
Biomarkers of Morbid Obesity and Prediabetes byMetabolomic Profiling of 1 

Human Discordant Phenotypes 2 

Sara Tulipani a,b,⁎, Magali Palau-Rodriguez a, Antonio Miñarro Alonso c, Fernando Cardona b,f, Anna 3 

Marco-Ramell a, Bozo Zonja d, Miren Lopez de Alda d, Araceli Muñoz-Garach b,f, Alejandro Sanchez-4 

Pla c,e, Francisco J Tinahones b,f, Cristina Andres-Lacueva a,⁎ 5 

a Biomarkers & Nutrimetabolomic Lab, Nutrition & Food Science Dept, XaRTA, INSA, Campus 6 

Torribera, Pharmacy and Food Science Faculty, University of Barcelona, 08028, Spain 7 

b Biomedical Research Institute [IBIMA], Service of Endocrinology and Nutrition, Malaga Hospital 8 

Complex [Virgen de la Victoria], Campus de Teatinos s/n, Malaga, Spain 9 

c Statistics Department, Biology Faculty, University of Barcelona, 08028, Spain 10 

d Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of 11 

Environmental Assessment and Water Research [IDAEA-CSIC], Barcelona, Spain 12 

e Statistics and Bioinformatics Unit Vall d'Hebron Institut de Recerca [VHIR], 08035, Spain 13 

f CIBER Fisiopatología de la Obesidad y Nutrición [CIBERobn], Instituto de Salud Carlos III 14 

[ISCIII], Madrid, Spain    15 



ABSTRACT 16 

Metabolomic studies aimed to dissect the connection between the development of type 2 diabetes and 17 

obesity are still scarce. In the present study, fasting serum from sixty-four adult individuals classified 18 

into four sexmatched groups by their BMI [non-obese versus morbid obese] and the increased risk of 19 

developing diabetes [prediabetic insulin resistant state versus non-prediabetic non-insulin resistant] 20 

was analyzed by LC- and FIAESI- MS/MS–driven metabolomic approaches. Altered levels of 21 

[lyso]glycerophospholipids was the most specific metabolic trait associated to morbid obesity, 22 

particularly lysophosphatidylcholines acylated with margaric, oleic and linoleic acids [lysoPC C17:0: 23 

R = −0.56, p = 0.0003; lysoPC C18:1: R = −0.61, p = 0.0001; lysoPC C18:2 R = −0.64, p b 0.0001]. 24 

Several amino acidswere biomarkers of risk of diabetes onset associated to obesity. For instance, 25 

glutamate significantly associatedwith fasting insulin [R=0.5, p=0.0019] and HOMA-IR [R=0.46, 26 

p=0.0072],while glycine showed negative associations [fasting insulin: R = −0.51, p = 0.0017; 27 

HOMA-IR: R = −0.49, p = 0.0033], and the branched chain amino acid valine associated to 28 

prediabetes and insulin resistance in a BMI-independentmanner [fasting insulin: R=0.37, 29 

p=0.0479;HOMA-IR: R=0.37, p=0.0468].Minority sphingolipids including specific 30 

[dihydro]ceramides and sphingomyelins also associated with the prediabetic insulin resistant state, 31 

hence deserving attention as potential targets for early diagnosis or therapeutic intervention. 32 
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INTRODUCTION 51 

Metabolomics [1] is opening avenues to the discovery of biomarkers associatedwith insulin resistance 52 

and type 2 diabetes (T2D) [2–5].Most of the human large-scale population-based studies carried out 53 

so far, however, mirrored the strong epidemiologic relationship between obesity and the impairment 54 

of glycemic control, and no emphasiswas given to dissect the connection between obesity and 55 

diabetes or on the impact of the degree of adiposity in differentiating diabetic and nondiabetic 56 

individuals [6–10]. Hence, the identified metabolites of diabetes often coincide with obesity markers 57 

and not enable to corroborate the actual contribution of obesity in their predictive capacity. Moreover, 58 

since the establishment of T2D generally occurs in a later phase of the natural history of obesity [11], 59 

the identification of biomarkers of early diabetes onset prior to its clinical diagnosis is crucial to 60 

define the first metabolic derangements associated with incipient glycemic control impairment, and 61 

ultimately promote prediction, early diagnosis and intervention of the disease at earlier stages [12]. 62 

