characteristics, medication usage and dietary intake were compared between groups by 154 

conducting Student's t tests and χ2 analyses for continuous and categorical variables, respectively. 155 

Variables with a non-normal distribution were log transformed before analyses. Multivariate data 156 

analysis was performed using SIMCAP+ 13.0 (Umetrics, Umeå, Sweden) software. Data sets 157 

containing the integrated NMR spectral bins were log transformed and Pareto scaled before 158 

performing a principal component analysis to explore the quality of data acquisition. An orthogonal 159 

signal correction (OSC) filter was applied to the data sets in order to reduce the variability not 160 

associated with the dietary classification [8], in this case, the category of adherence to a MedDiet. 161 

Afterward, a partial least squares discriminant analysis (PLS-DA) was performed to examine the 162 

difference in metabolite profile between subjects at H-MDA and L-MDA. The quality and validation 163 

of resultant model were also appraised, the first through the R2Y (cum) and Q2 (cum) parameters, 164 

and the second with a permutation test (n=200). Discriminant variables between groups were selected 165 

based on their variable importance in projection (VIP) value N1.0,which is a generally accepted 166 

threshold [26]. The normality of discriminant variables was assessed using a Kolmogorov–Smirnov 167 

testwith Lilliefors significance correction, and additionally Mann–Whitney or independent Student's 168 

t tests were performed according to the normality of the data. To account for multiple comparisons 169 

in the metabolomic analysis,we used a corrected P value with the Benjamini–Hochberg procedure. 170 

Aiming to identify the metabolites with the best discriminant capability between H-MDA and L-171 

MDA, we designed and assessed the performance of a prediction model with the H-MDA as 172 

dependent variable and the discriminant metabolites identified from the OSCPLS- DA model as 173 

independent variables [6]. To this end, first the data set of individuals (n=119) was randomly split 174 

into two thirds to build one training set (n=79) and one third for a validation set (n=40). A stepwise 175 



binary logistic regression analysis was performed in the training set in order to identify the 176 

metabolites with the most significant predictive capacity, and from these, a combined model was 177 

built. Subsequently, a receiver operating characteristic (ROC) curve analysis was performed, first in 178 

the training set and then in the validation set, to evaluate the obtained model, as well as the individual 179 

metabolites included. Then the performance of both the combined model and the individual 180 

metabolites was determined by the area under the curve (AUC) of the ROC curves, as well as by the 181 

sensitivity and specificity at the optimal cutoff point defined as the minimum distance to the top-left 182 

corner in the ROC curve. Finally, the association between the combined multimetabolite model and 183 

individual metabolites with food groups was tested by a Spearman's rank correlation analysis with 184 

correction of P value using Benjamini–Hochberg procedure. All univariate analyses, including 185 

normality, Student's t tests, Spearman's rank correlation, logistic regression and ROC curve analyses, 186 

were performed on IBM SPSS 21 statistics software (IBM Corp., Armonk, NY, USA). 187 

3. Results 188 

3.1. Demographic and dietary intake measurements 189 

For the current study, we included individuals who, according to their individual MedDiet score, were 190 

assigned to L-MDA (≤7 points, n=63) or H-MDA (≥10 points, n=56). Our population had a mean 191 

(±S.D.) age of 67±6 years and a mean (±S.D.) BMI of 30.3±4.5 kg/m2, and 68.9% of the participants 192 

were women (Table 1). Cardiovascular risk factors as well as medication use were similar between 193 

both groups (Table 1). With regard to food and nutrient intake (Table 2), individuals in H-MDA 194 

consumed higher amounts of olive oil, nuts, vegetables, fruits, legumes and fish, and total dietary 195 

fiber than L-MDA participants (Pb.05). However, no statistically significant differences were found 196 

for total energy, total fat, carbohydrates and protein intakes. 3.2. Discriminant metabolite profile of 197 

high adherence to a Mediterranean diet pattern The OSC-PLS-DA analysis resulted in one latent 198 

component model with R2Y (cum) and Q2Y (cum) values of 0.913 and 0.764, respectively, indicating 199 

a good ability to classify individuals according to their MedDiet adherence. In addition, a permutation 200 

test (n=200), with intercept R2 and Q2 values of 0.346 and −0.154, respectively, showed the validity 201 



of the model. Table 3 shows a list of 34 metabolites that were identified after the selection of 202 

discriminant variables from the OSC-PLS-DA (based on VIP N1.0 values). Individuals in H-MDA 203 

group had a marked excretion of metabolites involved in protein/amino acid metabolism 204 

