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ABSTRACT 19 

Among the various (poly)phenols that are being sold as such or as part of a more complex mixture, 20 

hydroxytyrosol (HT) is the only one that bears a European Food Safety Authority health claim. 21 

Therefore, several HT-based products are being developed and sold and it becomes necessary to 22 

evaluate its accessibility following ingestion. Twenty-one volunteers were recruited for a 23 

randomized, crossover, placebo-controlled, and double-blind intervention study.We performed a 24 

Latin square design: after one-week washout, i.e. olive-free diet, subjects were randomly assigned to 25 

the placebo (maltodextrin), 5, or 25 mg/day HT group. Twenty-four hour urine samples were 26 

collected after the intervention week, and baseline urines were collected the week before the study 27 

and during periods of washout. The results show that HT given as the foremost component of a 28 

nutraceutical preparation is bioavailable and is recovered in the urine chiefly as sulphate-3′. 29 

1. Introduction30 

The nutraceutical and functional food market is rapidly expanding and several new products enter the 31 

market on a daily basis (Mahabir, 2014; Tome-Carneiro & Visioli, 2015). Of note, such products are 32 

rarely tested in controlled human trial settings and the efficacy of individual molecules or raw extracts 33 

is often questionable. In addition, the bioavailability of individual molecules or active principle(s) is 34 

seldom assessed, in part because of technical limitations and lack of proper equipment. Among the 35 

various (poly)phenols that are being sold as such or as part of a more complex mixture, 36 

hydroxytyrosol (HT) is the only one that bears a European Food Safety Authority health claim (EFSA 37 

Panel on Dietetic Products, 2011).Therefore, several HT-based products are being developed and 38 

sold (Visioli & Bernardini, 2011) and it becomes necessary to evaluate accessibility of HT following 39 

ingestion. It is noteworthy that HT bioavailability has been reported after extra virgin olive oil 40 

administration (Caruso, Visioli, Patelli, Galli, & Galli, 2001; Miro-Casas et al., 2003), yet never after 41 

the intake of HTcontaining supplements, with the exception of one study with pure HT (Gonzalez-42 

Santiago, Fonolla, & Lopez-Huertas, 2010). In this study, we report the urinary excretion of HT (as 43 

such and as its metabolites) after its administration to healthy volunteers. 44 



2. MATERIALS AND METHODS 45 

2.1 Standards and chemicals 46 

Hydroxytyrosol (HT, 98% purity) standard was purchased from Extrasynthese (France). HT 3′-O- 47 

and 4′-O- glucuronides (HTG- 3′ and HT-G-4′, 86% and 97% purity, respectively) were synthesized 48 

as previously described (Giordano, Dangles, Rakotomanomana, Baracchini, & Visioli, 2015). HT 3′-49 

Osulphate (HT-S-3′, 98% purity) standard was bought from Toronto Research Chemicals Inc. 50 

(Toronto, ON, Canada). Hydroxyphenylpropanol (HOPhPr, 99% purity), used as the internal standard 51 

(ISTD), was purchased from Sigma-Aldrich (St. Louis, MO, USA). LC-grade solvents methanol and 52 

ACN were purchased from Scharlau Chemie, S.A. (Sentmenat, Spain). Ammonium acetate and 53 

glacial acetic acid were purchased from Panreac Química, S.A.U. (Castellar delVallés, Spain). 54 

Ultrapure water (Milli-Q) was obtained from Millipore (Bedford, MA, USA). The capsules that we 55 

administered were elaborated from an olive mill waste water extract preparation called Hytolive®, 56 

supplied by the company Genosa ID, S.L. (Madrid, Spain). 57 

2.2. Subjects and study design 58 

The study protocol was approved by the local ethics committee and written informed consent was 59 

obtained from all subjects prior to starting the trial. This work was carried out in accordance with The 60 

Code of Ethics of theWorld Medical Association (Declaration of Helsinki) and is registered at 61 

ClinicalTrials.gov (identifier: NCT02273622). Samples of this research were obtained from a 62 

previous intervention study, whose objective was to evaluate the effect of HT on the gene expression 63 

of Phase II enzymes (Crespo et al., 2015). Briefly, twenty-one volunteers were recruited for a 64 

randomized, crossover, placebo-controlled, and double-blind intervention study. The design of this 65 

study is shown in Fig. 1. We performed a Latin square design: after one-week washout, i.e. olive-free 66 

diet, subjects were randomly assigned to the placebo (maltodextrin) group, 5 mg/day HT group, or 67 

25 mg/ day HT (Hytolive®) group. Baseline characteristics of participants and inclusion and 68 

exclusion criteria are given in detail in Supplementary Information 1 (S.I.1 in Appendix S1). 69 