Even so, evidence indicates that individuals' risk of developing diabetes may not uniformly depend 63 

on their body size [13,14]. Obese population subsets who maintain blood sugar control parameters 64 

within the normal range do exist, even at evolved stages of obesity (Body Mass Index, BMI ≥ 40) 65 

[15], aswell as T2D occur among adult lean individuals [16]. Although the clinical relevance of these 66 

subgroups remains debated [17], the study of discordant metabolic phenotypes for obesity and 67 



diabetes provides a unique and poorly unexploited opportunity to examine the interrelations between 68 

adipose tissue expansion and the gradual development of T2D and its sequelae [disease risk 69 

assessment]. However, the studies focused on themare still very scarce, small-scaled [18–20] or not 70 

focused on humans [21]. In the present study, we propose that the metabolic profiling of human 71 

concordant and discordant phenotypes for obesity and prediabetes/ insulin resistancewould define 72 

themetabolic alterations associated to adipose tissue expansion fromthose related to the incipient 73 

failure in the glucose homeostasis, and help to dissect the connection between the two diseases. 74 

Univariate statistics was first applied to highlight any significant metabolic variation among the 75 

phenotypic groups in study. Age-adjusted regression analysis was used to assess the statistical 76 

significance of the relations of individual metabolites with the clinical traits of morbid obesity and 77 

prediabetes/insulin resistance, and the significant associationswere visualized into organicmetabolic 78 

networks. Finally, the diagnostic power of the most discriminant metabolites in correctly classifying 79 

the obese and prediabetic/insulin resistance phenotypes was evaluated. 80 

2. Material and Methods 81 

2.1. Subjects and Study Design 82 

Sixty-four adult individuals (19men and 45women)were recruited at the Virgen de la Victoria 83 

University Hospital and Carlos Haya Hospital (Málaga, Spain). Overall exclusion criteria were acute 84 

or chronic infection, a history of cancer, a history of alcohol abuse or drug dependence, and all type 85 

of antidiabetic, corticosteroid, or antibiotic drug treatments. Other treatments including anti-86 

inflammatory, antihypertensive and anti-cholesterolemic agents were recorded, but not restricted. 87 

The following measures were used for the clinical characterization of the subjects in study: a) 88 

anthropometric markers, measured by trained personnel using standardized techniques: body weight 89 

(kg), BMI (calculated as weight in kg/height2 in m2), waist circumference (cm), hip circumference 90 

(cm) and waist-hip index; b) markers of glucose regulation: plasma concentrations of fasting glucose 91 

(FG, mmol/L), fasting insulin (μU/mL), calculated Homeostatic Model Assessment (HOMA-IR 92 

index, arbitrary unit), glycated hemoglobin (HbA1c) concentration (%, mmol/mol), when available; 93 

c) blood pressure markers: diastolic and systolic blood pressure (mm Hg); d) blood lipid markers 94 



(mmol/L): total cholesterol, low-density lipoproteins and high-density lipoproteins cholesterol, and 95 

triglycerides. The individuals were then classified into four sex-matched phenotypic groups 96 

according to their BMI (non-obese if: BMI = 18,5–26,9 kg/m2;morbidly obese if: BMI N 40 kg/m2) 97 

and to the risk of developing type two diabetes based on fasting plasma glucose concentrations and 98 

insulin resistance (non-prediabetic/non-insulin resistant state if: FG b 100 mg/dL and HOMA-IR b 99 

2.5; prediabetic/insulin resistant state if: 100 ≤ FG b 126 mg/dL and HOMA-IR N 3.4). The cut-off 100 

of HOMA-IR for identifying insulin resistant individuals was obtained experimentally by dividing 101 

the entire initial cohort into quartiles, and revealed to be higher than that generally accepted as the 102 

clinical definition of insulin resistance (N2.60), in linewith previous reports [13]. The study protocol 103 

was approved by the local Ethics and Research Committees (Hospital Universitario Virgen de la 104 

