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Abstract

We consider the families of entire transcendental maps given by Fλ,m(z) = λzm exp(z)
where m ≥ 2. All functions Fλ,m have a superattracting fixed point at z = 0, and a
critical point at z = −m. In the parameter planes we focus on the capture zones, i.e.,
λ values for which the critical point belongs to the basin of attraction of z = 0, denoted
by A(0). In particular, we study the main capture zone (parameter values for which the
critical point lies in the inmediate basin, A∗(0)) and prove that is bounded, connected
and simply connected. All other capture zones are unbounded and simply connected. For
each parameter λ in the main capture zone, A(0) consists of a single connected component
with non-locally connected boundary. For all remaining values of λ, A∗(0) is a quasidisk.
On a different approach, we introduce some families of holomorphic maps of C∗ which
serve as a model for Fλ,m, in the sense that they are related by means of quasiconformal
surgery to Fλ,m.

1 Introduction and results

One of the central topics in complex dynamics is the study of the dynamics of the quadratic
polynomial Qc(z) = z2 + c. The dynamical behavior of the map Qc is determined by the
orbit of the unique critical point z = 0. These maps have been thoroughly studied by many
authors (see for example [DH1], [DH2], [CG], [M1], [L]). In analogy with the quadratic family
of polynomials Qc, the exponential map Eλ(z) = λ exp(z), with a unique asymptotic value
at v = 0, is the simplest example of an entire transcendental map with rich and interesting
dynamics.

The systematic study of cubic polynomials began with the work of Branner and Hubbard
([BH1]), who considered the two parameter family of monic and centered cubic polynomials
which, after a suitable normalization, is given by Ca,b(z) = z3−3a2z+b. Notice that any cubic
polynomial is affine conjugate to one in this family. The dynamics of monic centered cubic
polynomials is determined by the orbits of the two critical points located at ±a. Moreover,
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they proved that the cubic connectedness locus, which is a subset of C
2, consisting of all the

parameters (a, b) ∈ C × C such that J (Ca,b) is connected, is compact and connected. Many
authors have investigated subfamilies, or slices, of the family of cubic polynomials (among
others see [M], [Fau], [BH2], [R], [Z], [BuHe]).

Milnor studied the one parameter family of cubic polynomials having a superattracting
fixed point ([M]). These polynomials are given by

Ma(z) = z3 − 3

2
az2. (1)

It is easy to see that Ma has a superattracting fixed point at z = 0, and a free critical point
at z = a. When z = a belongs to the basin of attraction of the superattracting fixed point
z = 0 we say that the critical point z = a has been captured. The connected components
of the parameter space for which this phenomenon occurs are called capture zones. We also
define the main capture zone, as the set of parameter values a for which the critical point
z = a belongs to the immediate basin of z = 0. The original parametrization of the Milnor
cubic polynomials was C̃a(z) = z3 − 3a2z + 2a3 + a, but both families are equivalent since
they are conjugate under an affine change of coordinates.

Milnor ([M]) suggested two questions about the family of cubic polynomials Ma, one in
the dynamical plane and another one in the parameter plane. The first one was to investigate
wether for all parameter values a, the boundary of the immediate basin of attraction of z = 0
is a Jordan curve. The second one was to investigate wether the boundary of the main
capture zone is a Jordan curve. Both questions were answered by Faught ([Fau]) using a
modification of the Yoccoz’s puzzle for a rational like mapping (see [R]). Faught proved that
for all parameter values, a ∈ C, the immediate basin of attraction of z = 0 is a Jordan domain
and also the boundary of the main capture zone is a Jordan curve.

Roesch ([R]) generalized this result, in the dynamical plane, for an extension family of
the Milnor cubic polynomial. More precisely, we can consider the family of polynomials

Mm,a(z) = zm+1 − m + 1

m
azm (2)

as a generalized family of the Milnor cubic polynomials. For each m ≥ 2 the point z = 0 is a
superattracting fixed point of multiplicity m, and z = a is a free critical point (when m = 2
we find exactly the Milnor cubic polynomial Ma). It is proven ([R]) that for every value of
m ≥ 2 and for all parameters a ∈ C, the boundary of the immediate basin of attraction of
the superattracting fixed point z = 0 is a Jordan curve.

Our goal in this work is to study some dynamical aspects of the families of entire tran-
scendental maps

Fλ,m(z) = λzm exp(z), m ≥ 2. (3)

All functions of the form Fλ,m, with m ≥ 2, have a superattracting fixed point at z = 0 of
multiplicity m, which is also an asymptotic value. The only other critical point is z = −m.
The coexistence of a superattracting fixed point and a free critical point makes this family
an entire transcendental analogue of the generalized Milnor polynomials (Equation (2)).

Some functions in the family Fλ,m = λzm exp(z) for m ≥ 2 have been used in the literature
as examples of certain dynamical phenomena (see for example [Be], for a Baker domain at
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a positive distance from any singular orbit for a lift of a certain member Fλ,m). We also
notice that fixed points of Fλ,m appear in a different mathematical context. More precisely,
Fλ,m(z) = z is the characteristic equation of the following delay differential equation

dm−1x

dtm−1
=

1

λ
x(t− 1).

If we search for some value z0 such that x(t) = c ez0t is a solution, we obtain the characteristic
equation λzm0 exp(z0) = z0.

In ([FG]) we made an initial study of the discrete dynamical system generated by the
map Fλ,m. We focussed our attention in a description of the dynamical planes, and specially
on the basin of attraction of the superattracting fixed point at z = 0. In this paper we turn
our attention to the parameter planes of the family of functions Fλ,m. As usual in complex
dynamics as A. Douady dixit: “you first plow in the dynamical plane and then harvest in the
parameter space”.

As we mentioned, the origin is a superattracting fixed point of the function Fλ,m, for all
m ≥ 2 and λ ∈ C. We denote by A(0) = Aλ,m(0) the basin of attraction of the origin, given
by

A(0) = Aλ,m(0) = {z ∈ C, F ◦n
λ,m(z) → 0 as n→ ∞}. (4)

The immediate basin of attraction of z = 0 is the connected component of A(0) containing
z = 0, and we denote it by A∗(0) = A∗

λ,m(0).

One of the main objective of this work is the study of Aλ,m(0). We would like to answer
the following questions: How many connected components does Aλ,m(0) have? Are they
simply connected? Are they bounded? When is the boundary of A∗

λ,m(0) locally connected?

For some parameter values, the free critical point z = −m belongs to the basin of attrac-
tion of z = 0, in which case we say that it has been captured. The connected components of
parameter space for which this phenomenon occurs are called capture zones, and they clearly
do not exist for members of the family Fλ,m with m < 2, i.e., for the exponential family.

We will study the capture zones given by

Hn
m = {λ ∈ C |Fnλ,m(−m) ∈ A∗

λ,m(0) and n is the smallest number with this property} (5)

As a special case, we define the main capture zone, H0
m, as the set of parameter values λ

for which the critical point z = −m itself belongs to the immediate basin of 0. That is,

H0
m = {λ ∈ C | −m ∈ A∗

λ,m(0)}. (6)

We shall see that, this is a quite special capture zone since its boundary separates the
parameter values for which F(Fλ,m) has one connected component from those for which it
has infinitely many.

In the parameter plane we will answer the following questions: Is Hn
m connected? Are the

connected components of Hn
m simply connected? Are they bounded? How does the boundary

of A∗
λ,m(0) depend on λ? Is ∂A∗

λ,m(0) locally connected when λ belongs to Hn
m?

3



In order to answer all of these questions we divide our study into two parts. In the first
one, we study directly the family of functions Fλ,m = λzm exp(z) using standard tools in
complex dynamics. In the second one, we relate it to a new family of maps given by

Gα,β,m(z) = exp(iα)zm exp(β/2(z − 1/z)) , (7)

where α and β are real numbers and m ≥ 2. The family of functions Gα,β,2 have been
investigated as real maps on the unit circle by M. Misiurewicz and A. Rodrigues ([MR]).
Using quasiconformal surgery, we relate members of Gα,β,m to those of Fλ,m, and use this
correspondence to prove some results for the original maps.

We first concentrate on the dynamical plane and especially in the basin of attraction
Aλ,m(0). More precisely, we prove the following result related to the topology of the connected
components of Aλ,m(0).

Proposition A. Let λ ∈ C, m ∈ N, m ≥ 2 and Fλ,m(z) = λzm exp(z). Let Aλ,m(0)
and A∗

λ,m(0) be the basin and the immediate basin of attraction of z = 0 for the map Fλ,m,
respectively. The following statements hold.

a) All connected components of the Fatou set of Fλ,m are simply connected.

b) Aλ,m(0) has either one or infinitely many connected components.

c) All the connected components of Aλ,m(0) different from A∗
λ,m(0) are unbounded.

Further we describe the main features of the parameter planes of the functions Fλ,m and,
in particular, the structure of the capture zones. We summarize some of these facts in the
following theorems. In the first one we study the topology of the capture zones. In the second
one we investigate the local connectivity of the boundary of A∗

λ,m(0). In the third we study

the complement of the closure of the main capture zone H0
m.