characterized by a higher excretion of anserine, carnosine, creatine, creatinine, guanidoacetate, 205 

histidine and N-acetylglutamine, as well as a lower excretion of 3-methylhistidine, alanine, glycine 206 

and lysine, than those in L-MDA. Similarly, another major group of metabolites derived from gut 207 

microbiota was identified. Concretely, H-MDA was characterized by a higher urinary amount of 4- 208 

hydroxyhippurate, 4-hydroxyphenylacetate, dimethylsulfone, 3-(3- hydroxyphenyl)-3-209 

hydroxypropanoate (HPHPA), p-cresol and phenylacetylglutamine (PAGN) and lower urinary 210 

amounts of 3-indoxyl sulfate, hippurate and isobutyrate compared to the L-MDA. Furthermore, 211 

participants in the H-MDA group excreted lower levels of metabolites involved in the energy 212 

pathway, and in the propanoate and purine and caffeine pathways, than those in L-MDA. In addition, 213 

participants in the H-MDA group had higher levels of metabolites involved in the choline pathway 214 

(except betaine), as well as the inositol, niconitate, nicotidamide and pyrimidine pathways (Table 3). 215 

3.3. Prediction model for high adherence to Mediterranean dietary pattern We performed a model 216 

based on a stepwise binary logistic regression analysis including the previous 34 metabolites 217 

identified fromthe OSC-PLS-DAmodel and further ROC curve analyses to evaluate the resulting 218 

model and the individual metabolites included in this. To this end, the data set of individuals fromthe 219 

H-MDA and L-MDA groups was divided into training and validation sets, as indicated above. The 220 

resulting model included three metabolites derived from gut microbiota, namely, PAGN, p-cresol and 221 

4-hydroxyphenylacetate (Supplementary Table 2). The specificity and sensitivity of the model were 222 

higher than 90% in both the training and validation sets. The PAGN had 85.7% and 68.4% specificity 223 

and sensitivity, respectively, in the validation set, while p-cresol and 4-hydroxyphenylacetate showed 224 

values between 66% and 84% in these parameters (Table 4) for the validation set. Furthermore, the 225 

global performance of the combinedmodel in terms of AUC was 97.7% for the training and 97.0% 226 

for the validation set, while individually, each metabolite had values of AUC between 59% and 86% 227 

(Table 4). Fig. 1 illustrates that the model improves the classification of MedDiet adherence (H-MDA 228 



and L-MDA) in comparisonwith the use of each metabolite individually. In the analysis of 229 

correlation, the combined metabolite model showed a strong correlation with the MedDiet score 230 

(r=0.7; Pb.001), aswell aswith the intake of vegetables, fruits, legumes, fish (r=0.2–0.3; Pb.01) 231 

(Supplementary Table 3) and dietary fiber (r=0.3; Pb.01).Otherwise, the three individualmetabolites 232 

had good correlation with the MedDiet score (r=0.3–0.6; Pb.001) but weaker or not significant 233 

correlations with the intake of individual foods. 234 

4. Discussion 235 

In the present metabolomic study, we identified the urinary metabolite profile consisting of 34 236 

metabolites that enable discrimination between 2 groups of individuals with high or low adherence 237 

to the score of Mediterranean diet adherence validated in the PREDIMED study [13]. Participants in 238 

the L-MDA group had a cutoff of ≤7 points and those in the H-MDAgroup ≥10 points, as previously 239 

proposed [15]. The set of metabolites that discriminated between H-MDA and LMDA suggested the 240 

metabolic modulation of the MedDiet. These metabolites are involved in multiple molecular 241 

mechanisms and metabolic pathways, which together provide a holistic view of variations in the urine 242 

metabolome due to the effect of follow this dietary pattern. Some of these metabolites have previously 243 

been proposed as putative biomarkers of single food intake and also related to foods included in 244 

MedDiet, as well as up- and down-regulated endogenous metabolites. We found that the higher 245 

excretion of proline betaine and scyllo-inositol in H-MDA correlated significantly with the intake of 246 

citrus fruits (r=0.36 and r=0.35; Pb.001, respectively), which is consistent with previous studies that 247 

have proposed them as markers of citrus fruit intake [27]. Recently, in our previous work, we also 248 

found positive correlations of proline betaine signals with orange consumption in long-term MedDiet 249 

intervention and low-fat diet groups in a subsample of nondiabetic participants of the PREDIMED 250 

study [8]. In this regard, in the H-MDA group, we also identified other metabolites derived from the 251 

microbial metabolism: 4-hydroxyhippurate, 3-(3-hydroxyphenyl)-3-hydroxypropanoate and 4-252 

hydroxyphenylacetate. These metabolites have been described after interventions with mixed red 253 

wine/grape juice extracts [28], as well as linked to the intake of other polyphenol-rich foods such as 254 

cocoa and almond, among others (http://phenol-explorer.eu/). It is interesting to note that these 255 



microbial metabolites were not found in our previous work evaluating the intervention with MedDiet 256 

