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ABSTRACT: 43 
 44 

The systematic exploration of the reactivity of [Mn(hfacac)2] with R-salicyloximes (R-saloxH2: R = H, 45 

Me, Et) yielded a family of clusters with nuclearities ranging from Mn4 to Mn12. The compounds with 46 

formula [Mn6(O)2(salox)6- (CF3COO)2(EtOH)4] (1) and [Mn12(salox)12(O)4(N3)4(H2O)2- 47 

(MeOH)6] (4) show two or four linked {Mn(μ3-O)(salox)3}+ triangular subunits. Magnetic 48 

measurements revealed spin ground states of S = 4 for 1 and S = 8 for 4, as well as singlemolecule 49 

magnet responses and magnetic hysteresis above 2 K. The cubic [Mn4(Mesalox)4(MesaloxH)4] (2), the 50 

hexanuclear [Mn6(Etsalox)6(O)2(MeO)4(MeOH)2] (3) and the octanuclear 51 

[Mn8(Mesalox)6(O)2(N3)6(MeOH)8] (5) are polymorphs of previously reported systems. Small 52 

structural changes allows an S = 11 ground state for 3. 53 

 54 

 55 

 56 

57 



INTRODUCTION 58 

 59 

The discovery of the single-molecule magnet (SMM) response of the hexanuclear complex 60 

[Mn6(O)2(salox)6(MeCOO)2] (saloxH2 = salicylaldoxime, Scheme 1) and its benzoate analogue [1] 61 

was the starting point for the systematic study of a large family of [Mn6] SMMs exhibiting a wide 62 

variety of magnetic responses and spin ground states. These systems are characterized by the 63 

hexanuclear core consisting of two {Mn3(O)(oximate)3}+ triangles linked by two η1:η1:η3:μ3 oximate 64 

bridges and usually capped by two monovalent anions on the opposite triangular faces. A large number 65 

of related hexanuclear clusters have been synthesized by varying the R substituent on the oximate group 66 

(R = H,[2] Me,[2c,2g,2j,3] Et,[2b–d,2f,2g,2j,3a,4] Ph,[2j,5] NH2,[6] NMe2,[7] NEt2 [7]). Charge 67 

balance in these hexanuclear clusters is achieved usually with coordinated carboxylate anions but in a 68 

few cases with other anionic ligands,[2h,2j,3a,6c,6e] cationic clusters being exceptional.[6d] Brechin 69 

and co-workers modulated the value of the spin ground state of these hexanuclear cores, reaching the 70 

largest possible value of S = 12. On the basis of the experimental data and DFT calculations, the 71 

structural features that control the coupling inside the triangular units were elucidated, and it was 72 

concluded that the sign of the interaction is dependent on the Mn–N–O–Mn torsion angles, placing the 73 

border between ferromagnetic and antiferromagnetic coupling at around 31°.[2c,4c] 74 

Moreover, the ability of R-saloxH2, R-saloxH– and R-salox2– to adopt different coordination modes 75 

and their combination with additional donors such as oxo, hydroxo or methoxo have generated a variety 76 

of interesting magnetic systems (often with SMM responses), for example, cubanes,[8] Mn5 77 

metallacrowns,[9] bicapped[ 10] or fused triangles,[11] Mn6 defective cubane[3a] or other 78 

topologies,[5,12] Mn7,[13] Mn8,[14] Mn9,[15] Mn12 [16] or even impressive Mn32 rings.[17] 79 

The challenge to enlarge the known topologies and nuclearities derived from manganese and R-saloxH2 80 

ligands lies in the design of new synthetic conditions. The hexafluoroacetylacetonate (hfacac) ligand 81 

shows an extremely low affinity for manganese cations in high oxidation states and thus, after the 82 

oxidation of [Mn(hfacac)2]/R-saloxH2 mixtures, the intentional lack of coordinating anions could be an 83 

approach to stabilizing neutral systems other than the well-known [Mn6] clusters. 84 

Following from this, we have systematically explored the [Mn(hfacac)2]/R-saloxH2 system and its 85 

response to the presence of sodium azide. In this work we report the clusters 86 

[Mn6(O)2(salox)6(CF3COO)2(EtOH)4]·Et2O (1·Et2O), [Mn4-(Mesalox)4(MesaloxH)4] (2), 87 

[Mn6(Etsalox)6(O)2(MeO)4(MeOH)2]· MeOH (3·MeOH), 88 

[Mn12(salox)12(O)4(N3)4(H2O)2(MeOH)6]· 4MeOH·2H2O (4·4MeOH·2H2O) and [Mn8(Mesalox)6-89 

(O)2(N3)6(MeOH)8]·4MeOH (5·4MeOH). Complex 1 is a new member of the [Mn6] family of clusters 90 

and 4 provides a unique Mn12 topology with SMM response (previously reported in a 91 

communication).[16b] Noteworthy, compounds 2, 3 and 5 are polymorphs of the previously reported 92 

complexes 2a·3.5MeCN, 3a·MeOH and 5a·10MeOH with different hydrogen-bonding patterns or 93 

solvent content, resulting in some cases in drastic differences in their magnetic response.94 