Victoria,Málaga) and all participants provided written informed consent. 105 

2.2. Serum metabolomic profiling 106 

Fasting morning serum was stored at −80 °C until analysis. Metabolomic measurements were 107 

performed through two different platforms. A TSQ Vantage™ triple quadrupole mass spectrometer 108 

with ESI-II Ion Source (Thermo Scientific) equipped with a binary HPLC system was used for the 109 

in-house running of the AbsoluteIDQ p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria), 110 

through a standardized protocol as described bymanufacturer. Data acquisitionwas carried out using 111 

liquid chromatography tandem mass spectrometry (LC-MS/MS, 5 μL injection volume, ESI+, 112 

Thermo Scientific Hypersil GOLD 3.0 μm 2.1 × 100 mm HPLC column), and flow injection analysis 113 

tandem mass spectrometry (FIA-MS/MS, 10 μL injection volume, ESI+ and ESI-) techniques. The 114 

remaining lipid metabolites were quantitatively analyzed via a high-throughput flow injection ESI-115 

MS/MS screening method by Biocrates AG service (Innsbruck, Austria) through a validated protocol. 116 

Serum samples were analyzed in a randomized batch format, to avoid run-order effects. Quality 117 

control samples including three reference plasma spiked with increasing concentrations of the 118 

targeted metabolites (QC1, QC2, QC3) and zero samples (10 mM phosphate buffer with internal 119 

standards) were analyzed every 20 injections, throughout the whole run, to control the stability and 120 

performance of the system and evaluate the quality of the acquired data. Quantifications were 121 



achieved by multiple reaction monitoring, by reference to multipoint calibration curves and/or in 122 

combination with the use of stable isotope- labelled and other internal standards, to compensate for 123 

matrix effects, as previously described [22]. Data evaluation and quantitative data analysis was 124 

performed with MetIDQ™ software (Biocrates Life Sciences AG) enabling isotopic correction and 125 

basic statistical analysis. Validated analytical methods were applied, in conformance with FDA 126 

Guidelines (U.S. Department of Health and Human Services 2001), as described by the manufacturer 127 

(UM-P180-THERMO-3). 128 

2.3. Statistical analysis 129 

Statistical analyseswere performed in the R environment (R version 3.1.2). After excluding those 130 

metabolic measures below the limits of detection in N25% subjects in any of the phenotypic groups, 131 

and with high analytical variance in the QC2 replicates (CV N 25%), 246 successful metabolites 132 

remained for further analysis (Supplementary Table 1). Metabolite levels were log-transformed and 133 

Pareto scaled, missing values were imputed using nearest neighbor averaging (k=10) and the potential 134 

effects of age and drug intake on themetabolomics data was removed by the application of a feature 135 

selector on each dependent variable, according to the Akaike Information Criterion [23]. Univariate 136 

statisticswas first applied to highlight any significant variation among all the four phenotypic groups 137 

in study, and between the morbid obese and prediabetic/insulin resistance phenotypes (ANOVA and 138 

HSD Tukey contrasts for pairwise mean comparisons, p = 0.05, q = 0.05). Age-adjusted regression 139 

analysis was used to assess the statistical significance of the relations of individual metabolites with 140 

the clinical traits of obesity (BMI) and prediabetes/insulin resistance (fasting glucose concentrations, 141 

HOMA-IR). The significant metabolite-metabolite and metabolite-clinical correlations were 142 

visualized into an organic metabolic network (Cytoscape 3.3.0), where nodes represent metabolites 143 

while edges configure any positive or negative significant relation among them. Significance 144 

(adjusted p-value b0.05) and correlation degree cut-offs were set (adjusted Spearman's partial 145 

correlation coefficients N |0.35|) similarly to previous studies [24]. Finally,we evaluated the capacity 146 

to correctly classify the subjects in their phenotypic groups by using their metabolic profiling, without 147 

the help of clinical predictors, and compared the diagnostic power of the metabolic profiling with that 148 



of the clinical measures available. To do that, the most robust metabolic markers were first selected 149 

by features selection techniques, so to generate a consensus list of successfulmetabolic classifiers, 150 

and their diagnostic power was evaluated by applying linear and non-linear classification techniques 151 