Theorem B. For all parameters m ∈ N, m ≥ 2, let Hn
m, H0

m be the capture zones as in (5)
and (6), respectively. The following statements hold.

a) The critical point −m belongs to A∗
λ,m(0) if and only if the critical value Fλ,m(−m) belongs

to A∗
λ,m(0). Hence H1

m = ∅.

b) There exist ρ = ρ(m), ρ′ = ρ′(m) verifying 0 < ρ < ρ′ such that Dρ ⊂ H0
m ⊂ Dρ′ , where

Dr = {z ∈ C | |z| < r}.

c) The main capture zone H0
m is connected and simply connected.

d) Let n ≥ 2. All the connected components of Hn
m are simply connected and unbounded.

Theorem C. Let λ ∈ C, m ∈ N, m ≥ 2. Let Hn
m, H0

m be the capture zones as in (5) and
(6), respectively. The following statements hold.

a) If λ ∈ H0
m then Aλ,m(0) = A∗

λ,m(0). However if λ /∈ H0
m then Aλ,m(0) has infinitely many

connected components.
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b) If λ ∈ H0
m the boundary of A∗

λ,m(0) (which is equal to the Julia set) is a Cantor bouquet
not locally connected.

c) Let Um be the unbounded connected component of C\H0
m. If λ ∈ Um, then the boundary of

A∗
λ,m(0) is a quasicircle. In particular, if λ ∈ Hn

m for any n ≥ 2 the boundary of A∗
λ,m(0)

is a quasicircle.

Theorem D. Let Um be the unbounded connected component of C \ H0
m. The following

statements hold.

a) ∂H0
m = ∂Um.

b) If there exist a bounded connected component V of C \ H0
m, then Um,H0

m and V are lakes
of Wada, i.e., they have a common boundary.

There is another question which will remain unanswered in this work and which we state
as a conjecture.

Conjecture. The boundary of H0
m is a Jordan curve.

Finally, we take a second approach, using quasiconformal surgery, to further describe the
maps at hand. More precisely,

Gα,β,m(z) = exp(iα)zm exp(β/2(z − 1/z)),

where α and β are real numbers and m ≥ 2, which we relate to the original one by means of
quasiconformal surgery. Roughly speaking quasiconformal surgery is a technique to construct
holomorphic maps with some prescribed dynamics. In our case, we combine two dynamical
systems acting in different parts of the plane to construct a new system that combines the
dynamics of both. In this process we use quasiconformal mappings to glue different behaviors.
The key ingredient of this technique is to use the Measurable Riemann Mapping Theorem
([Ah, LV]) in order to assure that the corresponding mapping is a holomorphic map.

For our construction, it will play a fundamental role the fact that Gα,β preserves the unit
circle S1. More precisely, Gα,β induces a one dimensional mapping on the unit circle

G̃α,β,m : θ → α+mθ + β sin(θ) mod (2π) , θ ∈ R/2πZ.

We are interested in the set of parameters

Wm = {α, β | G̃α,β,m is quasisymmetrically conjugate to θ 7→ mθ}
which in particular includes all those for which G̃α,β,m is an expanding map on the unit circle
([SS]). This is summarized in the following theorem.

Theorem E. For any (α, β) ∈ Wm, there exist a λ in the complement of H0
m such that Fλ,m

is quasiconformally conjugate on the complement of A∗
λ,m(0) to Gα,β on the complement of

the closed unit disc. For this value of λ the boundary of A∗
λ,m(0) is a quasicircle.

The rest of the paper is organized as follows. In Section 2 we present some previous results
concerning the basin of attraction of the origin. In Section 3 we summarize some tools which
we will use in this paper. Finally, Sections 4 and 5 are devoted to prove the main results of
this work. Experts can read directly Section 4.
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2 Preliminaries

The systematic study of the functions Fλ,m was started in [FG]. In this section we recall
some results from that work that will be useful later on.

Theorem 2.1 (Skeleton of Aλ,m(0), see Figure 1). Let λ ∈ C, m ∈ N, m ≥ 2 and
Fλ,m(z) = λzm exp(z). Let A∗

λ,m(0) be the immediate basin of attraction of z = 0 for the map
Fλ,m. The following statements hold.

a) For λ 6= 0, if we define ε0 = ε0(|λ|,m) > 0 as the unique positive solution of xm−1ex =
1/|λ|; then A∗

λ,m(0) contains the disk Dε0 = {z ∈ C ; |z| < ε0}.

b) There exist x0 = x0(|λ|,m) < 0 and a continuous (decreasing) function x 7→ C(x) > 0
defined for x < x0 such that the open set

H|λ|,m =

{
z = x + yi

∣∣∣∣
x ∈ (−∞, x0)
y ∈ (−C(x), C(x))

}

satisfies Fλ,m (H|λ|,m) ⊂ Dε0 .

c) There exist infinitely many strips, denoted by Skλ,m, which are preimages of H|λ|,m. These
horizontal strips extend to +∞, and they have asymptotic width equal to π.

Dε0

S0

λ,m

S1

λ,m

S2

λ,m

S−1

λ,m

S−2

λ,m

H|λ|,m

Figure 1: Sketch of some sets included in the basin of attraction of z = 0. Precisely, Dε0 ⊂
A∗

λ,m(0) , Fλ,m(H|λ|,m) ⊂ Dε0 andFλ,m (Sk
λ,m) ⊂ H|λ|,m.

The skeleton of the main components of Aλ,m(0) is needed to study later the parameter
planes. In the first statement of Theorem 2.1 we give an estimate of the size of the immediate
basin of attraction of z = 0. Since z = 0 is a superattracting fixed point, there exists ε0 > 0
such that the open disk Dε0 = {z ∈ C ; |z| < ε0} is contained in the immediate basin of
attraction of z = 0. In the second statement we find the first preimage Dε0, which contains
an unbounded open set in C extending to the left and containing an unbounded interval
(−∞, x0) for some real value x0. In the third statement we find the second preimage of Dε0,
which contains countably many horizontal strips extending to +∞.

In the following auxiliary result we find a lower bound for ε0, which will be used later on.
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Lemma 2.2. The value of ε0 is always larger than or equal to min{1, ( 1
|λ|e)

1
m−1 }

3 Tools

In this section we present well known tools in complex dynamics which we will use in this
paper. We also present applications of some of them to our particular case. The first tool
is a classical result related to the behavior of holomorphic maps near a superattracting fixed
point ([Bo]), which we apply to make a detailed description of the superattracting basin of
z = 0 for Fλ,m. The second section is related to the extension of a Holomorphic motion,
established by S lodkowski ([Sl]). In the third one, we recall shortly the relevant definitions
and results relative to quasiconformal mappings ([Ah], [LV]). Finally, in the miscelanea
section we provide precise definitions of several concepts related to circle maps.

3.1 Böttcher coordinates near a superattracting fixed point

Theorem 3.1. Suppose that f is an holomorphic map, defined in some neighborhood U of
0, having a superattracting fixed point at 0, i.e.,

f(z) = am z
m + am+1 z

m+1 + · · · where m ≥ 2, and am 6= 0.

Then, there exists a local conformal change of coordinate w = ϕ(z), called Böttcher coor-
dinate at 0 (or Böttcher map), such that ϕ ◦ f ◦ ϕ−1 is the map w → wm throughout some
neighborhood of ϕ(0) = 0. Furthermore, ϕ is unique up to multiplication by an (m − 1)-st
root of unity.

In practice, it is customary to make a linear change of coordinates so that the map f is
monic, i.e., so that am = 1. When f is monic we obtain a unique Böttcher coordinate such
that limz→0

ϕ(z)
z = 1. Also it is natural to extend ϕ to a maximal domain using the functional

relation ϕ(f(z)) = ϕ(z)m (see, [DH1, DH2] or [BuHe] for details). One might hope that the
change of coordinates z 7→ ϕ(z) extends throughout the entire immediate basin of attraction
of the superattractive point as a holomorphic mapping. However, this is not always possible.
Such an extension involves computing expressions of the form

z 7→ m
√
ϕ(f(z)),

and this does not work in general since the n−th root cannot be defined as a single valued
function. For example, when some other point in the basin maps exactly onto the superat-
tracting point, or when the basin is not simply connected.

Using the Böttcher map we can define a useful polar coordinate near 0. We define the
dynamical ray of argument θ, where θ ∈ R/Z, to be the image under the inverse of the
Böttcher map of the half line through 0 with argument θ turns, i.e. 2πθ radians,

R0(θ) = ϕ−1({se2πiθ | s ≥ 0}).

We say that the dynamical ray R0(θ) lands if and only if there exist

lim
s→1

ϕ−1(se2πiθ).
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When a dynamical ray R0(θ) lands we call the limit the landing point of the ray R0(θ).

We define the dynamical equipotential of level s, where 0 < s < 1, to be the image under
the inverse of the Böttcher map of the circle of radius s and centered at 0,

E0(s) = ϕ−1({se2πiθ | 0 ≤ θ < 1}).

