
 

1 

Eley-Rideal reaction dynamics between O atoms on b-cristobalite (100) surface: a 
new interpolated potential energy surface and classical trajectory study 

 
 

C. Arasa a, V. Morón a, H. F. Busnengo b and R. Sayós a 
 

a Departament de Química Física and Institut de Química Teòrica i Computacional,  
Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain 

     b Instituto de Física Rosario, CONICET and Facultad de Ciencias Exactas, Ingeniería y 
Agrimensura, Univ. Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario, Argentina 

 

Abstract 

 
We present a theoretical study of the collisions of atomic oxygen with O-precovered b-cristobalite 
(100) surface. We have constructed a multidimensional potential energy surface for the O2/b-
cristobalite (100) system based mainly on a dense grid of density functional theory points by using 
the interpolation corrugation reducing procedure. Classical trajectories have been computed for 
quasithermal (100-1500 K) and state-specific (e.g., collision energies between 0.01-4 eV) conditions 
of reactants for different O incident angles (qv). Atomic sticking and O2(adsorbed) formation are the 
main processes, although atomic reflection and Eley-Rideal (ER) reaction (i.e., O2 gas) are also 
significant, depending their reaction probabilities on the O incident angle. ER reaction is enhanced by 
temperature increase, with an activation energy derived from the atomic recombination coefficient 
(gO(qv=0°,T)) equal to 0.24±0.02 eV within the 500-1500 K range, in close agreement with 
experimental data. Calculated gO(qv=0°,T) values compare quite well with available experimental 
gO(T)  although a more accurate calculation is proposed. Chemical energy accommodation coefficient 
bO(T) is also discussed  as a function of ER and other competitive contributions. 
  
 
 
 
Keywords:  Eley-Rideal reaction, catalycity, cristobalite, silica, atomic oxygen, classical trajectories, 

dynamics, density functional theory, potential energy surface. 

Figures: 7   

Proofs to: Dr. R. Sayós 

 

* Corresponding author: e-mail: r.sayos@ub.edu



 

2 

1. Introduction 

 

Surface reactions contribute considerably to spacecraft heating during hypersonic re-entry into 

planetary atmospheres [1]. In the case of Earth atmosphere, atomic recombination processes 

involving oxygen and nitrogen in the boundary layer are catalyzed by the materials used as thermal 

protection systems (TPS) of these vehicles. The apparent simple elementary heterogeneous processes 

that occur in these conditions are difficult to study either experimentally or theoretically, even at 

present [2]. Along a typical re-entry trajectory the density of air changes by several orders of 

magnitude. Thus, there is a free molecular to continuum regime change and a laminar to turbulent 

flow transition. Moreover, different thermal and chemical equilibrium/non-equilibrium situations are 

observed at several points of the re-entry trajectory. These complex real conditions cannot be well 

reproduced even in sophisticated wind tunnel facilities (e.g., Von Karman Institute For Fluid 

Dynamics, Belgium). On the other hand, real flights (e.g., Shuttle or forthcoming EXPERT European 

Project [3]) can report only limited information. Standard computer fluid dynamics (CFD) 

simulations [2] carried out for this kind of flights give values of the aerodynamic heating with a 

factor two or more larger depending if a non-catalytic or a fully-catalytic model is assumed for the 

principal surface reactions. In these simulations two important type of coefficients are needed: a) the 

atomic recombination coefficient gi (also called catalycity) and b) the chemical energy 

accommodation coefficient bi [4]. gi is defined as the probability of atomic recombination per atomic 

surface collision for each i species and bi represents the amount of energy released to the TPS surface 

respect the maximum energy transferable per atomic recombination (0 ≤ gi , bi ≤ 1). These 

coefficients depend on temperature and total and partial pressures (i.e., gi (T, P)). Hence, precise 

thermal or state-specific theoretical and/or experimental gi and bi coefficients are necessary to 

simulate these severe equilibrium / non-equilibrium conditions and to improve the design of better 

TPSs. TPS materials should have high emissivity (to maximize the amount of energy re-radiated), 

low surface catalycity (to minimize convective heating) and low thermal conductivity (to minimize 

the mass of material required to insulate the primary structure). 

A common material used in Shuttle TPS coatings is the reaction-cured glass (RCG), a borosilicate 

composed by 94% of SiO2, 4% of B2O3 and 2% of SiB4. Thus, we decided to study several collision 

processes involving O and O2 over silica, considering a crystalline structure, which simplifies 

initially the theoretical approach. Moreover, the selected structure, b-cristobalite, is the most stable 

polymorph at high temperatures up to the melting point of 1983 K, with very similar properties to 

amorphous silica (e.g., density, refractive index, band structure, etc.). We have carried out a first-
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principles theoretical study on several elementary processes involving these species. In an earlier 

study [5] we made a full density functional theory study (DFT) of the atomic oxygen and nitrogen 

interaction with a b-cristobalite (100) surface, because atomic adsorption is the first basic step for a 

subsequent atomic recombination reaction through an Eley-Rideal (ER), hot atom (HA) or Langmuir-

Hinshelwood (LH) mechanism.  We observed a large oxygen chemisorption, mainly on top a Si of 

the Si-ended face, which had a great influence in the atomic oxygen scattering, causing a 

predominant adsorption or penetration (absorption) into the SiO2 slab [6]. In two more recent studies  

[7-8] we presented a dynamics study of O2 scattering on a b-cristobalite (100) surface, which showed 

that reflection and sticking (absorption/adsorption) were the main processes, becoming the 

dissociative sticking only open at high collision energies (i.e., Ei > 1 eV). We have also recently 

reported a preliminary study on the oxygen ER reaction over b-cristobalite (100) surface [8] using the 

same PES and considering several state-specific initial conditions of the reactants. 