(Supplementary material). 152 

3. Results 153 

Clinical baseline characteristics of the study subjects are shown in Table 1. Female participants were 154 

prevalent, but no gender-dependent differences were detected among groups (Chi-squared test, p = 155 

0.324). Table 2 summarizes the serumconcentrations of themetabolites which significantly 156 

differedamong the phenotypic groups. Although the current lack of established reference values for 157 

most of the metabolic species analyzed (i.e. lipid molecules), the concentration range (nM to μM) 158 

was in line with previous quantifications [25]. On the basis of their partial correlations, the measured 159 

metabolites allowed to depict a metabolic network (Fig. 1). Metabolites clearly clustered based on 160 

their biochemical classes and pathways membership, and phospholipids made the biggest cluster in 161 

the network, followed by amino acids and biogenic amines, ceramides and acylcarnitines sub-162 

networks. The associations of obesity and glycemic impairment with specific metabolites of the 163 

serum metabolic network are shown in Fig. 2. The strongest clinical-metabolite associations were 164 

observed between obesity markers and individual lyso- and glycerophospholipid species. More 165 

specifically, the levels of three lysophosphatidylcholines (lysoPC) showed very strong inverse 166 

relations with BMI (lysoPC C17:0: R=−0.56, p=0.0003; lysoPC C18:1: R=−0.61, p = 0.0001; lysoPC 167 

C18:2 R = −0.64, p b 0.0001), as well as with body weight, waist and hip circumference. Similar but 168 

less significant correlationswere also observed between obesity markers and serum phospholipids, 169 

especially diacyl- and alkyl acyl species with long-chain polyunsaturated fatty acids (PUFA). The 170 

circulating levels of glutamate and glycine levels associated weaklywith adipositymarkers but 171 

stronglywith insulin resistance, suggesting to be in the cross-talk between the two pathologies. 172 

Glutamate levels particularly showed positive associations with fasting insulin (R = 0.5, p = 0.0019) 173 

and HOMA-IR index (R = 0.46, p = 0.0072), while glycine concentrations negatively associated with 174 

the same parameters (fasting insulin: R = −0.51, p = 0.0017; HOMA-IR: R=−0.49, p=0.0033) 175 



(Supplementary Fig. 1). A positive association between the levels of the branched-chain amino acid 176 

(BCAA) valine and the degree of insulin resistance was also observed (fasting insulin: R= 0.37, 177 

p=0.0479;HOMA-IR: R=0.37, p=0.0468), independently from the BMI (Supplementary Fig. 1). 178 

Finally, the prediabetic and insulin resistant state confirmedmodest but positive correlationswith 179 

circulating nonpolar sphingolipids including several specific (dihydro)ceramides (increase of 180 

ceramide d18:1/C18:0 and dehydroceramides d18:0/ C18:0 and d18:0/C22:0) and sphingomyelins 181 

(increase of sphingomyelin C18:0). Metabolic versus clinical predictors. Both choline and 182 

ethanolaminecontaining lysolipids acylated with margaric acid (C17:0) oleic acid (C18:1) and 183 

linoleic acid (C18:2) were the best classifiers for morbid obesity, together with diacyl and acyl alkyl 184 

phosphocholines with very long-chain fatty acids (Supplementary Fig. 2). The amino acid valine 185 

confirmed to be within the selective markers of prediabetes, together with sphingomyelins C18:0 and 186 

C18:1. In contrast, alterations in the circulating levels of the amino acid glycine and different 187 

ceramide species were selected as metabolic classifiers of both conditions (e.g. hydroxyceramide 188 

C17:0, dihydroceramides C20:0, C22:0 and 24:1). The robustness of the top-ranked metabolic 189 

markers in correctly classifying the individuals on the basis of the obese and prediabetic phenotypes 190 

was poor in respect to the use of clinical predictors (53 to 56% error in predicting classification), 191 

(Supplementary Table 2) reasonably due to the difficulty in clearly defining themetabolic profile of 192 

an incipient glycemic impairment. When considering obesity and prediabetes for separate, in turn, 193 

prediction capacity improved notably, especially for the morbid obesity phenotype Table 3. 194 