RESULTS AND DISCUSSION 95 

 96 

Structural Description 97 

The charge balance and manganese oxidation states of the metallic atoms of complexes 1–5 were 98 

determined from their coordination sphere parameters and the results of bond valence sum (BVS) 99 

calculations (Table 1). 100 

 101 

[Mn6(O)2(salox)6(CF3COO)2(EtOH)4]·Et2O (1·Et2O) 102 

The centrosymmetric structure of 1 consists of two linked μ3-O-centred triangles (Figure 1). One 103 

oximate bridging ligand is placed at each edge of the triangle, two of them in the η1:η1:η1:μ2 mode and 104 

the third one in the η2:η1:η1:μ3 mode, linking the axial position of the neighbouring triangle. One 105 

synsyn trifluoroacetate ligand, coordinated to each triangular face, and two ethanol molecules 106 

coordinated to Mn(3) complete the coordination environment of the triangular units. The bond 107 

parameters of 1 (Table 2) are similar to those of other members of the [Mn6] series and therefore only 108 

the relevant parameters will be discussed. The torsion angles Mn–N–O–Mn in the triangular units are 109 

4.8(3), 14.2(3) and 21.4(2)°, the larger torsion corresponding to the N(1)–O(3) oxime involved in the 110 

η2:η1:η1:μ3 linkage. The inter-triangle Mn(1a)–O(3)–N(1)–Mn(2) torsion angle is 91.1(2)°. 111 

The two ethanol molecules coordinated to Mn(3) allow the formation of intra- and intermolecular 112 

hydrogen bonds involving the ethanol molecules and the O atoms of the salox2– ligands: O(11) interacts 113 

with O(3a) with an O···O distance of 2.920(3) Å, whereas O(10) interacts with the neighbouring [Mn6] 114 

molecule by means of O(10)···O(6) interactions [O···O distance 2.809(3) Å]. These latter hydrogen 115 

bonds promote a monodimensional arrangement of hexanuclear complexes linked by double hydrogen 116 

bonds (Figure 2).  117 

 118 

[Mn4(Mesalox)4(MesaloxH)4] (2) 119 

The molecular structure of the tetranuclear complex 2 is shown in Figure 3 and selected bond parameters 120 

are reported in Table 3. The structure of this compound is a polymorph of the 2a·3.5MeCN complex 121 

reported by Brechin and co-workers[8a,8c] and is closely related to the chloroform- or methanol-122 

solvated clusters bearing the salicylaldoximato ligand.[8b,8d] The structure consists of four MnIII 123 

cations that form a pseudo-cubane cage in which each pentagonal face is defined by one Mn–N–O–Mn 124 

and one Mn–O–Mn linkage. Each MnIII cation links one MesaloxH–and one Mesalox2– ligand and 125 

exhibits a hexacoordinated environment. The bond parameters inside the cage are very similar to those 126 

reported for the complex 2a and will not be further discussed. 127 

 128 

 129 

 130 

 131 



[Mn6(Etsalox)6(O)2(MeO)4(MeOH)2]·MeOH (3·MeOH) 132 

The mixed-valent MnIII 4MnIV 2 hexanuclear complex 3 is also a polymorph of the 3a·MeOH complex 133 

reported by Brechin and co-workers.[3a] A plot of the structure is shown in Figure 4 and some selected 134 

bond parameters are reported in Table 4. The complex can be described as two μ3-O(1)-centred MnIII 135 

2MnIV triangles linked exclusively through the trivalent metallic atoms by four methoxo bridges. Each 136 

triangular subunit contains three η1:η1:η1:μ2 Etsalox2– ligands, two of them linked to the tetravalent 137 

Mn(1) atom and the third one to Mn(3). The Mn(2) cation completes its MnO6 coordination sphere with 138 

six O atoms from bridging oxime, methoxo and oxo ligands. The methanol solvate molecule is linked by 139 

means of two hydrogen bonds to the coordinated O atoms of one methanol ligand and one salicyl group 140 

with O(10)···O(1w) and O(1w)···O(6) distances of 2.550(5) and 2.823(5) Å, respectively. 141 

Intermolecular hydrogen bonds were not found. The main difference between 3 and the 3a·MeOH 142 

polymorph reported by Brechin and co-workers lies in the hydrogen bonds promoted by the solvate 143 

methanol molecules, which in that case involves only O-phenolic atoms. As will be discussed in the 144 

magnetic section, these small structural changes modify drastically its magnetic response. 145 

 146 

[Mn12(salox)12(O)4(N3)4(H2O)2(MeOH)6]·4MeOH·2H2O (4) 147 

A partially labelled plot of the centrosymmetric structure of 4 is shown in Figure 5 and the main bond 148 

parameters are listed in Table 5. The structure contains 12 MnIII cations as a result of the linkage of four 149 