There are several experimental studies about the ER oxygen recombination reaction over some 

silica surfaces (quartz, cristobalite, RCG, vitreosil,..) mainly concerned in the determination of g and 

effective g  (i.e., geff = g' = g·b) coefficients  (e.g., see a recent review [9]) at high temperatures (400-

1800 K) . These coefficients show marked temperature dependence, which increase with temperature 

until a critical value where the thermal desorption becomes important and then the recombination 

coefficient decreases.  Therefore, the oxygen ER reaction over silica seems to be an activated process 

(e.g., Ea = 0.29 eV on b-cristobalite for 800 ≤ Ts ≤ 1830 K or Ea = 0.16 eV on quartz for 850 ≤ Ts ≤ 

1430 K [10]. The nature of the silica material has as well a great influence on these coefficients. Only 

a few experimental studies have reported information on the chemical energy accommodation 

coefficient for oxygen over silica, indicating a strong variation with the temperature (e.g., 0.12 ≤ b ≤ 

0.69 within 1770-966 K for b-cristobalite [11]) contrary to the common assumption made in the 

major part of experimental g' measurements [9], where a constant value equal to 1 is supposed. 

There are scarce first principles theoretical studies on oxygen ER reactions over silica surfaces. A 

previous work [12] presented a semiclassical trajectory study for atomic oxygen recombination over 

b-cristobalite although they used a tentative empirical PES, not fully justified nor analysed. More 

recently, the same authors have published a very similar theoretical study over quartz [13], showing 

similar results as for b-cristobalite, although with a g  about 3 times lower. 

In the current work, we present some additional DFT calculations for O2/b-cristobalite system and 

we explain the construction and the properties of the new interpolated PES for this system, than can 

be used for both the study of molecular oxygen collisions on clean b-cristobalite (100) and for atomic 

oxygen collisions with O atoms preadsorbed (i.e., O(ad)) onto the same solid surface.  The dynamics 
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of the second kind of process is studied for reactants at state-specific or thermal conditions by using 

classical trajectories and they are compared with available experimental data. 

The present results together with our previous data on these elementary processes (i.e., atomic 

adsorption, molecular dissociative adsorption,..) involving air species and b-cristobalite are planned 

to be used in some kinetic models and kinetic Monte Carlo simulations to determine appropriately the 

g and b coefficients as a function of partial and total pressures and temperatures. 

 

2. Potential energy surface 

 

2.1. Density functional theory calculations 
 

We have performed extensive DFT calculations for the O2/b-cristobalite (100) systems in order to 

construct a multidimensional PES for the present system, using as well previous DFT data from the 

O/b-cristobalite (100) [5,6] studies. The energetic calculations have been carried out by using the 

VASP code [14-17] to determine the O2 and the O/O(ad) interactions over an Fdd2 b-cristobalite (100) 

surface [18-19]. We have used a similar procedure as for the previous O/b-cristobalite (100) studies 

[5,6]. Thus, a lattice parameter of 7.348 Å, determined for the bulk Fdd2 calculation, was used in the 

present work along with a slab model with 6 layers, ended with a silicon first layer.  An extra 

hydrogen bottom layer was added to saturate the O dangling bonds of the inner layer. The distance 

between slabs (z = 17-18 Å) was large enough to prevent significant interactions between them. We 

carried out generalized gradient correction DFT calculations with the Perdew-Wang 91 functional 

(PW91). The electron-ion interactions were described by using the projector-augmented-wave 

technique. An energy cut-off of 400 eV for the plane wave basis set was precise enough to obtain 

converged properties. Integration over the Brillouin zone was made by means of a 3x3x1 k-points 

mesh by using the Monkhorst-Pack method.  Spin-polarized calculations with a fixed magnetization 

equal to 0, 2 or 4 were carried out to consider the total possible atomic and molecular spin states (i.e., 

singlet, triplet or quintuplet). The final interpolated PES (see next section) will use the lowest energy 

for each geometry (basically singlet at short distances and triplet for longer ones), allowing the 

interpolation method a smoothing of the conflicting crossing regions. Thus, we assume that the 

evolution of the system is electronically adiabatic, which requires at least one transition between 

states of different spin, in the same way as for the O/b-cristobalite PES [6]. 

In order to make easier the search of stationary points we have considered two approaches: a) 

direct DFT calculations with geometry optimization and normal mode analysis and b) interpolation of 
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a grid of DFT energies calculated for both parallel (q=0º) and perpendicular (q=90º, f=90º) O2 

configurations over the central Si site of the unit cell (see next section); q and j are the polar and 

azimuthal angles of the molecular axis as shown in Fig. 1a. The O2 distance (r) and the Z coordinate 

of O2 centre of mass (ZCM) were changed for 1 £ ZCM £ 4 Å and 1 £ r £ 3.2 Å (175 points), and 0.5 £ 

ZCM £ 4 Å and 1 £ r £ 4 Å (216 points), respectively, with the slab geometry fixed at its most stable 

equilibrium configuration in absence of O2.  

We have calculated a minimum energy path for the Eley-Rideal reaction (i.e., from O + Oad(on top Si) 

to O2(g)) by means of the Nudged Elastic Band method (NEB) [20-21], where the four first layers of 

the slab have been relaxed. It is found a transition state (TS) geometry, which implies a significant 

reconstruction of the first layer, with the following oxygen final geometry: XCM = 5.432 Å, YCM = 

5.472 Å, ZCM = 3.306 Å, r = 1.287 Å, q = 2.7º and f = 89.4º. It corresponds to a triplet state and it has 

only one small imaginary vibrational frequency. We calculate an energy barrier  = 0.78 eV. 