4. Discussion 195 

The use of organic metabolic networks based on age-adjusted regression analysis was helpful in 196 

identifying significant associations of individual metabolites with prediabetes or insulin resistance 197 

and morbid obesity. 198 

4.1. Early metabolic markers associated to increased risk of diabetes development 199 

4.1.1. Variation in the amino acid profile 200 



Although the objective difficulty in defining themetabolic signature of an incipient glycemic 201 

impairment, compared to the characterization of an evolved state of obesity, altered levels of specific 202 

amino acids were detected in prediabetic patients, compared to non-prediabetic individuals, so to be 203 

proposed as suitable early predictors of increased risk for diabetes. Glutamate and glycine were the 204 

most significantly altered amino acids associated to the prediabetic phenotype (i.e. rise of glutamate 205 

versus progressive decline of glycine compared with the matched control group), followed by the 206 

BCAA valine. Their circulating levels also associated with adiposity markers [namely BMI, body 207 

weight and waist circumference], but in a modest extent. In morbidly obese subjects, for instance, a 208 

2-fold increase in the serumlevels of glutamatewas particularly observed, compared to non-209 

prediabetic obese controls, suggesting alterations in the glutamatemetabolismas a 210 

selectivemetabolicmarker of an early onset of diabetes in subjectswith high BMI. By its conversion 211 

to α-ketoglutarate, a precursor of glutamine, higher concentrations of glutamatemight provide an 212 

alternative energy source to either glucose via glycolysis or fatty acids via β-oxidation [26], thus 213 

possibly playing a compensatory role against glucose and lipid metabolism impairment. Hence 214 

reciprocal associations of glutamine and glutamate circulating levels with glycemic impairment might 215 

reflect the role of glutamate as a substrate of the tricarboxylic acid cycle. In linewith these 216 

speculations, in our study glutamine levels decreased progressively across themorbid obese, 217 

prediabetic and morbid prediabetic/obese individuals, although differences did not reached the 218 

statistical significance. A strong correlation between insulin resistance and the fasting glutamate has 219 

been described in large population-based studies [27], and decreased levels of glycine have been 220 

proposed as an early predictor of incident dysglicaemia and insulin resistance in high-risk nondiabetic 221 

subjects in follow-up studies [8,9]. Although any causative relations between altered levels of 222 

glutamate or glycine and metabolic impairment have been proved so far [28], the circulating 223 

concentrations of bothmetabolites have been shown to drastically reverse to the normal concentration 224 

range after gastric bypass surgery or behaviouralweight loss and to predict the concomitant 225 

improvement of glycemic control [29,30], thus reinforcing the possible mechanistic relation with the 226 

beneficial metabolic adaptations associated to weight loss. It is noteworthy that a low-grade 227 

inflammatory state is considered as one of the fundamentalmechanisms in the progression of obesity-228 



related diseases [31]. Interestingly, inflammation has been also proposed as an intriguing intersection 229 

between the metabolism of the amino acids significantly altered in our study and the development of 230 

prediabetes. For instance, in vivo studies have suggested that glycine might suppress the production 231 

of pro-inflammatory cytokines (i.e. TNF-α and IL-6), increase adiponectin secretion through the 232 

activation of PPAR-γ, and prevent insulin resistance and associated inflammatory diseases [32]. The 233 

effects of inflammatory cytokines on glutamate metabolismare also under investigation. In the 234 

scenario, the progressive alteration of glutamate and glycine levels from the lean to the ‘healthy’ 235 

morbid obese up to the morbid prediabetic obese phenotype, observed in our study, may confirm a 236 

link between the metabolism of these amino acids and a lower inflammatory state. Finally, in our 237 

study the association of BCAA valinewith insulin resistance was BMI-independent, and do not 238 

confirm a primary association between altered BCAA levels and obesity. The implication of an 239 

impaired BCAA metabolism in the development and interconnection of obesity and diabetes is 240 

currently a prominent topic of discussion [33]. In line with our findings, elevated blood 241 

concentrations of BCAA and their derivatives has been observed as an early manifestation of insulin 242 