[8]. Other metabolites have been related to the intake of meat or fish. Both dimethylamine and 257 

trimethylamine-N-oxide (TMAO), which were higher in the H-MDA group than in the L-MDA, have 258 

been related to the intake of fish and seafood [29,30]. Nevertheless, only TMAO had a significant 259 

correlation with the intake of total fish (r=0.24, Pb.01) in our study sample, and this correlation was 260 

not previously observed in the subset of samples of nondiabetics in the PREDIMED study [8]. In 261 

addition, we identified some compounds related to the histidine pathway: carnosine, anserine and 3-262 

methylhistidine. While 3- methylhistidine and carnosine are proposed as good biomarkers of red meat 263 

intake [31–33], anserine has alternatively been proposed as a marker of white meat (i.e., poultry) [34] 264 

or salmon intake [35]. In our study, subjects in the H-MDA group excreted lower amounts of 3- 265 

methylhistidine and higher amounts of carnosine and anserine than those in the L-MDA group. We 266 

found significant correlations between anserine, with antioxidant properties, and the intake of white 267 

meats (r=0.231, Pb.01) but not with fish (PN.05). In addition, we did not find significant correlations 268 

between methylhistidine or carnosine and foods. Nevertheless, it should be noted that carnosine is a 269 

normal constituent in human urine, which occurs naturally in the skeletal muscle of mammals and 270 

has antioxidant properties and therapeutic potential against numerous diseases [36]. To the best of 271 

our knowledge, there is limited information about which mechanisms could increase these 272 

antioxidants in the organism, but a recent study has shown that dietary vitamin B6 could determine 273 

the carnosine concentration in the skeletal muscle of rats [37]. In this regard, we observed 274 

significantly higher ingested concentrations of vitamin B6 in subjects in the H-MDA group (2.9±0.7 275 

mg/d) than in those in the LMDA group (2.4±0.5 mg/d, Pb.001). Moreover, 3-methylhistidine is a 276 

metabolite of anserine and carnosine in the histidine pathway. 3- Methylhistidine is also found in 277 

urine as anserine and carnosine, and its concentration was inversely correlated with them in our study 278 

(r=−0.32, Pb.05; r=−0.27; Pb.05, respectively). Thus, the contribution of a MedDiet in the modulation 279 

of the histidine pathway could be an interesting field to further explore. Besides the metabolites 280 

related to the intake of foods, we also identified other endogenousmetabolites involved in 281 

energymetabolism. In particular, individuals in the H-MDA group showed lower excretion of 282 



glucose, lactate and succinate than those in the L-MDA group, whose metabolites are related to 283 

pathways affected in diabetic patients and other diseases [38]. This finding is interesting because 284 

although our population included diabetic individuals, their distribution and the use ofmedication 285 

between the H-MDA and L-MDA groups were well balanced (Table 1). This fact suggested therefore 286 

that, in comparison to the L-MDA group, individuals in the H-MDA group could show relatively 287 

better glycemic control. Supporting this notion, several studies have previously found an inverse 288 

association between adherence to a MedDiet and indices of glucose homeostasis in the general 289 

population, including elderly people, and high-risk patients [39]. Previous works comparing 290 

intervention with MedDiet and low-fat diet in nondiabetic PREDIMED participants did not find 291 

changes in these metabolites [8]. After identifying 34 metabolites in the H-MDA pattern, we studied 292 

the prediction of high adherence to MedDiet pattern. To improve the prediction of H-MDA, a model 293 

with a combination of more than one discriminatory metabolite was developed. For this purpose, 294 

population was split into training and validation sets. The model included PAGN, 4-295 

hydroxyphenylacetate and p-cresol. Interestingly and in accordance with this finding, in our previous 296 

study, we also reported associations of PAGN and p-cresol with long-term interventions with 297 

MedDiet [8]. Currently, the use of multimetabolite biomarkers is still limited. In a recent study, 298 

Marklund et al. (2014) combined six serum metabolites to create a dietary biomarker score [19]. This 299 

score was aimed at assessing the compliance with a healthy Nordic diet in a population with metabolic 300 

syndrome (MetS) and subsequently used to analyze the effects of diet on cardiometabolic risk factors 301 

among those individuals with highest compliance to this diet [19]. In our study, the inclusion of 302 