However, DFT calculations show the existence of two close O adsorption minima over the Si 

atom of the first layer, T1 (on top, dOSi =1.525Å) or T1'  (ZO = 0.21 Å, dOSi =1.559Å and q = 77.1º).  

Thus, two energy barriers for the ER reaction can be derived, 0.28 eV respect T1 and 0.78 eV respect 

T1', because T1' is more stable than T1. It was impossible to ascertain if ER TS connected with T1 or 

T1'. Therefore, if we assumed that initially T1 would be more accessible than T1' when O gas 

approaches to the surface (moreover the O diffusion T1®T1' needs at least 0.16 eV [6]). Thus, the 

smaller energy barrier for ER reaction would be 0.28 eV ( = 0.33 eV including zero point 

vibrational energy), which is very close to the before mentioned experimental activation energy (Ea = 

0.28 eV [10] derived from g coefficient. Nevertheless, as it will be latter discussed, g coefficient can 

include also contributions of another elementary heterogeneous processes (e.g., atomic adsorption, 

LH reaction,..). On the other hand, the ER process seems to be either thermo-neutral (for O(ad) on T1 

site ∆E = -0.06 eV) or slightly endothermic (for O(ad) on T1’ site ∆E = 0.44 eV). Thus, this behaviour 

is opposite to the normally assumed high exothermicity in the major part of kinetic models on air 

over silica materials, because they consider much lower O adsorption energies (e.g., 3-3.5 eV [22-

23]) than the present DFT results. The higher oxygen atomic adsorption energy (as it is also observed 

over metals), the smaller exothermicity of the ER reaction. 

We have also found that O2 molecule can become adsorbed on top a Si atom of the first layer, 

principally with a parallel molecular configuration respect to the surface (XCM = YCM = 3.674 Å, ZCM 

= 1.423 Å, r = 1.639 Å, q = 90º and f = 55.8º). The adsorption energy respect O2(g) is equal to 3.16 

eV for the singlet state. The two Si dangling bonds permit the formation of two new SiO bonds, 

giving place to a new SiO4 tetrahedral unit as it happens inside the slab structure of cristobalite. The 
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harmonic vibrational frequencies (838.6, 727.3, 508.1, 215.2, 207.5, 140.5 cm-1) confirm that it is a 

true minimum. The minimum energy path from O2(g) to O2(ad) shows the existence of an energy 

barrier ( = 0.69 eV) for the triplet state.  As this stationary points presents more than one 

imaginary frequency, at the following geometry: XCM = YCM =3.674 Å, ZCM = 2.759 Å, r = 1.237 Å, 

q = 90º and f = 70.4º, the minimum energy barrier should be lower than 0.69 eV. 

The adsorption of two oxygen atoms on top Si atoms (i.e., T1, T1') or in a bridge between Si 

atoms (B1) [5] (e.g., O(ad)(T1) + O(ad)(T1), O(ad)(T1’) + O(ad)(B1) and O(ad)(T1) + O(ad)(B1),…, see 

Fig. 1b) shows very stable minima, also at lower coverages (e.g., using a 2x2 cell). Therefore, the 

Langmuir-Hinshelwood mechanism will rarely occur because of the very large endothermicity (∆ELH 

≥ 6.0 eV). Moreover, we have also shown that the O adatoms migration, even between close sites (a 

first step necessary for LH processes), will be very difficult due to their high-energy barriers [5]. 

 

 

2.2. Interpolated PES: construction and analysis 

 

We have constructed a multidimensional PES for the O2/b-cristobalite system in a similar way as 

we carried out for the O/b-cristobalite system [6]. At first, we derived a potential for this system at 

the slab equilibrium geometry, 

 

 (1) 

 

which depends on oxygen Cartesian coordinates over the 

unit cell, for all fixed internuclear equilibrium distances {Rij}eq (i.e., Si-Si, O-O and Si-O) inside the 

silica slab.  

The first and second terms describe the interactions between each oxygen atom and the atoms of 

the slab at equilibrium. Both potentials are equivalent and were obtained by using the corrugation-

reducing procedure (CRP) interpolation method [24] over an extensive grid of DFT points, as was 

widely explained in a previous work [6]. 
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The third term that contains the O-O interaction, which is modified by the presence of the rigid 

slab at its equilibrium geometry, is the so-called (within the CRP method) molecular interpolation 

function [24].   

To derive an expression for VOA-OB we have calculated a grid (ZCM, r) of DFT energies (about 700 

points) for both perpendicular (q=0º) and parallel (q=90º, f=90º) molecular configurations, with its 

centre of mass over the T1 site (i.e., XCM=YCM=XSi=YSi, Fig. 1b). The molecular interpolation 

functions for these two 2D-(ZCM, r) cuts on the T1 site, IT1(q=0º) and IT1(q=90º), were interpolated 

using cubic splines, and then IT1(ZCM, r,q) was obtained by interpolation over q by using a cos(2q) 

function, assuming equal weights for both angles: 

 

 (2) 

 

Due to the interaction of O2 with the slab over the hollows (e.g., H1 sites) of the unit cell is almost 

negligible (like O2 in vacuum), we have assumed that on H1, the molecular interpolation function 

only depends on the interatomic distance and is equal to the O-O potential in vacuum (i.e., 

IH1(r)=VO2(r) ).  

Then, we have approximated VOA-OB by a 5D potential (fixing f at 90º), which interpolates IT1 and 

IH1 throughout the surface unit cell using the symmetry-adapted Fourier expansion: 

 (3) 

To represent the interaction of the O2 molecule with the slab out of its equilibrium configuration, 

we have used a procedure proposed previously [25]. Therefore, 

 (4) 

where the pair potentials  and  (the same used and described in [6]) become zero when 

 (l = i, j), which implies that NSi’ < NSi and NO’ < NO, being NSi + NO the total 

number of slab atoms. On the one hand, for the equilibrium configuration of the slab (i.e. 