resistance and diabetes [reviewed in [34]]. A significant correlation between plasma valine 243 

concentration and HOMA index has been also demonstrated in subjects spanning normal glucose 244 

tolerance, impaired glucose tolerance, and diabetes [35], and similar results were obtained adjusting 245 

plasma BCAA levels for BMI [2,36] or waist circumference [37]. However, several experimental 246 

studies also suggest that increased circulating BCAA would specifically mirror obesity-dependent 247 

diabetic states, possibly related to altered adipose tissue BCAA catabolism [18, 38–40]. Although 248 

attempts to reconcile these disparate perspectives have been already proposed [41], more 249 

investigations are required to reach a definitive overview. 250 

4.1.2. Increase of circulating sphingolipids 251 

A substantive literature has accumulated implicating sphingolipids, especially enhanced ceramide 252 

generation, as mediators of diabetes and insulin resistance progression [42–44]. Besides confirming 253 

ceramides as an attractive therapeutic target for obesity-associated insulin resistance, our study 254 

specifically focused the attention on individual sphingolipid species significantly associated with the 255 



prediabetic phenotype, including sphingomyelin species with saturated acyl chains [i.e. 256 

sphingomyelin C18:0], ceramide d18:1/C18:0 and dihydroceramides d18:0/C18:0 and d18:0/C22:0. 257 

These last observations particularly sustain the concept that dihydroceramides are not merely inert 258 

precursors of ceramides, andwould confirma link between the accumulation of dihydroceramides and 259 

the changes in the dihydroceramide/ceramide ratio with the impairment of adipose tissue expansion 260 

and adipocyte function, through the alteration of membrane-associated processes [45]. Our findings 261 

would be also in line with an increased expression of the CerS1, the most abundant (dihydro)ceramide 262 

synthase isoform in skeletal muscle and specifically involved in the synthesis of C18:0 ceramides 263 

[44], recently described in mice fed a high-fat diet and associated with alterations in ceramide levels 264 

and glucose tolerance [46]. 265 

4.2. Morbid obese markers 266 

4.2.1. Drop of glycerophospholipids 267 

Recent large-scale metabolomic studies indicated several cholinecontaining [lyso]lipids, including 268 

lysoPC C18:2, as potential biomarkers of diabetes [7], and lysoPC C18:2 and glycine were confirmed 269 

to be predictive markers of diabetes in a second large-scale population-based (KORA) cohort [9]. In 270 

these works, however, no emphasis was given to the different degree of adiposity observed between 271 

diabetic and nondiabetic individuals (i.e. cases of diabetes often having higher BMI and waist 272 

circumference compared to the non-cases), thus not enabling to corroborate the actual contribution 273 

of obesity in the predictivity of these metabolic markers. In contrast, in our study, a significant drop 274 

of lyso- and glycerophospholipids clearly characterized the morbidly obese phenotype, independently 275 

fromthe glycemic state of the individuals. This would suggest that alterations of the (lyso)lipid 276 

metabolism would associate with adipose tissue expansion but not play a pivotal early role in the 277 

early onset on glycemic impairment, as also recently suggested [47]. The levels of three lysolipids, 278 

namely lysophosphocholines acylated with margaric acid (lysoPC C17:0) oleic acid (lysoPC C18:1) 279 

and linoleic acid (lysoPC C18:2), were particularly reduced inmorbid obesity. Thesemetabolic 280 

intermediates are enzymatically produced during the de−/re-acylation cycles that control the overall 281 

lipid species composition, and are considered a readout of β-oxidation. Despite their relatively short 282 



half-life, circulating lysoPC C18:1 and C18:2 have been previously described as independent 283 

correlates of glucose intolerance and insulin resistance in nondiabetic subjects, besides as putative 284 

lipid-signalling molecules [8,48]. In addition to lysolipids, in our study as in previous research, the 285 

vast majority of the diacyl glycerophospholipids which markedly decreased in serum of morbidly 286 

obese individuals were plasmalogens, namely phospholipids inwhich one of the two carbon atoms on 287 

glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. In the 288 

compresence of severe obesity and impaired glycemic control, plasmalogens concentrations dropped 289 

even more (Table 2). On overall, significant plasmalogens consisted in long-chain and very longchain 290 