Since ϕ conjugates f to w → wm, the dynamics under f is easy to compute on these
dynamical objects (rays and equipotentials). Precisely, we have

f(R0(θ)) = R0(mθ) and f(E0(s)) = E0(sm)

As we already mentioned, the Böttcher map verifies the functional equation or Böttcher
equation

ϕ(f(z)) = ϕ(z)m

On the other hand, there exists an explicit form of the Böttcher map, given by

ϕ(z) = lim
n→∞

(f◦n(z))1/m
n

In order to remove the ambiguity of the root, we write the sequence in the following form:

ϕ(z) = z ·
[
f(z)

zm

]1/m

·
[
f◦2(z)

(f(z))m

]1/m2

· · ·
[

f◦n(z)

(f◦(n−1)(z))m

]1/mn

· · · (8)

For the general term, we have

[
f◦n(z)

(f◦(n−1)(z))m

]1/mn

=
[
1 + O(f◦(n−1)(z))

]1/mn

Hence, in a neighborhood of the superattracting fixed point z = 0, we can define the root by
the binomial formula:

(1 + u)α =
∞∑

n=0

α(α − 1) · · · (α− n+ 1)

n!
un when |u| < 1.

It is not difficult to see that the product converges uniformly.

In our case, z = 0 is a superattracting fixed point of Fλ,m = λzm exp(z). Using a suitable
linear change of variables we obtain a new family of entire transcendental maps, so that near
the superattracting fixed point z = 0, the functions can be written as zm + O(zm+1), and
thus have a preferred Böttcher coordinate in this region. More precisely, we consider the
following auxiliary family of entire transcendental maps,

La,m(z) = zmez/a, a ∈ C \ {0}, and m ∈ N,m ≥ 2. (9)

In the next lemma we prove some fundamental properties of the Böttcher coordinate near
z = 0 for the map La,m. In particular, we obtain an explicit expression of the Böttcher map
and we see that it extends to the whole immediate basin of attraction of z = 0.
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Lemma 3.2. Consider La,m(z) = zm exp(z/a) for a 6= 0 and m ≥ 2. Then, the Böttcher
coordinate ϕa extends to the whole immediate basin of attraction of the superattracting fixed
point z = 0.

Proof. The map La,m is affine conjugate to Fλ,m with λ = am−1 through the map ca(z) = az.
In other words, if we choose two parameter values λ0 and a0 such that λ0 = am−1

0 , then Fλ0,m

and La0,m are conformally conjugate, i.e.

La0,m(z) = (c−1
a0 ◦ Fλ0,m ◦ ca0)(z) ∀z ∈ C.

For each a 6= 0, and when z is small enough we can write the Böttcher coordinate ϕa(z)
using the auxiliary expression (8). More precisely, we have

ϕa,m(z) = z ·
[
La,m(z)

zm

]1/m

·
[

L◦2
a,m(z)

(La,m(z))m

]1/m2

· · ·
[

L◦n
a,m(z)

(L
◦(n−1)
a,m (z))m

]1/mn

· · ·

For the general term, we have

[
L◦n
a,m(z)

(L
◦(n−1)
a,m (z))m

]1/mn

= exp

[
L
◦(n−1)
a,m (z)

amn

]
.

Hence, in a neighborhood of the superattracting fixed point z = 0, we obtain

ϕa(z) = z exp

[
∞∑

n=0

L◦n(z)

amn+1

]
. (10)

Finally, we observe that this holomorphic map is well defined (the series converges) in the
whole immediate basin of attraction of z = 0.

3.2 Holomorphic motions

Definition. Let X ⊂ Ĉ we say that a map

Φ : D ×X → D × Ĉ

(c, z) → Φ(c, z) = (c,Φc(z)) = (c,Φz(c))

is a holomorphic motion of X parameterized by D if

(a) Φ0(z) = z for all z ∈ X.

(b) Φc(z) is injective for all fixed c ∈ D.

(c) For all z ∈ X, the map Φz : D → C is holomorphic.

9



There are two important theorems studying the extension of a holomorphic motion. The
first one is the λ Lemma ([MSS]) and it extends a holomorphic motion of X to the closure
of X. The second one is S lodkowski Lemma ([Sl]) and it extends a holomorphic motion
parameterized in D to the whole Riemann sphere. We only recall the S lodkowski Lemma,
since it is a generalization of the λ Lemma.

Theorem 3.3 (S lodkowski Lemma, [Sl]). Let Φ : D × X → D × Ĉ be a holomorphic
motion. Then, we can extend Φ to a holomorphic motion Φ̃ : D × Ĉ → D × Ĉ. Moreover,
for every parameter c ∈ D, the map Φ̃c : Ĉ → Ĉ is a quasiconformal homeomorphism whose
dilatation ratio Kc is bounded by 1+|c|

1−|c| .

In the following lemma we prove that the holomorphic motion of a quasidisk is also a
quasidisk. This property will play a fundamental role to prove Theorem C.

Lemma 3.4. Let U be a quasidisk, i.e., assume that there exist a quasiconformal mapping
h : C → C so that U = h(D). Let Φ : D × U → D × C be a holomorphic motion of U . Then
for all c ∈ D we have that Φc(U) is also a quasidisk.

Proof. Applying the S lodkowski Lemma (Theorem 3.3) we can extend Φ to a holomorphic
motion Φ̃ : D × Ĉ → D × Ĉ such that for every parameter c ∈ D, the map Φ̃c : Ĉ → Ĉ is a
quasiconformal mapping. If we denote by Uc := {Φ(c, z) | z ∈ U}, we have that Φ̃c◦h : C → C

is a quasiconformal mapping and Uc = Φ̃c ◦ h(D).

3.3 Quasiconformal surgery

Definition. A quasiconformal map of C is a homeomorphism ϕ such that small infinitesimal
circles are mapped onto small infinitesimal ellipses of bounded axes ratio. The analytic
formulation of this condition is that ϕ(x+ iy) is absolutely continuous in x for almost every
y and in y for almost every x and that the partial derivatives are locally square integrable
and satisfy the Beltrami differential equation

∂ϕ

∂z
= µ(z)

∂ϕ

∂z
for almost all z ∈ C,

where µ is a complex measurable function with

|µ(z)| ≤ κ < 1 for z ∈ C.

In this case we say that ϕ is κ− quasiconformal.

An almost complex structure σ on C is a measurable field of ellipses (Ez)z∈C, equivalently
defined by a measurable Beltrami form µ on C

µ = u
dz̄

dz
.

The correspondence between Beltrami forms and complex structures is as follows: the argu-
ment of u(z) is twice the argument of the major axis of Ez, and |u(z)| = K−1

K+1 where K ≥ 1
is the ratio of the lengths of the axes.
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The standard complex structure σ0 is defined by circles or by the Beltrami form µ0 = 0.

Suppose that ϕ : C → C is a quasiconformal homeomorphism. Then ϕ gives rise to an
almost complex structure σ on C. For almost every z ∈ C, ϕ is differentiable and the R−linear
tangent map Tϕ : TzC → Tϕ(z)C defines, up to multiplication by a positive factor, an ellipse
Ez in TzC:

Ez = (Tzϕ)−1(S1).

Moreover, there exists a constant K > 1 such that the ratio of the axes of Ez is bounded by
K for almost every z ∈ C. The smallest bound is called the dilatation ratio of ϕ.

Equivalently, ϕ defines a measurable Beltrami form on C

µ =
∂ϕ

∂ϕ
=

∂ϕ
∂z̄
∂ϕ
∂z

dz̄

dz
= u(z)

dz̄

dz
.

An almost complex structure is quasiconformally equivalent to the standard structure if
it is defined by a measurable field of ellipses with bounded dilatation ratio.

Given ϕ : C → C a quasiconformal homeomorphism, an almost complex structure σ on
C can be pulled back into an almost complex structure ϕ∗σ on C. If σ is defined by an in-
finitesimal field of ellipses (Ez)z∈C, then ϕ∗σ is defined by (Ez)z∈C where Ez = (Tzϕ)−1 Eϕ(z)

whenever defined.

To integrate an almost complex structure σ means to find a quasiconformal homeomor-
phism ϕ such that (Tzϕ)−1(S1) = ρ(z)Ez for almost every z ∈ C. Informally, we will say
that σ is transported to σ0 by σ.

Surgery techniques are based on the following result:

Theorem 3.5 (Measurable Riemann mapping Theorem, [Ah, LV]). Let σµ be any
almost complex structure on C given by the Beltrami form

µ = u
dz̄

dz

with bounded dilatation ratio, i.e.,

||µ||∞ := sup |u(z)| < m < 1.

Then σµ is integrable, i.e., there exists a quasiconformal homeomorphism ϕ such that

µ =
∂ϕ

∂ϕ
,

or equivalently ϕ∗σ0 = σµ. Moreover, ϕ : C → C is unique up to composition with an affine
map.