{Rij}={Rij}eq), only the first term on the right hand side of eq. (4) [defined in eq. (1)] survives. On the 
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other hand, the variation of the O2-surface interaction with respect to the case of the slab in its 

equilibrium configuration, is accounted for by the sums of pair potentials  and . 

 Finally, in order to introduce the slab motion during the dynamical simulations, we have added an 

additional potential (Vslab), which depends of all slab internuclear distances {Rij}. Then, the total 

potential energy surface VPES describing the interaction of the O2 molecule with the slab (in or out of 

its equilibrium configuration) is given by: 

 

 (5) 

In this work, we use the same empirical potential Vslab [26-27] as we did for the O/b-cristobalite 

system [6], where it was depicted and analysed more extensively. The corresponding O-O and O-Si 

pair interactions were described by using empirical Born-Mayer-Huggins ionic potentials derived for 

silica. A possible improvement in Vslab silica potential could be done by the introduction of an ab 

initio (DFT) potential that could predict more accurately several crystalline structures (e.g., 

cristobalite, quartz, coesite,..) and the liquid silica [28]. 

Fig. 2a and 2b present contour plots of PES for one oxygen adsorbed (O(ad)) on top Si (T1 site) at 

two Z values for the other oxygen, keeping the slab at its equilibrium geometry. Incoming O atom 

tends to become closer to O(ad) and to free Si atoms, especially along the positive slope diagonal of 

the unit cell (Fig. 1b) due to the absence of O in the second layer along this diagonal. This behaviour 

is similar to the one observed for clean surface [6], unless over O(ad). Fig. 2c shows contour plots for 

fixed X and Y positions of one adsorbed atom over a Si atom and the other close to that (i.e., between 

two Si atoms) for different Z values. The observed stability at low Z values is in agreement with the 

existence of the mentioned O2(ad) minimum and with the favourable atomic adsorption/penetration 

into the b-cristobalite structure through the T1' and T1" minima (table 1). 

The relaxation of slab geometry stabilizes even more the stationary points of the PES. For 

instance, the energy of O(ad) + O(ad) minimum over two T1 sites changes to -11.03 eV, 0.39 eV more 

stable than for equilibrium rigid slab geometry. Moreover, one of Si atoms involved is shifted in Z 

from 0 to 0.314 Å, indicating that the slab distortions can be important during some collision 

processes, as we have seen in the dynamics study. The contribution of Vslab modifies slightly the 

energetics of ER and LH reactions (e.g., ∆EER = -1.36 eV and ∆ELH = 4.92 eV for O(ad) over T1 sites). 

The present CRP PES allows the calculation of energies for molecular configurations with ZCM ≥ 

0 Å and r ≥ 0.5 Å and for atomic configurations with Z ≥ -1 Å, due to the range of DFT data 

calculated. Hence, diffusion of O2 into the slab cannot be studied without extra modifications on the 
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current PES. On the other hand this PES has also been used in the dynamics study of O2 (i.e., 

dissociation and reflection) on b-cristobalite (100) surface [7,8]. 

 

3. Classical  dynamics study 

 

3.1 Classical trajectory method 

 

We have carried out a dynamics study of atomic gas oxygen colliding with O-precovered b-

cristobalite (100) surface by means of the classical trajectory method [29]. The silica slab includes a 

total of 104 atoms distributed into 9-layers for a 2x2 square surface unit cell with a cell parameter of 

7.348 Å. The slab temperature (TS = 100 - 1500 K) was controlled by means of a Generalized 

Langevin equation (GLE) approach [29, 30]. The corresponding random and friction forces were 

applied only to the atoms of the bottom Si layer, which are also forced to oscillate around their bulk 

equilibrium positions (by using extra "springs") to avoid a global translation of the slab. We checked 

that the empirical slab vibrated with an average slab energy corresponding to the selected 

temperature (<Eslab> = 3NkbTS), hence the energy will not be constant. Generalized friction and 

fluctuating forces balance, according the fluctuation-dissipation theorem, so that the proper 

temperature is reasonably maintained in the primary zone (i.e., the lattice atoms that can interact 

directly with colliding O atom). 

The colliding oxygen atom is located initially at a distance of 4.5-6.0 Å from the surface and its 

aiming point (XO,YO) is determined by a random uniform sampling only on an 1x1 unit cell. 

Preadsorbed O atom was located over the central Si atom (T1 site) at an initial Z of around 1.5 Å. 

This atom was quickly thermalized at the selected slab temperature before the arrival of the incoming 

O atom. We checked as well that only at high temperatures (e.g., 1000 K) this adatom in T1 could 

evolve to T1' (penetration into the slab) for collision times longer than about 2 ps. Therefore, this 

initial geometry for O(ad) seems to be appropriate for the study of all processes derived from O(g) + 

O(ad) collisions within the time scale considered. 

Kinetic energy (Ei) of the colliding atom was within the range 0.05 - 4.0 eV. The corresponding 

velocity angles qv and fv (Fig. 1a) were fixed  (0º and 45º) and sampled by an uniform random 

sampling in the interval (0-360º), respectively.  

Hamilton's equations were integrated by using a modified Beeman algorithm with a fixed step of 

1x10-4� ps, which permits an energy conservation of 10-4-10-5 eV in absence of the GLE bath. Two 

kind of calculations were considered: quasithermal (T = TO(g) = TS, qv) and state-specific (Ei, TS, qv). 
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Batches of 3000-25000 trajectories were integrated for the different initial conditions, which ensured 

statistical errors below 1% for the reaction probabilities of the main channels. Trajectories were 

integrated up to a maximum time of 2 ps. Some tests at longer times (e.g., 5 ps) were also made to 

check the convergence of reaction probabilities.  Nevertheless, some trajectories were ended up at 

shorter collision times due to the before mentioned PES limitations, although we think that the final 

probabilities are even so quite well converged.  