Volunteers were given dietary guidelines (Supplementary Information 2, S.I.2 in Appendix S1) that 70 



included abstention from olive products and limitation of high-polyphenol foods and alcohol (Crespo 71 

et al., 2015).Twenty-four hour urine samples were collected after the intervention week, and baseline 72 

urines were collected the week before the study and during periods of washout, and immediately 73 

stored at −80 °C.  74 

2.3. Pretreatment and processing of the urine samples  75 

A total of 63 24-hour (from 21 volunteers, collected in the three experimental phases, after 76 

administration of the supplement) and 42 basal urine samples (collected during the final days of the 77 

second and third washout periods) were analysed. All urine samples were thawed, vortexed, and 78 

centrifuged at 9000 × g for 5 min at 4 °C.The supernatant (20 uL) from each urine sample was diluted 79 

with 0.1% acetic acid by a factor of 10 (1:10 vol:vol) for detection of HT and its glucuronidate 80 

metabolites and by a factor of 50 (1:50 vol:vol) for its sulphates (HT-S-3′and HT-S-4′). Calibration 81 

standards of 5-10-25-50-100- 250-500-1000 ng/mL for HT and 20-40-100-200-400-1000-2000- 4000 82 

ng/mL for HT-G-3′, HT-G-4′ and HT-S-3′ in blank human urine were processed like the 10-fold 83 

diluted samples. An internal standard (HOPhPr) was used at the final concentration of 500 ng/mL in 84 

all cases. Samples and calibration curves were distributed in 96-well plates and 2 uL of each were 85 

injected in randomized order. 86 

2.4. Sample analysis 87 

LC–MS/MS analysis of diluted samples was performed on the Agilent (Santa Clara, CA, USA) 1290 88 

Infinity Binary LC system coupled to an AB SCIEX QTRAP® 6500 spectrophotometer. Acquity 89 

UPLC BEH C18 1.7 um, 2.1 × 5 mm analytical column (Waters) at 40 °C and 1 mM ammonium 90 

acetate at pH 5.0 and 100% ACN as aqueous (A) and organic (B) mobile phases, respectively, were 91 

used for separation (Khymenets et al., 2011; Kotronoulas et al., 2013). Next, gradient elution (B% 92 

(v/v), t (min)) at flow of 0.4 mL/min was applied: (1%, 0–3); (1–20%, 3–3.2); (20%, 3.2–4.5); (20–93 

95%, 4.5–4.8); (95%, 4.8–5.3); (95–1%, 5.3–5.5); (1%, 5.5–6.5). Common MS parameters were as 94 

follows: ion spray voltage (IS) −4500.00, source temperature (TEM) 600 °C, curtain gas (CUR) 20.00 95 

psi, ion source gas 1 (GS1) and gas 2 (GS2) 50.00 psi each, collision-activated dissociation (CAD) 96 



3.00 psi, entrance potential (EP) −10.00 and cell exit potential (CXP) 13.00. The data were collected 97 

under negative ionization in multiple reaction monitoring mode (MRM) with following settings for 98 

compound fragmentations (declustering potential, DP: V; collision energy, CE: eV): HT 153− → 99 

123− (DP: −55; CE: −20); HTG- 3′ and HT-G-4′ 329− → 153− (DP: −60; CE: −30); HT-S-3′ and 100 

HTS- 4′ 233− → 153− (DP: −60; CE: −25) and HOPhPr 151− → 121− (DP: −65; CE: −22). HT, HT-101 

G-3′, HT-G-4′ and HT-S-3′ were quantified using calibration curves constructed with corresponding 102 

standards. HT-S-4′ has been identified only in samples with high concentration of HT-S-3′; its 103 

concentration was estimated using slope of HT-S-3′ calibration curve. The method based on LC– 104 

MS/MS analysis for HT and its glucuronidated and sulphated metabolites in diluted urine samples 105 

was successfully validated, showing good linearity (r2 ≥ 0.99 in all cases) and following sensitivity 106 

(LOQs): 5 and 20 ng/mL urine for HT and its metabolites (glucuronides and sulphate), respectively. 107 

Intra- and inter-day precision and accuracy results were according to the standard requirements (U.S. 108 

Department of Health and Human Services, 2001) for method validation criteria: RSD% and ERR% 109 

were <20% (except HT-S-3′, where they were ≤28%, due to the impact of ever existing endogenous 110 

metabolite) for low and <15% (all compounds) for medium and high concentrations of tested 111 

standards. The results were processed using Analyst 1.6.2 Software (AB SCIEX) and then statistically 112 

analysed. The final results, expressed as concentrations (ng/mL urine) of HT, HT-G-3′, HTG- 4′, HT-113 

S-3′ and HT-S-4′, are shown in Supplementary Table 1 (S.T.1 in Appendix S1).  114 