{Mn3(μ3-O)(salox)3}+ subunits giving the [MnIII 12(μ3-O)4(μ-N3)4(μ-OR)4]20+ core. Eight salox2– 150 

ligands show the η1:η1:η1:μ2 coordination mode linking two MnIII ions in the triangles whereas four 151 

salox2– ligands in the η2:η1:η1:μ3 coordination mode form inter-triangle bridges. Four end-on azido 152 

bridges complete the linkage between the central Mn6 unit and the external triangles. The inner triangles 153 

[Mn(1,2,3) and symmetry related, bridged by the oximato oxygen atoms O7 and O7′] give a fragment 154 

fully comparable to the classical [Mn6] core and thus the structure can be described as a [Mn6] cluster 155 

bicapped by two [Mn3] triangles. 156 

The Mn–N–Mn bond angles involving the azido bridges, that is, Mn(1)–N(4)–Mn(4) and Mn(3)–N(7)–157 

Mn(5), are relatively large with values of 131.87(8) and 126.76(8)°, respectively. The Mn– N–O–Mn 158 

torsion angles are 13.4(2), 16.9(2) and 33.2(2)° for the Mn(1,2,3) inner triangles and 12.0(2), 23.1(2) 159 

and 38.5(1)° for the Mn(4,5,6) external triangles. The Jahn–Teller elongation axes of the MnIII ions are 160 

roughly perpendicular to the main planes of the triangles in all cases. The azido bridges promote a larger 161 

intermetallic distance than the oximato bridge and as consequence the mean planes defined by the 162 

Mn(1,2,3) and Mn(4,5,6) atoms are tilted at 41.38(1)°. 163 

The coordinated water molecules, methanol and the crystallisation solvent molecules and O salox atoms 164 

promote intra- and intermolecular hydrogen bonds. Intramolecular hydrogen bonds link the methanol 165 

molecule coordinated to Mn(6) with one azido ligand [O(17)···N(7) distance 2.804 Å], whereas the 166 

solvate methanol molecules form several hydrogen bonds with the methanol molecules coordinated to 167 

Mn(5), Mn(6) and the μ3-O(9) atom.  168 



The most relevant intermolecular interactions are the double hydrogen bonds established between the 169 

water molecule coordinated to Mn(6) and the O-phenoxo atom of the neighbouring [Mn12] cluster [also 170 

coordinated to the Mn(6′) atom] with an O(14)···O(18′) distance of 2.764(2) Å, which leads to a chain 171 

of [Mn12] clusters (Figure 6). 172 

 173 

[Mn8(Mesalox)6(O)2(N3)6(MeOH)8]·4MeOH (5·4MeOH) 174 

The octanuclear mixed-valent MnII 2MnIII 6 complex 5 is a polymorph of the 5a·10MeOH complex 175 

reported by Brechin and coworkers.[14] A plot of the asymmetric unit is shown in Figure 7 and the main 176 

bond parameters are summarized in Table 6. The system consists of a [Mn6] cluster capped by two 177 

{MnII(MeOH)3} fragments that are linked to the corresponding triangles by means of three end-on 178 

azido bridges with large MnII–N–MnIII bond angles in the range 117.0–119.4°. The Mn–N–O–Mn 179 

torsion angles show values in the range 35.3–42.3°. 180 

The μ3-O atom is located exactly in the Mn3 main plane and consequently the Mn–O(4)–Mn bond 181 

angles are very close to 120°. The Mn(2) cation shows a square-pyramidal environment, weakly 182 

interacting with the phenoxo O(9′) atom of the neighbouring triangle. The remaining bond parameters 183 

and general shape are close to those of the previously reported analogous complex, the main differences 184 

lying in the inter-cluster interactions mediated by the methanol molecules in 5. The interaction between 185 

N(3) of one azide ligand and O(2) from a coordinated molecule of methanol in a neighbouring molecule 186 

leads to 2D chains of clusters (Figure 7).  187 

 188 

Comments on the Syntheses 189 

Analysis of the structural data of the neutral [Mn6]2+ clusters reported until now shows that monovalent 190 

anions acting as monodentate ligands (carboxylates and halides) or bidentate ligands (typically syn-syn 191 

carboxylates) help to stabilize the neutral clusters through links to opposite triangular faces occupying 192 

the axial coordination sites. The target of this work was to try to obtain related new topologies by 193 

suppressing the axialcoordinated anions, that is, by the synthesis of clusters without participation of the 194 

anions of the starting MnIIX2 salts. The hexafluoroacetylacetonate ligand is a well-known ligand in 195 