Remark 3.6. The application of Ahlfors-Bers’ theorem to complex dynamics is the following.
Let f and σµ be, a quasiregular mapping of C and an almost complex structure with bounded
dilatation ratio, such that f∗σµ = σµ. If we apply Theorem 3.5 to integrate σµ, we obtain a
quasiconformal mapping ϕ such that ϕ∗σ0 = σµ. Then g = ϕ ◦ f ◦ ϕ−1 verifies g∗σ0 = σ0,
and hence g is a holomorphic map of C. Moreover, f and g are quasiconformally conjugate,
i.e., they have the same dynamics.
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3.4 Miscellanea

Our goal in this subsection is to make precise definitions of expanding maps ([dMvS]), and
the quasiconformal extension of a quasisymmetric map on the circle ([Pom]). We also need
the concept of growth order of a continuous function.

Definition. We say that a C1 map f : T → T is expanding if there exist real constants C > 0
and µ > 1 such that

|D(f◦n(x))| > Cµn

for all n ∈ N and all x ∈ T.

We observe that a sufficient condition to assure that f is expanding is given by

min{|f ′(x)| , x ∈ T} > 1.

The following theorem states that any two expanding maps of the same degree are quasisym-
metrically conjugate.

Theorem 3.7 (Shub and Sullivan, [SS]). Let f, g : T → T be expanding and C1+δ, with
δ ∈ (0, 1), maps of degree m. Then there exist a quasisymmetric conjugacy ϕ : T → T such
that f = h−1 ◦ g ◦ h.

Quasisymmetry is precisely the property that allows a circle maps to be extendable to a
quasiconformal map of the disc, as shown by the following theorem.

Theorem 3.8 (Beurling and Ahlfors [BA], Douady and Earle [DE]). Let h : T → T

be an orientation preserving quasisymmetric map. We can extend h to a quasiconformal map
Ĥ : D → D. Moreover, if σ, τ ∈Möb(D) then the extension of σ ◦ h ◦ τ is given by σ ◦ Ĥ ◦ τ

Finally we will need the definition of the growth order of a continuous function.

Definition. Let f : C → C be a continuous function. We define M(r, f) := max|z|=r |f(z)|
and the growth order ρ(f) by

ρ(f) := lim sup
r→∞

log+ log+M(r, f)

log r

where log+(t) = log(max(1, t))

4 Transcendental part

When we consider a holomorphic map f : C → C with an essential singularity at infinity, this
point plays a crucial role. For instance, the little Picard Theorem says that an entire function
assumes every value in the complex plane with at most one exception, in any neighborhood
of infinity. Thus, in general, iteration of entire transcendental maps is more complicated than
rational maps. As an example, there are transcendental maps presenting wandering domains
([B1], [B2]) and/or Baker domains ([F]), also called “parabolic domains at ∞”.
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We concentrate on the class of entire transcendental maps of finite type, that is

S = {f : C → C, f trans. entire with only finitely many critical and asymptotic values}.

Dynamically, entire maps of finite type share some of the properties of polynomials since
their Fatou sets cannot include wandering or Baker domains, nor Herman rings ([EL2, GK]).

Observe that the family of functions Fλ,m(z) = λzm exp(z) belongs to S. The function
Fλ,m has two critical values at 0 and at λ(−m)mexp(−m), since the critical points are located
at z = 0 and z = −m. It has also an asymptotic value at v = 0, since the function tends to
0 as z tends to ∞ along R

−.

If f ∈ S, there exists a characterization of the Julia set ([EL1]), namely as the closure
of the set of points whose orbits tend to ∞. Using the characterization above we can plot
an approximation of J (Fλ,m). Generally, orbits tend to ∞ in specific directions. In our
case, if limn→∞ |F ◦n

λ,m(z)| = +∞ , then we have limn→∞ Re(F ◦n
λ,m(z)) = +∞. Thus, an

approximation of the Julia set is given by the set of points whose orbit containts a point with
real part greater than, say, 90. Observe that filled black regions are due to numerics, since
the Julia set contains no open set.

In Figure 2, we display the Julia set of Fλ,m for different values of λ and m. The immediate
basin of attraction of z = 0 is shown 1 in blue, while the other components of Aλ,m(0)\A∗

λ,m(0)
are shown in red. The components of the Fatou set different fromAλ,m(0) are shown in orange.
Points in the Julia set are shown in black. We show the dynamical plane of the function
Fλ,2 = λz2 exp(z) , for three different values of λ and different ranges. As we proved in [FG]
the basin of 0 contains an infinite number of horizontal strips, that extend to +∞ as their real
parts tend to +∞. Between these strips we find the well known structures, named Cantor
Bouquets which are invariant sets of curves governed by some symbolic dynamics. This kind
of structures in the Julia set are typical for critically finite entire transcendental functions
([DT]). Also, as we change the parameter λ we observe that the relative position of these
bands also changes, but not their width. Finally, we can see the existence of an unbounded
region that extends to −∞ contained in Aλ,m(0).

In the zoom plates of Figure 2, range (−1, 1) × (−1, 1), we can see the dynamical plane
near the origin. It seems that the immediate basin of attraction of z = 0 is a Jordan domain
for λ = −8 and λ = 6.9.

The orbit of the free critical point z = −m, determines in large measure the dynamics of
Fλ,m. Indeed, the functions Fλ,m(z) = λzm exp(z) are entire maps with a finite number of
critical and asymptotic values, hence we know that if the orbit of z = −m tends to ∞ no
other Fatou components can exist besides those that belong to Aλ,m(0). Hence the Fatou set
must coincide with the basin of 0, i.e., F(Fλ,m) = Aλ,m(0). The set Bm is defined as

Bm = {λ ∈ C |F ◦n
λ,m(−m) 9 ∞}.

In each of these sets, we may also distinguish between two different behaviors: those

1Color plots are available in the online version of this paper. Otherwise, blue is darker than red and orange
is light.
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(a) λ = −2.1. Range

(−10, 10) × (−10, 10).

(b) λ = −8. Range (−10, 10)×

(−10, 10).

(c) λ = 6.9. Range (−10, 10) ×

(−10, 10).

(d) λ = −2.1. Range (−1, 1) ×

(−1, 1).

(e) λ = −8. Range (−1, 1) ×

(−1, 1).

(f) λ = 6.9. Range (−1, 1) ×

(−1, 1).

Figure 2: The Julia set for Fλ,2.

parameter values for which −m ∈ Aλ,m(0) and those for which this does not occur. Let
int(Bm) denote the interior of Bm.

Definition. Let U be a connected component of int(Bm). We say that U is a capture zone
if for all λ in U we have that limn→+∞ F ◦n

λ,m(−m) = 0, or in other words, −m ∈ Aλ,m(0).
We then say that the orbit of the critical point is captured by the basin of attraction of the
superattracting fixed point z = 0.

In Figure 3, we show a numerical approximation of the set B2. The main capture zone is
shown in blue, while other capture zones are shown in red. All other components of B2 are
shown in orange. The parameter values for which the orbit of the free critical point tends to
∞ are shown in black. In these sets we can see a countable quantity of horizontal strips. In
Figure 3 (c) we can see the main capture zone H0

m.
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(a) Range (−25, 25) × (−25, 25) (b) Range (−15, 5) × (−8, 8)

(c) Range (−3.1, 2.25) × (−2.15, 2.15)

Figure 3: Parameter plane for Fλ,2. Color codes are explained in the text.

4.1 Dynamical plane: proof of Proposition A

The first assertion of this theorem, i.e. that all connected components of the Fatou set are
simply connected, is a general result for all functions in class S ([B]), which we have included
here for completeness.

To see that the number of connected components of Aλ,m(0) is either 1 or ∞, we observe
that the basin of z = 0, Aλ,m(0), consists of the immediate basin A∗

λ,m(0) and all its preimages.
For all connected components of Aλ,m(0) other than A∗

λ,m(0) there exists a number i > 0

such that F iλ,m (U) ⊂ A∗
λ,m(0), where i is the smallest number with this property. Suppose

that there exist a finite number of connected components, say A∗
λ,m(0) , U1 , U2 , ... , UN .

By assumption, for each Uk there exist a number ik such that F ikλ,m (Uk) ⊂ A∗
λ,m(0), for

1 ≤ k ≤ N . Let il be the maximum of the indexes i1, · · · , iN . Consider z ∈ Ul such that is
not exceptional; then, points in F−1

λ,m (z) belong to Aλ,m(0), but not to A∗
λ,m(0)∪U1∪ ...∪UN ,

which is a contradiction.
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It remains to prove that all connected components of Aλ,m(0) are unbounded except,
maybe, A∗

λ,m(0). To this end, suppose that U is a connected component of Aλ,m(0) different

from A∗
λ,m(0), and let i > 0 be the smallest number such that F iλ,m (U) ⊂ A∗

λ,m(0). Let

z ∈ U , and denote by γ a simple path in A∗
λ,m(0) that joins F iλ,m(z) and 0. The preimage

of γ in U must include a path γ1 that joins z and ∞, since 0 is an asymptotical value with
no other finite preimage than itself. Thus we conclude that U is unbounded. This concludes
the proof of Proposition A.