2.5. Statistical analysis 115 

Data were analysed with R Statistical Software version 3.1.1. Continuous descriptive variables were 116 

expressed as means ± SEM. Two-way repeated measures ANOVA was used to evaluate the effects 117 

of time (basal and 24-hour urine), treatment (A, B, C) and the time × treatment interaction.A 118 

Bonferroni correction for multiple analyses was applied and models were adjusted for age and 119 

sequence (ABC/CAB/BCA) as covariates. All statistical analyses were considered as bilateral and 120 

significance was set at p < 0.05. 121 

3. RESULTS  122 



The administration of a standardized, 10%-HT nutraceutical resulted in a dose-dependent urinary 123 

excretion of HT and its metabolites (Table 1). These changes were statistically significant and were 124 

more pronounced for HT-S-3′. Of note, this molecule was also detected in urines from placebo-treated 125 

subjects, possibly as a consequence of endogenous HT production and excretion (Perez-Mana et al., 126 

2015a,b). Inter-individual variability varied, but was – on average – ~10%. Quantitatively, the total 127 

amount of HT and its metabolites recovered in the urine accounted for 21% (for the 25 mg dose) to 128 

28% (for the 5 mg dose) of the administered dose (Table 2). 129 

Again, the major metabolite we detected was HT-S-3′, which accounted for 23.6% (for the 5 mg 130 

dose) to 16.6% (for the 25 mg dose) of the administered HT. Quantitatively, as we represent in Table 131 

2, the total amount of HT recovered in the urine was minimal and accounted for 0.02% (only for the 132 

25 mg dose). For others metabolites, we observed a dose-dependent increase in their excretion.Again, 133 

the major metabolite we detected was HT-S-3′, which accounted for 23.1% (for the 5 mg dose) and 134 

16.6% (for the 25 mg dose) of the administered HT, followed by HT-G-3′ with 2.78% (for the 5 mg 135 

dose) and 2.87% (for the 25 mg dose). When results were expressed as micromole% (in order to 136 

compare the different excreted compounds; Table 3), the total per cent excretion of all components 137 

dropped to 12.4% (for the 5 mg dose) and 10.2% (for the 25 mg dose). The per cent excretion of HT-138 

S-3′ dropped to 10.7% (for the 5 mg dose) and 8.33% (for the 25 mg dose) of the initial dose, but this 139 

metabolite remained the most abundant one we recovered. 140 

4. DISCUSSION 141 

One important – yet often overlooked issue – in the nutraceutical field is that of absorption and/or 142 

bioavailability of the active principle(s). This applies to omega 3 fatty acids, vitamins, and 143 

(poly)phenols. We here report that HT (one of the most popular and biologically active phenol) is 144 

absorbed and excreted when given as an olive mill waste water extract preparation. In particular, we 145 

recovered ~8 to 10% (as mole%) of the administered HT in the urine and confirmed that most of it 146 

undergoes sulphation at the 3′ position.To date, only one study has been published with pure HT 147 

(Gonzalez-Santiago et al., 2010), whereas many other ones report excretion of this phenol when given 148 

as component of extra virgin olive oil to rats or humans. Indeed, there is ample evidence of the 149 



absorption and excretion of HT via extra virgin olive oil use, even though a comprehensive profile of 150 

its metabolites is being slowly developed. In the first report, Visioli et al. (2000) described how 30–151 

60% of the administered HT was recovered in the urine, mostly as glucuronide conjugate. These data 152 

were subsequently confirmed by Vissers, Zock, Roodenburg, Leenen, and Katan (2002). Afterwards, 153 

more complete investigations (Miro-Casas et al., 2003) contributed to the near-complete elucidation 154 

of HT’s metabolism in humans. More recently, HT sulphate has been proposed as a suitable 155 

biomarker for monitoring compliance with olive oil intake as its values in plasma or/and 24-h urine 156 

were significantly higher after extra virgin olive oil administration compared to baseline pre-157 

intervention concentrations (Rubió et al., 2014). The data we present here reinforce this notion: HT-158 

S-3′ should be quantified in studies of HT as nutraceutical, to monitor compliance. One unresolved 159 

issue is whether the extensive first-pass metabolism affects the manifold in vitro activities reported 160 

for HT and (poly)phenols in general. Indeed, this is an often overlooked aspect of (poly)phenol 161 

research and calls for more metabolite-based biochemical and molecular studies (Giordano et al., 162 

2015), even though organ-specific deconjugation might, theoretically, yield pure HT and contribute 163 

to its biological activities (Giordano et al., 2015). In conclusion, we prove that HT given as the 164 

foremost component of a nutraceutical preparation is bioavailable and is recovered in the urine chiefly 165 

as sulphate-3′, which can be adopted as biomarker of extra virgin olive oil consumption.This is 166 

important in light of future HT-based nutraceutical formulations and epidemiological studies. 167 
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