Several main processes can occur: atomic reflection, atomic sticking, and O2 formation (i.e., Eley-

Rideal reaction). We have also differentiated the molecules that become retained by the slab (O2(ad)) 

at least during the integration time.  In spite of these adsorbed molecules could finally desorb or 

produce two adsorbed or gas atoms at a much longer time scale, the PES topology seems to prevent a 

possible significant increase of the ER probability for longer collision times. In the present study we 

do not separate between atomic (or molecular) adsorption and absorption (penetration) processes as 

in our earlier paper [6], but this is practically irrelevant for the main goal of the present work, the ER 

reaction dynamics study.  

We have classified the reaction channels analysing r, ZO, ZO' and ZCM values and the 

corresponding z velocity components of both atoms [6] and molecule.  For instance, the ER channel 

was achieved when ZCM was much larger the 5-6 Å, the r distance was not far from the O2 

equilibrium distance (i.e., r  <  1.9 Å) and vz CM > 0. We verified that once the integration was 

finished  (usually in 2 ps) and the trajectory classified, this was equally classified after an extra 

number of steps. In case of discrepancy the trajectory was integrated more steps until a converged 

classification. This criterion was especially useful for channels involving finally adsorbed species. 

The final internal state (v’, j’) for O2(g) was assigned rounding up or down to the nearest integer its 

rotational angular momentum j’ (quasiclassical approach) and by means of the radial action variable 

semi-classical method for the vibrational quantum number (v’) [31]. In spite of O2 molecule presents 

only odd rotational levels at its fundamental electronic state, this was not taken into account for final 

j' truncation due to the high closeness of the rotational levels and because it was necessary to use bins 

of at least 5j' consecutive values to reduce the statistical errors in the final distributions. 

 

3.2 Classical trajectory results 

 

Fig. 3a shows the classical trajectory probabilities for atomic sticking, atomic reflection, O2(ad) 

formation and ER reaction for normal incidence and a surface temperature of 1100 K. Atomic 

sticking is the principal process and it increases with translational energy increment, in agreement 

with the O scattering over a clean b-cristobalite surface [6]. O2(ad) formation is the second channel in 
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importance and decreases with the augment of translational energy. Atomic reflection is lower than 

10 % and ER reaction is almost negligible in comparison with the other channels. Atomic desorption 

channels (i.e., involving O(ad)) are practically forbidden in these conditions. 

The comparison with Ts = 300 K results [8] seemingly shows small differences, mainly at low 

collision energies  (approximately for Ei ≤ 0.5 eV) for O sticking and O2(ad) formation probabilities. 

Nevertheless, there is a relevant difference for the ER process, which is completely absent at 300 K 

but its contribution is significant at 1100 K, becoming more important for the lowest collision 

energies (see inset in Fig.3a). 

Off-normal incidence enhances strongly the atomic sticking (Fig. 3b) diminishing as a 

consequence the O2(ad) formation. The atomic sticking probability does not present a clear normal nor 

total energy scaling [32] dependence with Ei, possibly because in spite of the high corrugation of the 

surface could favour the total energy scaling, the competition between the different elementary 

processes can alter the final sticking probability, which would not occur for atomic collisions with a 

clean surface. 

The atomic reflection for off-normal incidence is now larger for all collision energies when 

compared with normal incidence. Fig. 4 shows more clearly the effect of the incident angle on the 

different probabilities. This reveals that the comparison between experimental and theoretical results 

should take into account an averaging over this angle (qv), specially for O sticking and O2(ad) 

formation; for ER reaction or O reflection processes this effect is smaller although it is observed that 

O collisions with small qv angles enhance the ER process (e.g., probability changes from 1.33x10-3 at 

0° to 0 at 60° for 1 eV and 1100 K) and decrease the reflection more significantly as shows Fig. 4. 

Fig. 5 presents the different channel probabilities at quasithermal conditions (Ts = TO(g)) for two 

incident angles (qv = 0° and 45°). Really, thermal conditions would imply a proper qv averaging. 

O2(ad) formation is the principal process within all temperature range (100-1500 K) for normal 

incidence, but it decreases significantly for off-normal incidence, with the consequent large 

increment of O sticking. This behaviour is in agreement with the results shown in Fig. 4 for non-

thermal conditions and also with the O collisions with a clean surface [6], without possibility of O2 

formation. O reflection and ER reaction are less important processes. Apparently the effect of 

temperature is small in all processes although for off-normal incidence O sticking decreases and O 

reflection increases with an augment of temperature as could be expected. ER reaction (see insets in 

Fig.5) also is enhanced at higher temperatures. 