4.2 Parameter plane: proof of Theorem B

In this section we describe some properties of the capture zones Hn
m. We are mainly interested

in their topological properties. For clarity’s sake we prove each of the statements in a different
proposition.

Proposition 4.1. The critical point −m belongs to A∗
λ,m(0) if and only if the critical value

Fλ,m(−m) belongs to A∗
λ,m(0). Hence H1

m = ∅.

Proof. Suppose that Fλ,m(−m) ∈ A∗
λ,m(0). Let γ be a simple path in A∗

λ,m(0) that joins
Fλ,m(−m) and 0. The set of preimages of γ must include a path γ1 that joins −∞ with −m,
and also a path γ2 that joins −m and 0 (since −m is a critical point and 0 is a fixed point and
asymptotic value). Hence γ1 ∪ γ2 ⊂ A∗

λ,m(0) and so does −m. Conversely, if −m ∈ A∗
λ,m(0)

we have that Fλ,m(−m) ∈ A∗
λ,m(0).

We define ρ = min{1
e , (

e
m)m}, i.e., ρ = 1/e for m = 2, 3 and ρ = ( em)m for m ≥ 4. We

also define ρ′ = ( e
m−1 )m−1.

Proposition 4.2. Dρ ⊂ H0
m ⊂ Dρ′ .

Proof. First we prove that Dρ = {λ ∈ C ; |λ| < ρ} ⊂ H0
m . For λ ∈ Dρ, we will prove that

Fλ,m(−m) lies in Dε0 which we know belongs to A∗
λ,m(0). In order to do so, we use that

ε0 ≥ min(1, ( 1
|λ|e )1/(m−1)) (Lemma 2.2). If λ ∈ Dρ, then |λ| < 1

e , and hence ε0 ≥ 1. The

condition λ ∈ Dρ also implies that |λ| < ( em)m. Hence

|Fλ,m(−m)| = |λ||(−m)me−m| = |λ|
(m
e

)m
< 1 ≤ ε0,

and Fλ,m(−m) lies in A∗
λ,m(0).

Second we prove that H0
m ⊂ Dρ′ . We will prove that −m /∈ A∗

λ,m(0) for all λ ∈ C such

that |λ| > ( e
m−1 )m−1. Let D be the disk centered at 0 of radius m − 1. If we calculate the

modulus of the image of its boundary, {|z| = m− 1}, we obtain

|Fλ,m(z)| = |λ||z|meRe(z) ≥ |λ|(m− 1)me−(m−1) > m− 1

where the inequality is obtained using |λ| > ( e
m−1 )m−1. This shows that D ⊂ Fλ,m(D).
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Let W be the component of F−1
λ,m(D) that contains the origin. It is clear that W ⊂ D

and A∗
λ,m(0) ⊂ W . Moreover, Fλ,m is a proper function of degree m from W onto D,

(see Figure 4). In the terminology of polynomial-like mappings, developed by Douady and
Hubbard ([DH3]), the triple (Fλ,m;W,D) is a polynomial-like mapping of degree m. By the
Straightening Theorem ([DH3]), there exists a quasiconformal mapping, φ, that conjugates
Fλ,m to a polynomial P of degree m, on the set W . That is (φ−1 ◦ Fλ,m ◦ φ)(z) = P (z) for
all z ∈ W . Since z = 0 is superattracting for Fλ,m and φ is a conjugacy, we have that z = 0
is superattracting for P . Hence, after perhaps a holomorphic change of variables, we may
assume that P (z) = zm.

Hence A∗
λ,m(0) ⊂ D. Since −m /∈ D we conclude that H0

m is bounded.

A∗(0)

W

D

m − 1

D

φ

Fλ,m

z 7→ zm

Figure 4: Fλ,m is a polynomial-like mapping of degree m near the origin.

Proposition 4.3. The main capture zone H0
m is connected and simply connected.

Proof. We prove that H0
m is conformally a disk. Since Fλ,m(z) has a superattracting fixed

point at z = 0, we can use the Böttcher coordinate near the origin (see Section 3.1) to define
a suitable biholomorphic map in the main capture zone. Using a suitable linear change of
variables we obtain a new family of entire transcendental maps, so that near the superat-
tracting fixed point z = 0, the functions can be written as zm +O(zm+1), and thus having a
preferred Böttcher coordinate in this region (see Section 3.1). We consider,

La,m(z) = zmez/a, a ∈ C \ {0}, and m ∈ N,m ≥ 2. (11)

Under this map, the superattracting fixed point z = 0 is still at z = 0, and the free
critical point (located at z = −m for Fλ,m) is now at ca,m = −ma for La,m. We now define
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the following auxiliary set for the family of maps La,m which is closely related to the main
capture zone, more precisely

Ĥ0
m = {a ∈ C, such that am−1 ∈ H0

m}

By construction, a ∈ Ĥ0
m → am−1 ∈ H0

m is a (m− 1)–fold branched covering.

We consider the following mapping

Φ : Ĥ0
m → D

a→ ϕa,m(ca,m)
(12)

Where ϕa is the Böttcher coordinate defined in the immediate basin of attraction of z = 0
(Section 3.1 and Lemma 3.2). We claim that the map Φ is well defined and, in fact, is a
conformal isomorphism which is tangent to a → −m

e a at the origin. If a ∈ Ĥ0
m \ {0}, the

Böttcher map extends until the critical point ca,m = −ma, and using Equation (10) we have
that

ϕa,m(ca,m) = (−ma) exp

[
∞∑

n=0

L◦n(−ma)

amn+1

]

We see inductively that L◦n(−ma)
a is a holomorphic function of am−1. Indeed, using the

definition of La,m(z) = zmez/a, we have

L◦0
a,m(−ma)

a
= −m and

L◦1
a,m(−ma)

a
=

(−m
e

)m

am−1.

Assuming then that L◦n(−ma)
a = R(am−1), where R(w) is a holomorphic map on w, we see

that

L
◦(n+1)
a,m (−ma)

a
=

[
L◦n
a,m(−ma)

]m
exp

[
L◦n

a,m(−ma)

a

]

a
= am−1[R(am−1)]m exp[R(am−1)]

proving thus that L◦n(−ma)
a is a holomorphic function of am−1.

As a → 0, a brief computation shows that ϕa,m(ca,m) = −m
e a η(am−1), where η(w) is a

holomorphic mapping so that η(0) = 1. Hence the apparent singularity at a = 0 is removable.
Since the correspondance a → ϕa,m(cm,a) (Equation 12) is well defined and holomorphic, it
suffices to show that ϕa,m(ca,m) is a proper map of degree one from Hm onto D.

To this end, we first consider a boundary point a0 ∈ ∂H0,m. Then, as noted earlier,
the Böttcher mapping from the immediate basin A∗

a0,m(0) onto the unit disc has no critical
points, and in fact is a conformal diffeomorphism. In particular, ϕa0,m can be defined as a
single valued function on the disc of radius 1 − ε, for any ε > 0. This last property must be
preserved under any small perturbation of a0, and it follows that |ϕa,m(−ma)| > 1−ε for any
a ∈ H0,m sufficiently close to a0. Thus Φ is a proper map from H0,m onto D. Since Φ−1(0)
is the single point 0, with Φ′(0) = −m

e 6= 0, it follows that Φ is a conformal diffeomorphism.
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We can define now the conformal mapping from H0
m to D using the construction above.

Since the conformal mapping Φ : Ĥ0
m → D, writes as Φ(a) = −e

m a η(am−1), it follows that

Φ−1 sends a sector S = {z ∈ D, 0 ≤ arg(z) ≤ 2π
m−1} into a sector Φ−1(S) ⊂ Ĥ0

m with an

amplitude equal to 2π
m−1 . We can see that S ∼= D. Hence we obtain a conformal mapping

from S to H0
m defined as

Λ :S → H0
m

z →
[
Φ−1(z)

]m−1 (13)

Proposition 4.4. For all n,m ≥ 2, the connected components of Hn
m are unbounded.

Proof. Let U be a connected component of a capture zone different from H0
m. We assume

that U is bounded, then
sup
λ∈∂U

|λ| = M1 < +∞.

Since λ = 0 belongs to H0
m, we observe that 0 /∈ U .

We claim that there exist ε1(m) > 0 such that for all λ ∈ ∂U , we have that |F ◦k
λ,m(−m)| ≥

ε1(m) for all k ≥ 0. To see this, we only need to prove that for all λ ∈ ∂U we can find ε1 > 0
such that D(0, ε1) ⊂ A∗

λ,m(0). For all λ ∈ C there exists ε0 > 0, depending on |λ| and m,
(Theorem 2.1) such that D(0, ε0) ⊂ A∗

λ,m(0). We also know (see Lemma 2.2) that

ε0(|λ|,m) ≥ min{1,

(
1

|λ|e

) 1
m−1

}.

If λ belongs to ∂U , then |λ| ≤M1, and we have

(
1

|λ| e

) 1
m−1

≥
(

1

M1 e

) 1
m−1

.