MnII chemistry whereas its coordination to MnIII,IV cations is strongly unfavoured. Therefore, starting 196 

from [Mn(hfacac)2] and after the oxidation of the manganese atoms, we can dispose of a reaction 197 

medium without anions other than the R-saloxH– or Rsalox2– ligands and eventually the added azide 198 

anion or oxo, hydroxo or alkoxo ligands generated by the basic medium. The reactions of R-saloxH2 199 

and [Mn(hfacac)2] effectively generated the neutral complexes 2 (containing only anionic MesaloxH–200 

and Mesalox2–) and 3 (containing only anionic Etsalox2–, methoxo and oxo ligands). Under the same 201 

conditions we also obtained complex 1, which shows the typical [Mn6] core capped by trifluoroacetate 202 

anions. The formation of the trifluoroacetate anions is not surprising because it is well known that retro-203 

 Claisen condensation reactions of -diketones produce the ketone and the corresponding carboxylate in 204 



basic medium.[18] Thus, the formation in good yield of pure compound 1 indicates extensive and rapid 205 

breaking of the hfacac–reagent. 206 

In the light of these results, our strategy was to combine [Mn(hfacac)2] and R-saloxH2 with sodium 207 

azide in the reaction medium. If the coordination of hfacac– is excluded, the potentially bridging azido 208 

ligand becomes the only available anion in solution and the possibility of obtaining azido-linked [Mn6] 209 

cages or other topologies may be favoured. This strategy yielded the [Mn12] complex 4 consisting of 210 

four oximate/azidolinked triangular subunits and the octanuclear system 5, which can be envisaged as a 211 

[Mn6] cage bicapped by additional MnII ions involving in the two cases end-on azido bridges. 212 

The apparently simple [Mn(hfacac)2]/R-saloxH2 and [Mn(hfacac)2]/R-saloxH2/NaN3 mixtures result in 213 

a complicated set of interlocked reactions, summarized in Scheme 2, which are more complicated than 214 

the conventional “one-pot” reaction that usually only yields one stable compound. The reaction of 215 

saloxH2 with [Mn(hfacac)2] yields only compound 1 containing trifluoroacetate anions. The same 216 

reaction in the presence of sodium azide gives the dodecanuclear complex 4 but if the solution 217 

containing crystals of 4 is left undisturbed for some weeks, the crystals of the [Mn12] complex slowly 218 

redissolve and big crystals of complex 1 can be collected. In contrast, the analogous [Mn(hfacac)2]/R-219 

saloxH2 (R = Me, Et) reactions produce complexes 2 and 3 without the presence of trifluoroacetate. 220 

More surprising was the reaction of MesaloxH2 with [Mn(hfacac)2] in the presence of sodium azide, 221 

which initially yields pure tetranuclear complex 2 (without coordinated azide) as well-formed crystals in 222 

1–2 days. If the solution is left undisturbed to crystallize for some additional days, the crystals of 2 223 

redissolve and then the pure octanuclear complex 5 (containing azido bridges) starts to crystallize 224 

(Scheme 2). 225 

It should be emphasized that complexes 2, 3·MeOH and 5·4MeOH are pseudo-polymorphs of the 226 

previously reported clusters 2a·3.5MeCN, 3a·MeOH and 5a·10MeOH, respectively. Although the 227 

structural parameters of the cluster cores are very similar, they crystallize in different space groups and 228 

the hydrogen bonds promoted by the solvents are also logically different. As is described below, the 229 

magnetic responses of 2 and 5 are similar to those reported for their polymorphs whereas for compound 230 

3·MeOH the magnetic response is drastically different. 231 

 232 

Magnetic Measurements and Modelling 233 

The room-  temperature MT value for compound 1 is 15.73 cm3 mol–1 K, lower than the expected 234 

value for six S = 2 centres (18.0 cm3 mol–1 K).  On cooling, the MT product gradually decreases down 235 

to 15 K (5.89 cm3 mol–1 K). Below this temperature  the MT product abruptly decreases, tending to 236 

zero  at low temperatures (Figure 8). The M plot exhibits a maximum susceptibility at 4 K (Figure 8, 237 

inset). The susceptibility plot clearly shows two kinds of interactions: in the 300–15 K range, the 238 

 observed decay of the MT product corresponds to intracluster coupling, whereas the low-temperature 239 

region reflects strong intercluster interactions mediated by the double hydrogen bonds involving Mn(3) 240 

(Figure 2). Both isolated clusters and systems in which the [Mn6] units are connected by hydrogen 241 



bonds involving coordinated and crystallization solvent molecules exhibit a minimum at around 20–25 242 

K or small deca  ys of MT below this temperature. In contrast, compound 1 provides an unusual case of 243 

strong 1D intercluster interactions that lead to a collapse of the local [Mn6] S = 4 spins for the whole 244 

solid. Thus, the experimental susceptibility data for the two kinds of interactions have been analysed 245 

separately. 246 

The experimental data for the intracluster interactions were fitted in the 25–300 K range by using the 247 

PHI program[19] on the basis of the coupling pattern shown in Scheme 3 (A). Previous fits taking into 248 

account all the coupling constants applying the Hamiltonian in Equation (1) 249 

 250 

H = –J1(S1S4) – J2(S1S3 + S4S6) – J3(S2S3 + S5S6) – J4(S1S2 + S4S5) 251 

– J5(S3S4 + S1S6)  (1) 252 

 253 

show a negligible value for J5 and similar values of –11.7 and –13.0 cm–1 for J3 and J4. In the light of 254 

this result we decided to fit the system by using the simplified 3-J Hamiltonian in Equation (2) 255 