The formation of O2 molecules, which remain strongly adsorbed, is much wider than the ER 

reaction (i.e., O2(g) formation) in good agreement with an earlier study over this system, but based on 
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an empirical PES [12]. A semilogarithmic plot of the quasithermal ER probability (gO(qv=0°,T)) is 

shown in Fig. 6 to appreciate much better its behaviour compared with some experimental gO(T) 

values for different silica materials. In fact, we have assumed a kind of effusive atomic beam (i.e., 

thermal O distribution) colliding perpendicularly over the solid surface, which possibly does not 

match exactly the non-fully characterized experimental conditions [10], but which is supposed as 

well in some earlier similar studies [12, 13, 34]. The averaging over the incident angle (qv) would 

decrease the presented g(T) values (possibly in a factor that could be up to 10) , as could be deduced 

comparing fig. 5a and 5b.  

gO should be correctly calculated taking into account all contributions of the elementary processes 

related with oxygen flux (i.e., ER reaction, LH reaction, O sticking, O2 desorption, O2 dissociative 

adsorption (DA),..) for a given temperature and partial pressures of O and O2 by using a suitable 

kinetic model [35-36]. Thus, in the case that the surface coverage reaches a steady-state condition for 

a single-species model (e.g., O/O2) considering only the most common important processes, gO can 

be expressed as a function of different O Zi fluxes [35] as follows,  

 

 (6) 

Due to the LH process practically will not be open at these temperatures because it is highly 

endothermic and that the molecular dissociative adsorption is also negligible in these conditions, as 

we demonstrated in some previous O2/b-cristobalite dynamical studies [7-8], we have made the 

assumption that gO » gER  for the classical trajectory values (calculated as gER = 2PER)  shown in Fig. 

6. This approximation can be supported by some previous theoretical and experimental studies for O 

recombination over b-cristobalite [12, 34] or quartz [13], that conclude that gER > gLH and 

consequently gO » gER, particularly at high temperatures. 

However, a more accurate gO determination is planned to be done in our research group by means 

of a kinetic Monte Carlo technique [37], which can elucidate the pressure dependence of gO (i.e., 

surface coverage dependence), the importance of O2(ad) formation (possibly increasing g) and also its 

values for non-steady conditions. 

The temperature dependence of g(qv=0°,T)  follows an Arrhenius equation with a classical 

trajectory activation energy of 0.24±0.02 eV for 500-1500 K compared with the experimental 

activation energy of 0.285±0.006 eV for 800-1830 K [10], also in close agreement with the DFT ER 

energy barrier (  = 0.28 eV). At lower temperatures the classical trajectory statistical errors are 
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quite important, although the extrapolation of experimental data for both a-quartz and b-cristobalite 

would give values not too far from classical trajectories or fused quartz ones. As the classical 

trajectory values presented in Fig. 6 correspond to normal incidence, the good agreement between 

classical trajectory and experimental g values and also for the activation energies should be taken 

with caution, as qv averaging would decrease these coefficients. 

Moreover, an accurate direct comparison cannot be done without using an expression like (6). 

First, gO for air and pure oxygen are similar but not exactly equal as it has been stated in a recent 

review of catalycity values for silicon based materials [38]. Second, the type of silica structure 

(different crystalline or amorphous phases) shows as well a marked effect on these coefficients [38], 

as it can be easily observed in Fig. 6. In fact, the experimental values from ref. [10] were obtained 

forming in situ SiO2 b-cristobalite by oxidizing sintered SiC. Therefore the sample was not a perfect 

crystalline structure. Surface roughness tends to increase gO respect its value (called intrinsic or 

absolute g) at a microscopic surface (e.g., a 2.4 roughness factor was observed for O or N over silica 

[23]). Third, catalycity usually increases with surface pressure [38] at moderate temperatures 

(experimental values for b-cristobalite and quartz of Fig. 6 are measured at a total air pressure of 200 

Pa [10]). Fourth, some trajectories classified as O2(ad) formation should be finished at collision times 

shorter than 2 ps (e.g.,  a 36 % at 1000 K and 0º) due to the interpolated PES is not defined for 

molecules penetrating into the slab (ZCM < 0 ); thus, the integration at longer collision times could 

increase the number of O2 molecules finally desorbed (specially at high temperatures), increasing 

accordingly the ER probability, although this PES limitation will be less important for another 

reaction channels. Therefore, the inclusion of all these four aspects into the gO calculation would 

increase a bit more its values (although qv averaging would tend to decrease), expecting a possibly 

even better agreement with the experimental values. Nevertheless, additional measurements (e.g., 

with arc-jet facilities or inductively coupled plasma generators) should be also necessary to confirm 

the validity of experimental data [10], due to the usual wide dispersion observed in 

catalycity coefficients over several thermal protection materials [38]. 

Present results show some significant differences respect reaction probabilities and gO(T) or gO(Ts, 

Ei) coefficients when compared with some previous classical trajectory calculations based on an 

empirical PES for the O2/ b-cristobalite system [12, 34]. Thus, these differences are originated not 

only by the topology of the PES but also by the selection method used for the initial adsorbed atom 

positions (O(ad)). Three cases were considered in the first study [12]: O adsorbed on top a Si, over a 

bridge between two Si atoms or in a random position over the unit cell, for the Si ended surface. This 

mentioned study showed important differences depending on the type of choice. Thus, for instance, 
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the values of PER(Ts =1000 K , Ei = 0.1 eV) for normal incidence were 0.225, 0.030 and 0.025, 

respectively, compared with our classical trajectory value of  (0.44±0.09)x10-2 for O(ad) on top 

selection. However, the authors finally chose the O(ad) random sampling over the cell instead of 

locating O(ad) on top Si to calculate the catalycity coefficient at 1000 K (gO = 2.9 x10-2),  with possibly 

a fortuitous agreement with the experimental value (2.7 x10-2 [10]) because their coefficients 

calculated for O(ad) on top Si would be much higher, with a much worse agreement with the 

experiment. The same authors in a recent study of N atom recombination over a silica surface [13] 

place more appropriately the N(ad) on top a Si atom of the silica surface. Their PES for O2/b-

cristobalite neither does support any temperature effect on the ER probability. Such effect was only 

found for the LH probability.  

A noteworthy conclusion together from the present and previous classical trajectory studies for O 

reaction with O-precovered b-cristobalite is that O2(ad) formation will be important at low collision 

energies, competing with the ER reaction. 