Hence, we define ε1 = min{1,
(

1
M1 e

) 1
m−1 } and this proves the claim.

Let λ0 ∈ U . Since U is a capture zone, by definition we have that F ◦k
λ0,m

(−m) → 0 as

k → ∞. Let k0 ≥ 0 be such that, for all k ≥ k0, we have |F ◦k
λ0,m

(−m)| < ε1/2. We consider
now the mapping,

F ◦k0
λ,m(−m) : U → C

λ → F ◦k0
λ,m(−m)

On the one hand, this is a holomorphic function of λ. On the other hand, since 0 /∈ U , we
have that F ◦k0

λ,m(−m) 6= 0 for all λ ∈ U (the only preimage of z = 0 under Fλ,m(z) is z = 0).

If we apply the minimum principle to F ◦k0
λ,m(−m), we have

ε1
2

≥ |F ◦k0
λ0,m

(−m)| ≥ inf
λ∈U

|F ◦k0
λ,m(−m)| = inf

λ∈∂U
|F ◦k0
λ,m(−m)| ≥ ε1
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obtaining thus a contradiction.

Proposition 4.5. For all n,m ≥ 2, the connected components of Hn
m are simply connected.

Proof. The proof uses a surgery construction (see Section 3.3 for preliminaries on this tech-
nique). Let U be a connected component of Hn

m where m,n ≥ 2. We consider the following
mapping

ΦU : U → D \ {0}
λ → ϕλ(F ◦k+1

λ,m (−m))

where ϕλ denotes the Bötcher coordinate near the origin. As in the previous proposition the
map ΦU is a proper mapping and we will prove that it is a local homeomorphism.

Let λ0 ∈ U and z0 = ΦU (λ0). The idea of this surgery construction is the following:
for z near z0 we can build a map Fλ(z),m such that F k+1

λ(z),m(−m) has Böttcher coordinate z.

We denote by Wλ0 the connected component of Aλ0,m(0) containing F ◦n
λ0,m

(−m), preimage of

A∗
λ0,m

(0). Let Cλ0 be an small open neighborhood of F ◦n+1
λ0,m

(−m) contained in A∗
λ0,m

(0), and
Bλ0 ⊂Wλ0 be the preimage of Cλ0 containing F ◦n

λ0,m
(−m).

For any 0 < ε < min{|z0|, 1 − |z0|} and any z ∈ D(z0, ε), we choose a diffeomorphism
δz : Bλ0 → Cλ0 with the following properties:

• δz0 = Fλ0,m;

• δz coincides with Fλ0,m in a neighborhood of ∂Bλ0 for any z;

• δz(F
◦k
λ0,m

(−m)) = ϕ−1
λ0

(z).

We consider, for any z ∈ D(z0, ε), the following mapping Gz : C → C:

Gz(x) =

{
δz(x) if x ∈ Bλ0

Fλ0,m(x) if x /∈ Bλ0

We proceed to construct an invariant almost complex structure, σz, with bounded dilata-
tion ratio. Let σ0 be the standard complex structure of C. We define a new almost complex
structure σz in C.

σz :=





(δz)
∗σ0 on Bλ0

(Fnλ0,m
)∗σ on F−n

λ0,m
(Bλ0) for all n ≥ 1

σ0 on C \ ⋃
n≥1 F

−n
λ0,m

(Bλ0)
.

By construction σ is Gz-invariant, i.e., (Gz)
∗σ = σ, and it has bounded distortion since δz

is a diffeomorphism and Fλ0 is holomorphic. If we apply the Measurable Riemann Mapping
Theorem (see Section 3.3 and Remark 3.6) we obtain a quasiconformal map τz : C → C such
that τz integrates the complex structure σz, i.e., (τz)

∗σ = σ0, normalized so that τ(0) = 0
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and τ(−m) = −m. Finally, we define Rz = τz ◦ Gz ◦ τ−1
z , which is analytic, hence an entire

function.

We claim that this resulting mapping is Rz(x) = λxm exp(x), for some λ. Indeed, the map
Rz : C → C is an entire map (∞ is an essential singularity) with a superattracting fixed point
at the origin. Moreover, Rz has a critical point at z = −m. Thus Rz(x) = νxm exp(h1(x)).

It is easy to show that the growth order of Fλ,m is equal to 1, hence Rz has the same
growth order. We know that the composition of a function of finite growth order by a
quasiconformal function can only change the growth order by a real factor ([G]). We can
conclude that Rz has finite growth order, hence h1(x) is a polynomial of degree d. Then there
are d directions where Re(h1(x)) → +∞ and Im(h1(x)) is bounded for x→ ∞, separated by
d directions where Re(h1(x)) → −∞ and Im(h1(x)) is bounded. Thus there are d directions
where Rz → ∞ separated by d directions where Rz → 0. This behavior is invariant under
topological conjugation. Since Fλ0,m has only one direction (along the positive real axis)
where Fλ0,m → ∞ and one (the negative real axis) where Fλ0,m → 0, we conclude that d = 1
and Rz(x) = νxm exp(a0 + a1x). If we use that −m is a critical point, then a1 must be equal
to 1. Finally, if we define λ = ν exp(a0), we can conclude that Rz(x) = λxm exp(x).

By construction, τz0 is the identity for z = z0, then there exists a continuous function
z ∈ D(z0, ε) 7→ λ(z) ∈ U such that

λ(z0) = z0 and Fλ(z),m = τz ◦Gz ◦ τ−1
z

Moreover, τz is holomorphic on A∗
λ0,m

(0) conjugating Fλ0,m and Fλ(z),m. Hence, observing
the following commutative diagram

D
z2−−−−→ D

ϕλ0

y
yϕλ0

A∗
λ0,m

(0)
Fλ0,m−−−−→ A∗

λ0,m
(0)

τz

x
xτz

A∗
λ(z),m(0)

Fλ(z),m−−−−−→ A∗
λ(z),m(0)

we have that ϕλ(z) = ϕλ0 ◦ τ−1
z is the Böttcher coordinate of A∗

λ(z),m(0). Finally we conclude
that

ΦU(λ(z)) = ϕλ(z)(F
◦n+1
λ(z),m

(−m)) = z

since F ◦n+1
λ(z),m(−m) = τz ◦ G◦n+1

z ◦ τ−1
z (−m) = τz ◦ G◦n+1

z (−m) = τz ◦ Gz(F ◦n
λ0,m

(−m)) =

τz ◦ ϕ−1
λ0

(z) = τz ◦ τ−1
z ◦ ϕ−1

λ(z)(z) = ϕ−1
λ(z)(z).
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4.3 Parameter plane: proof of Theorem C

Proposition 4.6. If λ ∈ H0
m then Aλ,m(0) = A∗

λ,m(0). Otherwise if λ /∈ H0
m then Aλ,m(0)

has infinitely many connected components.

Proof. Let λ ∈ H0
m. As in Proposition 4.1, let γ be a simple path in A∗

λ,m(0) that joins
Fλ,m(−m) and 0. The preimage of γ must include a path γ̃ contained in A∗

λ,m(0) that joins
−∞ with 0 passing through −m (γ̃ maps 2-1 to γ). Since H|λ|,m intersects γ̃, it follows
that H|λ|,m ⊂ A∗

λ,m(0). We recall that H|λ|,m is a preimage of a small disk of radius ε0 (see
Section 2).

All preimages of γ̃, are contained in A∗
λ,m(0) as well, since they all intersect H|λ|,m. In

fact, we have that Aλ,m(0) = A∗
λ,m(0) since any preimage of Dε0 must contain points of

H|λ|,m. Hence Aλ,m(0) has a unique connected component.

Now assume λ /∈ H0
m. From Proposition A(b) we have that Aλ,m(0) has either one or

infinitely many connected components. If we suppose that Aλ,m(0) has only one connected
component, then Aλ,m(0) is a completely invariant component of the Fatou set. Then, all
the critical values of Fλ,m are in Aλ,m(0) (See [B2]), and hence we conclude that −m belongs
to Aλ,m(0). However, this is impossible if λ /∈ H0

m.

Proposition 4.7. If λ ∈ H0
m, the boundary of A∗

λ,m(0) (which is equal to the Julia set) is a
Cantor bouquet and it is not locally connected.

Proof. Using the proposition above, if λ belongs to the main capture zone, H0
m, we have that

A∗
λ,m(0) = Aλ,m(0). Hence, the Fatou set contains a totally invariant component. In fact,

from [BD], it follows that the Julia set has an uncountable number of connected components
and it is not locally connected at any point.

Using standard techniques analogous to [DT] one can show that the Julia set contains a
Cantor Bouquet tending to ∞ in the direction of the positive real axis. Indeed, it is sufficient
to construct a hyperbolic exponential tract on which Fλ,m has asymptotic direction θ∗. To
this end, let Br be an open disk containing Fλ,m(−m). The preimage of this set is an open
set similar to H|λ|,m (see Section 2). Let D be the complement of this set. We have that Fλ,m
maps D onto the exterior of Br, then D is an exponential tract for Fλ,m.