 256 

H = –J1(S1S4) – J2(S1S3 + S4S6) – J3(S2S3 + S5S6 + S1S2 + S4S5)  (2) 257 

 258 

in which we have assumed that J5 = 0 in Equation (1) and that there are only two coupling constants 259 

inside the triangles (Scheme 3, B). The best-fit parameters were J1 = +14.8 cm–1, J2 = –5.5 cm–1, J3 = 260 

J4 = –13.0 cm–1 and g = 2.063. The antiferromagnetic (AF) interactions inside the triangular units 261 

(negative values for J2, J3 and J4) are in good agreement with the Mn–O–N–Mn torsion angles, clearly 262 

below the ferro/anti-ferromagnetic border of 31° and thus the spin ground state for complex 1 is the 263 

conventional S = 4. 264 

Magnetization experiments performed in an external field up to 5 T show a sigmoid shape of the 265 

magnetization plot and an unsaturated value equivalent to only six electrons under high field (Figure 9). 266 

The first derivative of the magnetization plot shows a maximum at around 1.1 T and therefore the 267 

intercluster interaction can be evaluated to be approximately 1 cm–1.  268 

As was expected from the strong intercluster interactions, ac susceptibility measurements did not show 269 

complete out-ofphase  peaks and only very weak tails of the M′′ signals were observable. 270 

The room-t  emperature MT value for compound 2 is 12.17 cm3 mol–1 K, close to the expected value 271 

of 12.0 cm3 mol–1 K for four non-interacting S = 2 spins (Figure 10). On cooling,  the value of MT 272 

increases monotonically up to a maximum of 26.8 cm3 mol–1 K at 4 K, which suggests ferromagnetic 273 

interacttions and a spin ground state of S = 8. The experimental data were fitted by applying the 274 

Hamiltonian in Equation (3) derived from the coupling pattern in Scheme 3 (C) assuming J1 = J2 to 275 

compare with the fit of its pseudo-polymorph 2a·3.5MeCN. 276 

 277 

H = –J1(S1S2 + S2S4 + S4S3 + S3S1 + S1S4 + S2S3)  (3) 278 



The best fit of the experimental data gives J = + 0.8 cm–1 and g = 1.96, in agreement with the values 279 

reported for compound 2a and its Etsalox2– analogue.[8a] The magnetization data and the tails of the 280 

out-of phase signal found in the ac measurements are also very similar to those of compound 281 

2·3.5MeCN and will not further be discussed. 282 

The room-  temperature MT value for compound 3 is 16.02 cm3 mol–1 K, slightly larger than the 283 

expected value for four S = 2 and two S = 3/2 centres (15.75 cm3 mol–1 K; Figure 10). On cooling, 284 

  MT increases continuously up to a maximum value of 71.07 cm3 mol–1 K at 2 K. The continuous 285 

increase  of MT and its value at low temperature suggest a fully ferromagnetic coupling with a spin 286 

ground state of S = 11. The coupling pattern of interactions for 3 shows nine super-exchange pathways 287 

mediated by different kinds of bridges, which implies five J coupling constants. The fit of the 288 

experimental data in the 300–10 K range applying the Hamiltonian in Equation (4) 289 

 290 

H = –J1(S5S6) – J2(S3S6 + S4S5) – J3(S3S5 + S4S6) – J4(S1S5 + S2S6) 291 

– J5(S1S3 + S2S4)  (4) 292 

 293 

fast saturation of the magnetization with a final quasi-saturated value equivalent to 20.6 electrons under 294 

the maximum external field, which is very close to the proposed S = 11. The magnetization plot for S = 295 

11 gives an excellent fit for the parameters D = +0.24 cm–1 and g = 2.00 (Figure 10, inset). The easy-296 

axes of the MnIII ions are far from parallel and are directed towards the μ3-OMe donors. This 297 

unfavourable arrangement of the easy-axesand the positive sign of D preclude an SMM response and 298 

effectively AC experiments do not show any out-of-phase signals. 299 

Our results indicate a higher ground state than that obtained for the polymorph 3a previously reported by 300 

Brechin and coworkers.  In that case the MT plot increased continuously from the lower value of 14.4 301 

cm3 mol–1 K up to a maximum value of 23.49 cm3 mol–1 K with a proposed spin ground state of S = 6. 302 

The modelling of 3a was unsuccessful. The reason for the different magnetic responses cannot be 303 

attributed to the Mn–O–Mn bond angles, which are identical within the margin of error of ±1°. In 304 

contrast, the subtle differences induced by the hydrogen bonds become important for the most easily 305 

deformable Mn–N–O–Mn torsion angles, the MnIV(1)–O(3)–N(1)–MnIII(3) torsion being the most 306 

significant, increasing from 34.3° in the case of 3a to 47.0(1)° for 3. 307 

The magnetic response of compound 4 was discussed in depth in the previous communication[16b] and 308 

thus only a brief description will be given here. The room-  temperature MT value for compound 4 is 309 