PAGN, 4-hydroxyphenylacetate and p-cresol in the model, as well as the identification of other 303 

metabolites derived from gut microbiota in the previous set of discriminant metabolites, highlights 304 

the role of a MedDiet in the modulation of gut microbiota. Supporting this notion, De Filippis et al. 305 

(2015) demonstrated the relationship between the level of MedDiet adherence, gut microbiota and 306 

microbial metabolites [18]. Later, Haro et al. (2016) demonstrated that a long-term intervention with 307 

a MedDiet partially restores the alteration in the gut microbiota composition in individuals with MetS 308 

[40]. Interestingly, by using the same PREDIMED MedDiet score, authors found a weak but 309 



significant correlation between this score and the abundance of Faecalibacterium prausnitzii and 310 

Bifidobacterium adolescentis, which were observed to be decreased in MetS patients compared with 311 

non-MetS patients [40]. More recently, Gutierrez-Díaz et al. (2017) found increased fecal 312 

concentrations of benzoic and 3- hydroxyphenylacetic acids in individuals with higher adherence to 313 

MedDiet [14] and Vazquez-Fresno et al. (2016) found that 4- hydroxyphenylacetate significantly 314 

increased in urine in a “healthier” cluster of participants compared to “obese and diabetic” cluster 315 

after intervention with wine polyphenol intake, exhibiting a distinct postintervention metabolic 316 

response between groups possibly associated with differences/alteration in gut microbiota 317 

metabolism [41]. Interestingly and in accordance with our results, a hydroxyphenylacetic acid 318 

metabolite entered in our multimetabolite model, thus supporting the notion that H-MDA modulates 319 

gut microbiota metabolism. Nowadays, there exists an increasing interest in the study of the 320 

relationship between MedDiet adherence and foodderived alterations of the gut microbiota in order 321 

to use these data in the prevention of food-related diseases [42]. The three metabolites included in 322 

our multimetabolite model may arise from several food sources. PAGN is formed by the conjugation 323 

of glutamine with phenylacetate, which can arise from endogenous β- oxidation of phenyl-containing 324 

fatty acids or phenylalanine metabolism [43], or be obtained through the exogenous intake contained 325 

in plant-food sources [44]. In line with our data, O′Sullivan et al. (2011) found a positive association 326 

between the urinary concentration of PAGN and vegetable intake, suggesting that PAGN in urine 327 

may be a useful biomarker of vegetable intake [11]. p-Cresol is a product of microbial tyrosine 328 

breakdown via 4-hydroxyphenylacetate [45]. Moreover, 4-hydroxyphenylacetate has been found to 329 

be related to the intake of vegetarian diets [31] and polyphenol-rich foods, including red wine [46] 330 

and dark chocolate [47]. A further correlation analysis showed that although we found weak or 331 

nonsignificant correlations between individual metabolites and some food groups, the combined 332 

multimetabolite model was significantly associated with the intake of vegetables, fruits, legumes, fish 333 

and total fiber (Supplementary Table 3). The main limitation of this cross-sectional study is that our 334 

results may not be generalized or extrapolated to other populations, mainly because of the age of our 335 

population as well as their high risk of CVD. However, the validity of the PREDIMEDMedDiet score 336 



in distinguishing between individuals at high or low MedDiet adherence has been ascertained within 337 

the prominent PREDIMED study [15].Moreover, the current complementary use of this score with 338 

an NMR-based untargeted metabolomics approach deserves mention, first, because dietary scores are 339 

still themain tool to assess dietary patterns adherence and, second, because this robust analytical 340 

platformallows us to identify differences in urinary metabolome at micro- to millimolar levels [48]. 341 

In conclusion, the model composed of microbial metabolites was the biomarker that defined high 342 

adherence to a Mediterranean dietary pattern. This fact highlights the role of microbiota in the study 343 

of the biomarkers associated to the MedDiet pattern. The effect of the MedDiet involves several 344 

interconnected molecular mechanisms through complex regulatory networks, which are reflected in 345 

the microbiota metabolism as the metabolic modulation of H-MDA. Future studies in nutritional 346 

research should have to include the measurement of these dietary biomarkers in order not only to 347 

improve the assessment of dietary intake but also to understand in-depth the molecular mechanisms 348 

involved in the effects associated with food intake. The proposed biomarker may assess and aid 349 

nutritional epidemiology in future associations between adherence to the MedDiet and the prevention 350 
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