We may choose the negative real axis to define the fundamental domains in D. More pre-
cisely, we can find the preimage of the negative real axis under the function Fλ,m. Hereafter,
we denote by Arg(.) ∈ (−π, π] the principal argument. Using the definition of Fλ,m it is easy
to see that

Arg(Fλ,m(z)) = Arg(λ) +mArg(z) + Im(z) mod (2π).

Finding the preimages of R
− is equivalent to solving

Arg(Fλ,m(z)) = π.

The equation above is equivalent to

Arg(λ) +mα+ rsin(α) = (2k + 1)π k ∈ Z,
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where r = |z| and α = Arg(z). Hence, we obtain

r = ρ(α) =
(2k + 1)π −mα−Arg(λ)

sin(α)
α ∈ (−π, π).

We denote each of these curves by σk = σk(λ,m), where the possible values of the argument
depend on k. As their real parts tend to +∞, the σk’s are asymptotic to the lines Im(z) =
(2k + 1)π −Arg(λ).

Since the curves σk for k ∈ Z are mapped by Fλ,m onto the negative real axis, it follows
that D has asymptotic direction θ∗ = 0. Furthermore, since Fλ,m(z) = λzm exp(z), one may
check readily that D is a hyperbolic exponential tract.

Before proving assertion (c) of Theorem C we prove the following auxiliary lemma.

Lemma 4.8. If |λ| > ( e
m−1 )m−1, then the boundary of A∗

λ,m(0) is a quasicircle.

Proof. Let λ /∈ H0
m be such that |λ| > ( e

m−1 )m−1. By using the same arguments of Propo-
sition 4.2 we have that Fλ,m is a polynomial-like of degree m near the origin. From this
construction we obtain that ∂A∗

λ,m(0) = φ(T), and the lemma follows.

Remark 4.9. The reason to ask for |λ| > ( e
m−1 )m−1 as a condition is as follows. We want

to find a value K > 0 such that if |z| = K then |Fλ,m(z)| > K. This condition is equivalent
to

|Fλ,m(z)| ≥ |λ||z|me−|z| = |λ|(K)me−K > K

or equivalently
|λ| > K1−meK .

We want to use this argument for the largest possible region of values of λ. Hence, we choose
K > 0, such that K1−meK is minimum. This minimum value is reached exactly at K = m−1.

Proposition 4.10. Let Um be the unbounded connected component of C \ H0
m. If λ ∈ Um,

then the boundary of A∗
λ,m(0) is a quasicircle.

Proof. Let Um be the unbounded component of C \H0
m. Since Um is unbounded let λ0 ∈ Um

be such that ∂A∗
λ0,m

(0) is a quasicircle (see Lemma 4.8), and hence A∗
λ0,m

(0) is a quasidisk.

On the other hand, since Um is an open and simply connected set, let ψ : D → Um be the
Riemann mapping such that ψ(0) = λ0.

We claim that for all λ ∈ Um, the Böttcher mapping ϕλ conjugating Fλ,m to z → λzm

extends to the whole immediate basin of attraction A∗
λ,m(0) (see Section 3.1). To see the

claim we only need to observe that, when λ ∈ Um the critical point −m does not belong to
A∗
λ,m(0), hence no other critical point than z = 0 belongs to A∗

λ,m(0). It follows that for all
λ ∈ Um, the Böttcher coordinate

ϕλ : A∗
λ,m(0) → D,
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is a conformal mapping.

We can define now a holomorphic motion of A∗
λ0,m

(0) (see Section 3.2). We use as a main
ingredients the Böttcher map, ϕλ, and the conformal Riemann mapping ψ. More precisely,
we consider the following map

Φ : D ×A∗
λ0,m

(0) → D × C

(c, z) → (c,Φc(z)) = (c,Φz(c)) = (c, ϕ−1
ψ(c) ◦ ϕλ0(z))

(14)

We can check that Φ is a holomorphic motion. By construction, we have that Φ0(z) =
ϕ−1
ψ(0) ◦ ϕλ0(z) = z. If we fix the parameter c we must see that the map Φc(z) is injective.

This is immediate, since the the Bötcher mapping ϕλ is conformal. Finally, if we fix a point
z ∈ A∗

λ0,m
(0) we must see that Φz : D → C is a holomorphic map. In this case the map

Φz is a composition of holomorphic maps, since the Böttcher map depends analytically on
parameters (see Figure 5).

Geometrically, if we fix λ ∈ Um, the map z → Φψ−1(λ)(z) sends points in A∗
λ0,m

(0) to
points in A∗

λ,m(0) according to the Böttcher coordinates.

Finally, we apply Lemma (3.4) to the holomorphic motion Φ, which roughly speaking,
says that a holomorphic motion of a quasidisk is also a quasidisk.

0

00

A∗
λ0

(0)
A∗

λ(0)

D

ϕλ0 ϕ−1

λ

Φc(z)

ϕ−1

λ (ϕλ0
(z))

ϕλ0
(z)

z

Figure 5: Sketch of the Holomorphic motion Φc(z), where λ = ψ(c). Geometrically, Φc(z) sends
equipotentials and rays from A∗

λ0,m(0) to A∗
λ,m(0) according to Bötcher coordinates.

The final assertion of Theorem C(c), follows directly from the fact that all the sets Hn
m

are unbounded and hence belong to Um

Remark 4.11. Since Φ extends to a holomorphic motion Φ̂ of A∗
λ0,m

(0), we have that for

all c ∈ D, Φ̂c(z1) 6= Φ̂c(z2) for all z1, z2 ∈ A∗
λ0,m

(0). In other words, if we take z1 and z2 in
the boundary of A∗

λ0,m
(0), the property above proves that two internal rays never land at a

common point.
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4.4 Parameter plane: proof of Theorem D

From Theorem B, statements b) and c), we know that H0
m is bounded, connected and simply

connected. As we mentioned in the introduction, we conjecture that H0
m is a topological disc.

If this were the case then C\H0
m would consist of only one connected component which would

be unbounded. But as long as this result it is not proven, the complement of H0
m might have

other connected components different from the unbounded one, which we denote by Um. In
Theorem D we study the topological relation between these sets.

Proof. of Theorem D. In this proof we use the monic family of functions La,m = zm exp(z/a)
(See Section 3.1 and Proposition 4.3). We recall that La,m(z) is conformally conjugate to
Fλ,m(z). We introduce this new family of maps in order to obtain a preferred Böttcher
coordinate near z = 0. We also recall that the free critical point for the family La,m(z) is
at the point ca,m = −ma. We denoted by ϕa the Böttcher coordinate defined in the whole
immediate basin of attraction of z = 0 (Lemma 3.2) and by Φ(a) = ϕa(ca,m) (Equation 12)
the uniformization mapping of the main capture zone (Proposition 4.3).

We want to show that H0
m and Um have a common boundary. Since Um is the unbounded

component of C \ H0
m we have that ∂Um ⊂ ∂H0

m. Now, we will prove that ∂H0
m ⊂ ∂Um and

thus statement a) follows. In order to do this, we first observe that the rest of the capture
zones Hn

m, for n ≥ 2, are contained in Um since they are unbounded and disjoint from H0
m.

Second, notice that for any point a0 in ∂H0
m, the sequence of {Lna,m(ca,m)}n≥0 is not a normal

family in any neighborhood of a0.

Third, we claim that any arbitrary neighborhood of any point in ∂H0
m meets Hn

m for some
n ≥ 2. To see the claim, let a0 be a point in ∂H0

m, let W be a neighborhood of a0. We must
show that W ∩Hn

m 6= ∅ for some n ≥ 2. We also consider α′ = 1/2 and β′1, · · · , β′m be complex
numbers such that (β′i)

m = α′.

Set

K = {a ∈ H0
m | |Φ(a)| > | m

√
α′|} and P = C \ {a ∈ H0

m | |Φ(a)| ≤ | m
√
α′|}.

By shrinking W , if necessary, we can assume that W ⊂ P . Define functions α(a) = ϕ−1
a (α′)

and βi(a) = ϕ−1
a (β′i) for i = 1, · · · ,m. See Figure 6 for a sketch of the relevant objects of this

construction. Notice, that by construction of ϕa, if a ∈ H0
m \ {0} then the forward orbit of

the free critical point ca,m = −ma is contained in ϕ−1
a (D|Φ(a)|). In particular, if a ∈ K and

Lna,m(ca,m) = α(a), then

Ln−1
a,m (ca,m) ∈ {β1(a), · · · , βm(a)}

Now, let xa0 be a preimage of α(a0), that is not equal to βi(a0) for any 1 ≤ i ≤ m, notice
that Lna,m is ∞ to 1. We cannot have ca,m = xa0 because then Lna,m(ca,m) would be normal
in a neighborhood of a0. From the implicit function Theorem, we know that there exist a
holomorphic function x(a) such that La,m(x(a)) = α(a) in some neighborhood of a0, which
we can suppose is W by shrinking it, if necessary. Again by shrinking W , we can suppose that
x(a) 6= βi(a) for all a ∈W , for i = 1, · · · ,m. By lack of normality, the iterates Lna,m(ca,m) do
not avoid 0,∞ and x(a). So, there exist a′ ∈W and n′ ≥ 0 such that

Ln
′

a′,m(ca′,m) = x(a′).
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Dynamical Plane

Figure 6: Sketch of the relevant objects in proof of Theorem D.