PUFA-containing phosphatidylcholines and phosphatidylethanolamines, thus probably mirroring 291 

enhanced fatty acid desaturation and elongation activities. A correlation between desaturase enzyme 292 

activities and obesity has been also found in several cases [49] and partly explained as a mechanism 293 

for modulating packing and degree of order in the membrane phospholipid bilayer. Lipidomic studies 294 

on twins discordant for body size (lean vs obese) recently suggested that individuals in the early stage 295 

of obesity had increased proportions of very longchain PUFA-containing phospholipids in their 296 

adipose tissue (despite their lower dietary intake of PUFA compared to the lean twins) and a 297 

proportional diminishment of phospholipids containing shorter and more saturated fatty acids, 298 

regulated by Elovl6 [49].With adipose cell expansion, more phospholipids have to be incorporated 299 

into the cellular membranes. Increasing PUFA content, decreasing plasmalogen concentration and 300 

using choline instead of ethanolamine-containing headgroup are known compensatory mechanisms 301 

of cell membranes to maintain fluidity, permeability to small molecules at the price, however, of 302 

increasing their vulnerability to inflammation. Although focused on the blood compartment and 303 

apparently conflicting, our data are consistent with the findings recently obtained at the adipose tissue 304 

level, since a down-regulation of plasmalogens in serumof obese twins was previously documented 305 

[50]. Certainly, an in-depth analysis of the adipose tissue membrane composition at different stages 306 

of obesity and metabolic impairment will be highly hoped to verify the hypothesis. Furthermore, it 307 

should be verified whether the circulating glycerophospholipid pool may mirror accumulation and 308 

structural functioning in adipose tissue. 309 

5. Conclusions 310 



Our targeted metabolomics approach gave a granular metabolic footprint of morbid obesity and 311 

prediabetes/insulin resistance. The alteration in the (lyso)phospholipid metabolism was the most 312 

specific trait associated tomorbid obesity, particularly mirrored by the circulating levels of lysoPC 313 

C17:0, C18:1 and C18:2. Results also indicate glutamate and glycine as biomarkers of early diabetes 314 

onset associated to obesity, while the association of valine with glycemic impairment was BMI-315 

independent, hence a primary association between altered branched-chain amino acids levels and 316 

obesity was not confirmed. In addition, minority sphingolipids including specific (dihydro)ceramides 317 

and sphingomyelins also associated with the prediabetic state, hence deserving attention as potential 318 

targets for early diagnosis or therapeutic intervention. The degree of redundancy in the fatty acyl 319 

composition observed across the altered lipid species should deserve attention in future studies (e.g. 320 

acylation with non-essential C18:0, C18:1, and essential C18:2n-6 fatty acids was the most common 321 

alteration associated to morbid obesity) since suggesting a specific association between their 322 

dysfunctional metabolism and the extreme adipose tissue expansion. So far, the mechanistic 323 

explanation is not so intuitive. Certainly, the interpretation of our data needs to be assessed within 324 

the context of the limitations of the presentwork. For instance, it iswell recognized that insulin 325 

resistance develops on a continuum, thus the use of cutting points of fasting glucose and insulin 326 

sensitivity to differentiate phenotypes at high versus low insulin sensitivity could be questionable. As 327 

well as, the spectrum of insulin sensitivity in the study cohort was not based on load testing such as 328 

the hyperinsulinemic euglycemic clamp and oral glucose tolerance test. Nevertheless, for this reason 329 

we experimentally calculated the HOMA-IR cut-off for identifying insulin resistant individuals, and 330 

set it at a higher value than usually accepted. Since the lack of significance among phenotypic 331 

categories should be interpreted in the context of sample size/statistical power, future researchwill 332 

require larger studies to confirm the predictively of the detected biomarkers in the case of subclinical 333 

glycemic impairment in apparently insulin sensitive and glucose tolerant obese subjects. Finally, the 334 

authors support large-scale studies to replicate and validate the results, as well as future studies 335 

focused on the study of pathways involved. 336 
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