31.8 cm3 K mol–1, slightly lower than the expected value for 12 non-interacting S = 2 spins (36.0 cm3 310 

K mol–1; Figure 10). On decreasing the temperature  the value of MT decreases continuously with a 311 

higher rate of decay below 15 K, probably due to intermolecular hydrogen bonds, with a value of 6.8 312 

cm3 K mol–1 at low temperature. The large number of interactions and the size of 4 exclude a 313 

conventional fit of the experimental data. However, an analysis of its structural parameters permits a 314 

good estimation of its magnetic response. The Mn–N–O–Mn torsion angles in the triangular subunits are 315 



quite similar with values of 13.4, 16.9 and 33.2° for the Mn(1,2,3) triangles and 12.0, 23.1 and 38.5° for 316 

the Mn(4,5,6) triangles. According to the well-stablished rules for these kinds of systems,[2c,4c] a local 317 

S = 2 should be expected for all the triangular subunits. For a centrosymmetric compound such as 4, the 318 

only possibilities for describing the inter-triangle interactions are AF/AF/AF, AF/FM/AF, FM/AF/FM or 319 

FM/FM/FM. All combinations containing at least one AF interaction lead to an S = 0 ground state, 320 

which is incompatible with the experimental data, whereas ferromagnetic interactions between the 321 

triangles give an S = 8 spin ground state as the only possibility. 322 

Magnetization experiments showed a quasi-saturated value of around 12 electrons under an external 323 

field of 5 T, which is compatible with an anisotropic S = 8 ground state. The fit of the reduced 324 

magnetization did not give consistent results due to the effect of the intermolecular hydrogen bonds and 325 

the low-lying excited states. However, the large gaps between the magnetization plots unambiguously 326 

suggest a relatively large anisotropic ground state. The ac measurements under an oscillating field of 4 327 

G were performed in the frequency range 1300–50 Hz (Figure 11), and out-of-phase frequency-328 

dependent signal were found with maxima in the 4.09–3.47 K range. A fit to was satisfactory for the 329 

values of J1 = +4.2 cm–1, J2 = +4.8 cm–1, J3 = +2.0 cm–1, J4 = +5.8 cm–1, J5 = +3.2 cm–1 and g = 330 

1.97. Equally satisfactory was the fit assuming only three J coupling constants, one for the double 331 

methoxo bridges between MnIII atoms (J1 = J2), one for the oxo-methoxo bridges between the MnIII 332 

atoms (J3) and finally a common J4 = J5 for the four interactions between MnIII/MnIV centres. Under 333 

these conditions the best-fit values of J1 = J2 = +4.6 cm–1, J3 = +2.0 cm–1, J4 = J5 = +4.4 cm–1 and g 334 

= 1.98 were obtained. The coupling constants calculated for a ferromagnetic system with such a large 335 

number of interactions is poorly reliable but the magnitudes and signs of the constants indicate a 336 

moderately ferromagnetic (FM) system supporting the maximum S = 11 spin ground state. This 337 

assumption was also confirmed by the magnetization experiment performed up to 5 T, which showed 338 

the characteristic the Arrhenius equation gives an Ueff value of 51 cm–1 and a D value of 0.80 cm–1 339 

assuming S = 8. The magnetization hysteresis cycle measured with a coercive field of around 1000 G at 340 

2 K confirmed SMM behaviour with a blocking temperature T greater than 2 K (Figure 11, inset). 341 

The room-  temperature MT value for compound 5 is 20.38 cm3 mol–1 K, lower than the expected 342 

value for six S = 2 and two S = 5/2 centres (26.75 cm3 mol–1 K; Figure 10). On cooling,  the MT plot 343 

decreases to a minimum value of 14.64 cm3 mol–1 K at 25 K and then increases up to a maximum value 344 

of 16.21 cm3 mol–1 K at 7 K. This shape is characteristic of ferrimagnetic interactions resulting from 345 

ferromagnetic interactions inside the MnIII 6 core with the three Mn–N–O–Mn torsion angles clearly 346 

larger than 31° (local spin for the Mn6 unit S = 12) and the anti-ferromagnetic coupling with the two 347 

MnII cations mediated by the MnII–N–MnIII bond angles,[20] resulting in the ground state S = 12 – 5/2 348 

– 5/2 = 7. The shape and values of  the MT plot and the magnetization data are in agreement with its 349 

polymorph 5a and will not be discussed further. 350 

351 



CONCLUSIONS 352 

 353 

The reactions of [Mn(hfacac)2] with R-saloxH2 ligands (R = H, Me, Et) have yielded five clusters 354 