It follows that a′ ∈ Hn
m for some n ≥ 0. We finally claim that n > 0. If n = 0, then

a′ ∈ K, and Ln
′+1
a′,m (ca′,m) = α(a′), this would mean that Ln

′

a′,m(ca,m) = βi(a
′) for some i, a

contradiction.

To prove the second statement of Theorem D, let V be a bounded connected component of
C\H0

m. Hence, we have that ∂V ⊂ ∂H0
m and ∂V ⊂ ∂Um, since, by statement a), ∂Um = ∂H0

m.
Then, V has a common boundary with H0

m and Um.

5 A model for Fλ,m

For each natural value m ∈ N, m ≥ 2 and α, β ∈ R we define the two-parameter family of
maps

Gα,β,m(z) = eiαzmeβ/2(z−1/z)

It is easy to check that, Gα,β,m preserves the unit circle, S1, and on this circle we have the
following dynamical system

G̃α,β,m : θ → α+mθ + β sin(θ) mod (2π) , θ ∈ R/2πZ.

When β < 1 and m = 1 this family of circle diffeomorphisms is known as the standard
family or Arnold family and its parameter space contains the well known Arnold Tongues
([A]). When m ≥ 2 the situation is very different because G̃α,β,m is an m to 1 map of T and
hence not a circle diffeomorphism.

For each parameter value α and β the map Gα,β,m is a holomorphic function defined on
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the punctured plane, C
∗, with 0 and ∞ as essential singularities. We denote by P this class

of functions. Maps of this type, are studied in [Ke], [Ko1], [Ko2] and [Mak] among others.

Let f be a holomorphic self-mapping of C
∗. The usual definitions of Fatou and Julia set

apply for functions in class P, although in this case, the Julia set can by characterized by the
closure of the set of points whose orbits tend to 0 or to ∞ under iteration. Using the above
characterization we can plot the Julia set of Gα,β,m for different values of α, β and m.

Sullivan’s Theorem of nonwandering domains has been extended to the class P ∩ S by
many authors ([Ke], [Ko2]). Also for this kind of functions it is proved ([EL]) that they do
not have Baker domains. Hence the classification of Fatou components is exactly the same
as in the rational case.

The map Gα,β,m is of finite type, because it has only two critical points in C
∗. Indeed, if

we compute G′
α,β,m we obtain

G′
α,β,m(z) =

1

2
eiαzm−2eβ/2(z−1/z)(βz2 + 2mz + β),

and hence the two critical points z+(β) and z−(β) are given by,

z± =
−m±

√
m2 − β2

β
.

In the case where α and β are real parameters we have that Gα,β,m is symmetric with
respect to the unit circle which is also invariant. This condition is equivalent to

τ ◦Gα,β,m = Gα,β,m ◦ τ

where τ(z) = 1/z. When |β| < m the critical points z± have the same dynamical behavior
since τ(z−) = z+. Also, it is easy to check that z+ belongs to D and hence z− ∈ C \ D.

In Figure 7 we display the parameter plane of Gα,β,m for m = 2, 3 and 4. We distinguish
between two different behaviors of the free critical points z±. Parameter values α and β for
which the critical points tend to infinity or to zero are plotted in color, depending on the
rate of escape. Parameter values α and β for which this does not occur are plotted in black.
Black shapes that look like chess figures consist of parameter regions (shaped as Arnold
tongues) where the attracting periodic orbit is contained in the unit circle and parameter
regions (shaped as Mandelbrot set) where the attracting periodic orbit is disjoint from the
unit circle. An exhaustive analysis of these Arnold tongues can be found in [MR].

In Figure 8 we display the dynamical plane of Gα,β,m for m = 2 and different values of
α and β. Points tending to z = 0 and z = ∞ are shown in color, depending on the rate of
escape, while points for which this not occur are shown in black. We also plot the unit circle
in blue.

The following is the main idea of our surgery construction. First, we consider two real
parameters α and β such that G̃α,β,m is quasisymmetrically conjugate to θ 7→ mθ on the unit
circle. Under this conditions we can change the behavior of Gα,β,m on the unit disk. More
precisely, we quasiconformally paste the superattracting behavior of z 7→ zm inside the unit
disk. The corresponding map acts like Gα,β,m outside on the complement of D and acts like
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(a) m = 2. Range (−2, 2) ×

(−2, 2).

(b) m = 3. Range (−3, 3) ×

(−3, 3).

(c) m = 4. Range (−4, 4) ×

(−4, 4).

Figure 7: Parameter planes of Gα,β,m for m = 2, 3 and m = 4.

(a) α = 0.0 and β = −1.65. (b) α = 0 and β = 0.5. (c) α = 0.71 and β = 1.49.

Figure 8: Dynamical plane of Gα,β,m for m = 2. Range (−2, 2) × (−2, 2).

z 7→ zm on D. Second, applying the Measurable Riemann Mapping Theorem ([Ah, LV]) we
can obtain a holomorphic mapping with this dynamical behavior, and finally we will prove
that this map is precisely Fλ,m(z) = λzm exp z for some parameter λ. We obtain thus that
Fλ,m is quasiconformally conjugate on the complement of A∗(0) to Gα,β,m on the complement
of the closed unit disc.

5.1 The connection: Proof of Theorem E

Before proving Theorem E we can prove that Wm contains an open set of parameters. We
recall that Wm is given by,

Wm = {α, β | G̃α,β,m is quasisymmetrically conjugate to θ 7→ mθ}

Lemma 5.1. {(α, β) ∈ R
2 | |β| < m− 1} ⊂ Wm.
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Proof. From Theorem 3.7 we can prove that G̃α,β,m is quasisymmetrically conjugate to θ 7→
mθ if we are able to prove that G̃α,β,m is an expanding map. In order to do so, a sufficient

condition is to impose that min{|G̃′
α,β,m(θ)|, θ ∈ T} > 1. From the definition of G̃α,β,m(θ) =

θ 7→ α+mθ + β sin θ we have that

G̃′
α,β,m(θ) = m+ β cos θ.

Hence, it is easy to see that when |β| < m−1 we obtain that min{|G̃′
α,β,m(θ)|, θ ∈ T} > 1.

Proof. of Theorem E.

Let α and β in Wm. Let h = hα,β,m be the quasisymmetric conjugacy, defined on the

unit circle, such that G̃α,β,m = h−1 ◦ g ◦ h, where g(θ) = mθ. Consider Ĥ = Ĥα,β,m : D → D

be the Douady-Earle quasiconformal extension of h such that Ĥ(0) = 0.

We now define a new function R = Rα,β,m : C → C as follows:

R(z) :=

{
Gα,β,m(z) z /∈ D

Ĥ−1((Ĥ(z))m) z ∈ D

This map is equal to Gα,β,m outside D and it has the desired superattracting dynamics
in D, but is not holomorphic on D. We proceed to construct an invariant almost complex
structure, σ = σα,β,m, with bounded dilatation ratio. Let σ0 be the standard complex
structure of C. We define a new almost complex structure σ in C.

σ :=





(Ĥ)∗σ0 on D

(Rn)∗σ on R−n(D) for all n ≥ 1
σ0 on C \ ⋃

n≥1R
−n(D)

.

By construction σ is R-invariant, i.e., (R)∗σ = σ, and it has bounded distortion since
Ĥ is quasiconformal and R is holomorphic outside D. If we apply the Measurable Riemann
Mapping Theorem we obtain a quasiconformal map ϕ = ϕα,β,m : C → C such that ϕ
integrates the complex structure σ, i.e., (ϕ)∗σ = σ0, normalized so that ϕ(0) = 0 and
ϕ(z−) = −m. Finally, we define R̃ = R̃α,β,m = ϕ ◦ R ◦ ϕ−1, which is analytic, hence an
entire function. Our goal now is to show that there exist a complex value λ such that
R̃(z) = λzm exp(z).

The map R̃ : C → C is an entire map (∞ is an essential singularity) with a superattracting
fixed point at the origin. Near the origin R̃ is conjugate to the map z 7→ zm. Moreover, R̃ has
a critical point at z = −m, since the map R has one critical point at z− ∈ C \D and ϕ(z−) =
−m. The other critical point of Gα,β,m is at z+ and it has been erased by the quasiconformal
surgery construction because it belonged to D. Thus R̃(z) = νzm exp(h1(z)). By using the
same arguments as in Proposition 4.5 we can conclude that R̃(z) = Fλ,m(z) = λzm exp(z) for
a suitable value of λ.

By construction, the boundary of A∗
λ,m(0) is a quasicircle, since A∗(0) is the quasiconfor-

mal image of the unit disk. Obtaining thus a value λ ∈ C such that ∂A∗
λ,m(0) is a quasicircle.
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