We have also analysed the energy distributions of the O2 molecules produced in ER reaction.  

Nevertheless, its low reaction probabilities imply that the statistical uncertainties will be larger in 

comparison with another reaction channels (e.g., O2(ad) formation). Thus, Fig. 7 shows the 

translational, vibrational and rotational distributions for normal incidence and reactants at 1000 K. 

Molecules are translationally hot, with an average Ei' equal to 0.84 eV, much larger than if products 

remained at the same temperature as the reactants (at 1000 K the average energy would be 0.13 eV). 

The new O2 molecules are also internally excited (see Fig. 7b and 7c), much more than the 

corresponding thermal distributions at 1000 K, which would present a maximum in j' = 15 and a 

important population of only the first vibrational levels (v' = 0, 1, 2) with 0.9055, 0.0852 and 0.0083 

values, respectively. The average internal energy of O2 for these initial conditions is 0.67 eV, 

consequently indicating a much less vibrational and rotational excitation (e.g., <Evib> = 0.27 eV 

<Erot> = 0.42 eV) compared with the translational one. The slab energy changes linked with its 

temperature distribution are quite enough (the average slab energy was equal to 26.87±1.75 eV at 

1000 K) to explain the energy that finally goes into the O2 product molecules. 

These results are quite different from the ones obtained with the before mentioned empirical PES 

[12], which showed a very small translational excitation for low O collision energies, Ts = 1000 K 

and O(ad) located randomly over the unit cell or on a Si bridge (results for O(ad) on top Si, like in the 

present study, were not reported to compare with).  
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Due the interest in the determination of the b coefficient for pure oxygen/b-cristobalite system, we 

have calculated the fraction of energy transferred with the slab (fslab) caused by the ER reaction for 

1000 K and normal incidence, by means of the equation, 

 

  (7) 

The values obtained are negative, with an average value of <fslab> = -0.31 ± 0.09, showing that in 

these conditions the slab becomes colder during the ER reaction as a result of the energy transfer 

from the slab to the new formed O2 molecule. Nevertheless, the absence of energy conservation due 

to the thermal bath applied by means of the GLE approach could generate some significant 

uncertainties in this fraction. The energy transferred with the solid can be related with the 

b coefficient, which is usually defined as [4, 38], 

 

  (8) 

where the sum runs over all elementary processes (ER, LH, O sticking, DA…) as for the g 

coefficient, being the energy transferred with the slab (positive or negative) per atomic O. An 

accurate calculation of b implies taking into account all the contributions and the pressure effect. 

However, some authors have made the assumption that b » bER, but defining this coefficient in a 

different way to (7); for instance, for the oxygen/b-cristobalite system it was calculated by using, 

 

  (9) 

where Ej indicates the total energy for each j species. A value of 0.127 for reactants at 1000 K was 

calculated in this way [34]. Nevertheless, this coefficient should not be straightforwardly compared 

with the experimental b coefficient because the clear different definition. Up to our knowledge, there 

exists only a work reporting some direct experimental measurements of bO for air and b-cristobalite 

[11], whose values are in the range 0.69-0.12 for 1000-1800 K at a total pressure of 200 Pa; similar 

values for quartz were also measured [39]. The positive value of b� means that the slab should 

receive energy as a consequence of the sum of all involved processes. Thus, as the ER reaction seems 

to have a negative contribution to b in our calculations, another processes should balance this effect 
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to give a total b positive value. For instance, the important contribution of the O sticking process, 

which is very exothermic due to the large atomic adsorption energies (table 1), could be responsible 

of this final positive heat flux to the surface. 

Finally, we have studied the influence of the b-cristobalite cell regions on the different elementary 

processes. Thus, O sticking is clearly enhanced by O gas collisions over the positive slope diagonal 

of the unit cell (between Si atoms), because the O atoms of the second layer are located along the 

other diagonal. This behaviour was also observed for collisions with the clean cell [6] and was 

justified by the strong oxygen adsorption and penetration (i.e., absorption), which is much more 

hindered along the other diagonal (Fig. 1b). The formation of both gas and adsorbed molecular 

oxygen is mainly produced for O collisions on a region of the cell very close to the initial adsorbed 

atomic oxygen, with a clear Eley-Rideal instead of a hot-atom mechanism. The O reflection 

processes are mainly produced over the corners of the cell, far from the central O(ad). Thus, it seems 

that the zones of the cell tend to present a different selectivity to produce all possible elementary gas-

surface processes. Moreover, it is observed that the slab is not a simple spectator for these processes. 

Its geometry is changed along the trajectories not only by the thermal effects but also by the chemical 

processes. For instance, the position of the Si atom below the O(ad) is shifted from its initial position 

in all three directions, with a different extension depending on the kind of process.  Nevertheless, an 

accurate analysis of these slab changes would require the integration again of a large number of 

trajectories at shorter collision times (e.g., t < 2 ps) to be able to distinguish suitably between thermal 

and reaction channel induced geometry distortions. 

  

4. Conclusions 

 

The main aim of this work has been to study the interaction of atomic oxygen with the O-

precovered b-cristobalite (100) from first-principles. Thus, a multidimensional PES based on DFT 

data and some empirical information has been constructed by means of the corrugation reducing 

procedure method, using as well the previous PES for the O/ b-cristobalite system. The present PES 

allows the dynamics study of both gas molecular and atomic oxygen collisions over b-cristobalite 

surface, which is O-precovered for the second case. Classical trajectories (approximately 260000) 

have been computed for quasithermal (100-1500 K) and state-specific conditions of reactants for 

different O incident angles. 

Atomic sticking is the principal process, which increases with translational energy increment. 