MnIII6 (1), MnIII4 (2), MnIII4MnIV2(3), MnIII12 (4) and MnII2MnIII6 (5). Some of them are new 355 

compounds, such as 1 and 4, whereas 2, 3 and 5 are polymorphs of previously reported systems. As 356 

expected, the hfacac ligands do not participate in the final complexes with high-valent manganese 357 

atoms, but they can play a role after solvolysis, as in complex 1, which contains CF3COO– anions. 358 

Dodecanuclear complex 4 is an example of this synthetic strategy, exhibiting a SMM response and a 359 

large energy barrier of magnetization. Complex 3 is a good example of how small structural changes can 360 

modify the spin ground state, in this case reaching the maximum value S = 11. 361 

 362 

 363 

 364 

365 



EXPERIMENTAL SECTION 366 

 367 

Physical Measurements: Magnetic susceptibility measurements were carried out on polycrystalline 368 

samples with a MPMS5 Quantum Design susceptometer in the range 30–300 K at a magnetic field of 369 

0.3 T and in the range 30–2 K at a field of 0.03 T to avoid saturation effects at low temperatures. 370 

Diamagnetic corrections were estimated from Pascal Tables. IR spectra (4000–400 cm–1) were recorded 371 

in KBr pellets with a Bruker IFS-125 FT-IR spectrophotometer. 372 

Syntheses: [Mn(hfacac)2] and saloxH2 ligand were purchased from Sigma–Aldrich Inc. and used 373 

without further purification. MesaloxH2 and EtsaloxH2 were prepared following previously reported 374 

methods.[21] 375 

Synthesis of [Mn6(O)2(salox)6(CF3COO)2(EtOH)4]·Et2O (1·Et2O), [Mn4(Mesalox)4(MesaloxH)4] 376 

(2), [Mn6(Etsalox)6(O)2(MeO)4-(MeOH)2]·MeOH (3·MeOH), [Mn12(salox)12(O)4(N3)4(H2O)2-377 

(MeOH)6]·4MeOH·2H2O (4·4MeOH·2H2O) and [Mn8(Mesalox)6-(O)2(N3)6(MeOH)8]·4MeOH 378 

(5·4MeOH): Specific synthetic conditions are summarized in Table 7. The five complexes were 379 

synthesized following very similar experimental procedures. The R-salicyloxime ligand (1 mmol) and 380 

the appropriate base (1 mmol) were added to a solution of [Mn(hfacac)2] (0.526 g, 1 mmol) in the 381 

corresponding solvent (20 mL). For 4 and 5, sodium azide (0.63 g, 1 mmol) was also added. The 382 

mixtures were stirred for 30 min in the open air and the resulting dark-green solutions were filtered. 383 

Well-formed dark-green crystals were obtained in yields of around 40 % after a few days of layering the 384 

final solutions with diethyl ether. These crystals were employed for the instrumental measurements. As 385 

mentioned above, if after the crystallization of 2 and 4 their solutions were left undisturbed, they 386 

evolved to compounds 5 and 1, respectively. 387 

C54H54F6Mn6N6O22 (1): calcd. C 40.98, H 3.44, N 5.31; found C 39.4, H 3.6, N 5.1. 388 

C64H60Mn4N8O16 (2): calcd. C 54.25, H 4.27, N 7.91; found C 53.8, H 4.3, N 7.8. 389 

C61H78Mn6N6O21 (3): calcd. C 46.94, H 5.04, N 5.38; found C 47.3, H 4.9, N 5.2. 390 

C94H108Mn12N24O42 (4): calcd. C 38.86, H 3.75, N 11.57; found C 39.3, H 3.64, N 11.2. 391 

C60H90Mn8N24O26 (5): calcd. C 35.97, H 4.52, N 16.78; found C 36.4, H 4.2, N 17.2. 392 

Intense IR bands (KBr): 1: ν˜ = 1654, 1599, 1584, 1542, 1441, 1327, 1201, 1149, 1028, 918, 681, 466 393 

cm–1; 2: ν˜ = 1597, 1435, 1310, 1290, 972, 783, 667, 645, 682, 616 cm–1; 3: ν˜ = 1593, 1565, 1435, 394 

1305, 1139, 1095, 1004, 942, 754, 680, 542 cm–1; 4: ν˜ = 2056, 1598, 1539, 1439, 1286, 1203, 1029, 395 

916, 753, 668 cm–1; 1: ν˜ = 2069, 1596, 1436, 1304, 1233, 1042, 961, 861, 683 cm–1. 396 

Single-Crystal X-ray Structure Analyses: Data for compounds 2, 4 and 5 were collected with a Bruker 397 

APEX II CCD diffractometer on Advanced Light Source beam line 11.3.1 at Lawrence Berkeley 398 

National Laboratory using a silicon 111 monochromator (T = 100 K, λ = 0.7749 Å). The structures were 399 

solved by direct methods and the refinement on F2 and all further calculations were carried out by using 400 

the SHELXTL suite.[22] All non-hydrogens were refined anisotropically. Hydrogen atoms were refined 401 



by placing them geometrically on their carrier atom and using a riding model except in the cases of 4 402 

and 5. In 4 the hydrogen atoms of the water molecules and of the hydroxy groups of the methanol 403 

molecules, both coordinated and in the lattice, were found in a difference Fourier map and refined freely 404 

with their thermal parameter 1.5 times that of their carrier oxygen and a distance restraint. In 5 the 405 

hydrogen atoms on the coordinated methanol molecules (O1, O2, O3, O11) could not be found in 406 

difference Fourier maps nor fixed and are thus not included in the structural model. 407 

Data for compounds 1 and 3 were collected with a MAR345 diffractometer using an image plate 408 

detector. The structures were solved by direct methods using the SHELXS computer program and 409 

refined by full-matrix least-squares methods with SHELX97 computer program.[23] Two hydrogen 410 

atoms were located from a difference synthesis in 3 and all hydrogen atoms were computed and refined 411 

by using a riding model with an isotropic temperature factor equal to 1.2 times the equivalent 412 

temperature factor of the atom to which they are linked. 413 

The crystallographic details for 1–5 are summarized in Table 8. 414 

CCDC 1438011 (for 1), 1438012 (for 2), 1438013 (for 3), 804307 (for 4), and 1438014 (for 5) contain 415 

the supplementary crystallographic data for this paper. These data can be obtained free of charge from 416 

The Cambridge Crystallographic Data Centre. 417 

418 
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Legends to figures 538 

 539 

Scheme 1. R-saloxH2 ligands employed in this work and the modes of coordination of R-saloxH– and 540 

R-salox2– in compounds 1–5. 541 

 542 

Figure 1. Left: view of the hexanuclear compound 1 (ethanol molecules omitted for clarity). Right: 543 

labelled plot of the asymmetric unit of 1. Colour key for all figures: MnII, orange; MnIII dark green; 544 

MnIV, firebrick; O, red; N, navy blue; C, black; F, light green. 545 

 546 

Figure 2. Hydrogen bonds promoted by the coordinated ethanol molecules in compound 1 (shown as 547 

light blue bonds). 548 

 549 

Figure 3. Labelled plot of complex 2. For clarity, the coordinated Mesalox2–and MesaloxH– ligands are 550 

shown only for one of the manganese atoms. 551 

 552 

Figure 4. Labelled plot of the core of complex 3. Hydrogen bonds involving 553 

the methanol solvate molecule are indicated as dashed bonds. 554 

 555 

Figure 5. Top: view of complex 4. Bottom: labelled plot of the core of complex 4. 556 

 557 

Figure 6. View of the hydrogen bonds involving Mn(6), which promotes the 1D arrangement of [Mn12] 558 

clusters for complex 4. 559 

 560 

Figure 7. Top: view of complex 5 and a labelled plot of its asymmetric unit. Bottom: view of the 561 

intermolecular hydrogen bonds (blue bonds). 562 

 563 

Scheme 2. Reaction scheme for the syntheses of complexes 1–5. Colour key: MnII, orange; MnIII, dark 564 

green; MnIV, firebrick; O, red; N, blue; C, gray; F, light green. 565 

 566 

Figure 8.  Plot of the MT product vs. T for compound 1. The solid line shows the best fit of the 567 

experimental data in the 25–300 K range. Dotted line below 25 K shows the low temperature theoretical 568 

simulation. Inset: plot of   M vs. T below 100 K showing the unusual maximum of susceptibility.y. 569 

 570 

Scheme 3. Coupling schemes for compounds 1 (A and B), 2 (C) and 3 (D). 571 

 572 



Figure 9. Magnetization plot for complex 1 (●). The solid line shows the first derivative of the 573 

magnetization. 574 

 575 

Figure 10.  Plot of the MT product vs. T for compounds 2 (red circles), 3 (blue squares), 4 (black 576 

diamonds) and 5 (green triangles). Inset: magnetization plot for 3. Solid lines show the best fits of the 577 

experimental data for 2 and 3. 578 

 579 

Figure 11.  Plot of the AC M′′ for compound 4. Inset: hysteresis cycle measured at 2 K.at 2 K.. 580 
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Table 1 BVS data for the oxidation states of the metallic atoms of compounds 1–5. 668 
 669 

 670 
 671 

 672 
673 



Table 2 Selected distances [Å] and angles [°] of the core of compound 1. 674 
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Table 3. Selected distances [Å] and angles [°] of the core of compound 2. 679 
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Table 4. Selected distances [Å] and angles [°] of the core of compound 3. 685 
 686 

 687 
 688 

689 



Table 5. Selected distances [Å] and angles [°] of the core of compound 4. 690 
 691 

 692 
 693 

694 



Table 6. Selected distances [Å] and angles [°] for compound 5. 695 
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Table 7. Summary of the synthetic conditions for 1–5. 699 
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Table 8. Crystal data and data collection details for the X-ray structure determination of compounds 1–704 
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