O2(ad) formation is the second channel in importance and decreases with the augment of translational 
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energy. Atomic reflection and ER reaction are much less important although also significant. Off-

normal incidence enhances both reflection and sticking, diminishing as a consequence the O2(ad) 

formation and the ER reaction. The results for the different elementary processes are in good 

agreement with O collisions over a clean surface, excluding those involving O2 formation. 

At quasithermal conditions, O2(ad) formation becomes the principal process for normal incidence, 

but it decreases significantly for off-normal incidence, then increasing principally the O sticking. ER 

reaction is enhanced with temperature increase with an activation energy derived from gO(qv=0°,T) of 

0.24±0.02 eV for 500-1500 K, in close agreement with experimental data (0.285±0.006 eV for 800-

1830 K). Off-normal incidence collisions decrease ER probability because it favours the O sticking. 

Classical trajectory gO(qv=0°,T) values compare quite well with available experimental gO(T), 

values although qv averaging would tend to decrease whereas additional contributions of the 

competitive processes (e.g., O sticking) could possibly augment a bit these values. 

The new O2 molecules produced by the ER reaction at high temperatures become internally and 

translationally excited, while the slab becomes colder. These results along with the positive 

experimental bO(T) coefficient could indicate that another processes (as for g calculation) should be 

also considered to be able to balance this effect in order to produce a total b positive value. 

Several regions of the cell tend to present a different selectivity for the possible elementary gas-

surface processes. Moreover, it is observed that the slab is not a simple spectator for these processes. 

It seems that its geometry is changed along the trajectories not only by the thermal movements but 

also by the type of the chemical processes. Thus, a rigid slab approximation for the study of these 

processes possibly would not be too appropriate. 

The present PES model seems to be more realistic than the previous empirical one and allows the 

kinetics and dynamics study of O or O2 collisions over b-cristobalite in quite good agreement with 

the limited experimental data. Nevertheless, some improvements (e.g., additional O-b-cristobalite 

DFT data, an accurate DFT Vslab potential,…) should be necessary to permit as well the study of  

some subsurface situations or processes, than could have some influence on the studied reaction 

probabilities. 
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Tables 

 

Table 1 

 

Relative energies of the main stationary points for the interpolated O2/b-crsitobalite PES 

 

 energy (eV) a dSiO or dOO (Å) b 

 

O(ad) (T1) + O(g) 

O(ad) (T1") + O(g) 

O(ad) (T1') + O(g) 

O2(ad) + slab 

O2(g) + slab 

 

-4.75 

-5.27 

-7.10 

-8.87 

-6.11 

 

 

1.527 

1.576 

1.551 

1.803 

1.221 

 
a Zero of energies at 2 O(g) + b-cristobalite slab. 
b More information on O(ad) minima can be found in in ref. 5-6. 
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Figure captions 

 

Fig. 1 

 

Coordinate system (a) used for describing the two oxygen atoms (one adsorbed and one gas) over the 

square b-cristobalite (100) 1x1 unit cell. vg represents the initial gas atom velocity with the 

corresponding polar (qv) and azimuthal (fv, not indicated) angles.  In (b) there is a top view of this 

unit cell, showing Si (first layer) and O (2nd layer) atoms. Several sites are also indicated: T1 (on top 

Si), B1 (Bridge) and H1 (hollow). T1' or T1" minima are in the same region as T1. 

 

Fig. 2 

 

Contour PES plots for an O (atom A) adsorbed on top central Si (T1 site) and the second one (O atom 

B) at several positions over the frozen b-cristobalite (100) surface: a) XA = YA= 3.674 Å, ZA = 1.560 

Å and ZB = 3.0 Å, b) XA = YA= 3.674 Å, ZA = 1.560 Å and ZB = 1.560 Å, and c) XA = YA= 3.674 Å 

and XB = YB= 5.0 Å. The energy difference between contours is 1.0 eV, with the zero of energy at 

2O(g) + b-cristobalite slab. Si atoms of the first layer of the 1x1 unit cell are shown by small black 

circles. 

 

Fig. 3 

 

Sticking, reflection, O2(ad/ab) formation and ER probabilities for O collisions with O-precovered b-

cristobalite (100) surface at several collision energies and TS = 1100 K for (a) qv = 0° and (b) qv = 

45°. The inset figures amplify the ER reaction probabilities. 

 

Fig. 4 

 

Sticking, reflection, O2(ad/ab) formation and ER probabilities for O collisions with O-precovered b-

cristobalite (100) surface at several incident angles for Ei = 1eV and TS = 1100 K. 
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Fig. 5 

 

Sticking, reflection, O2(ad/ab) formation and ER probabilities for O collisions with O-precovered b-

cristobalite (100) surface at quasithermal conditions for (a) qv = 0° and (b) qv = 45°. The inset figures 

amplify the ER reaction probabilities. 

 

Fig. 6 

 

Calculated gO(qv=0°,T) (solid circles) and experimental gO(T) atomic oxygen recombination 

coefficients versus the reciprocal temperature for several silica materials. The solid lines show 

Arrhenius fits of some of these data. Experimental data correspond to: air with b-cristobalite (solid 

squares) [10], air with a-quartz (solid triangles) [10] and oxygen with fused quartz “vitreosil” (solid 

diamonds) [33]. Experimental bar errors are ± 30% [10] and classical trajectory values represent one 

standard deviation.  

 

Fig. 7 

 

Final translational (Ei’), vibrational (v’) and rotational (j’) distributions of the O2 molecules formed 

by the ER reaction at the following initial conditions: qv = 0° and T = 1000 K. Only 121 trajectories 

over a total of 25000 trajectories produced this reaction channel. Average values are indicated inside 

the figures. Bins of 5 j' values were used for rotational distributions, summing over all v'. 
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