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Background: In the last few years, many investigations have focused on brain activity

in general and in populations with different pathologies using non-invasive techniques

such as electroencefalography (EEG), positron emission tomography (PET), functional

magnetic resonance imaging (fMRI) and magnetic resonance imaging (MRI). However,

the use of non-invasive techniques to detect brain signals to evaluate the cognitive activity

of people with Down syndrome (DS) has not been sufficiently addressed. The objective

of this study is to describe the state-of-the-art in fMRI techniques for recording brain

signals in people with DS.

Method: A systematic reviewwas performed based on PRISMA recommendations; only

nine papers on this topic have been published. Three independent researchers selected

all relevant information from each paper. Analyses of information concordance showed

a high value of agreement between researchers.

Results: Although few relevant works have been published, the use of fMRI in people

with DS is becoming an appropriate option to study brain function in this population. Of

the nine identified papers, five used task designs, and four used resting-state paradigms.

Conclusion: Thus, we emphasize the need to incorporate rigorous cognitive activity

procedures in evaluations of the DS population. We suggest several factors (such as

head correction movements and paired sample techniques) that must be considered

when designing an fMRI study with a task or a resting-state paradigm in a DS population.

Keywords: down syndrome, fMRI, brain signal, brain activity, systematic review

INTRODUCTION

Analysis of the cognitive activity of people with Down Syndrome (DS) is extraordinarily relevant,
and it has become a foundation for better understanding the development of neurodegenerative
diseases, mainly Alzheimer’s disease (AD) (Prasher et al., 1996; Lamar et al., 2011; Neale et al.,
2018; Pujol et al., 2018; Musaeus et al., 2019); studying the development and morphological
characteristics of the brains of individuals with DS (Baburamani et al., 2019; Lao et al., 2019;
Rodrigues et al., 2019; Shiohama et al., 2019); and evaluating cognitive functioning (Virji-Babul
et al., 2013). All these cited researchers used non-invasive brain registration techniques and
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extended studies that had the same objectives but used traditional
paradigms (Contestabile et al., 2010; Wiseman et al., 2015).
Early studies that focused on examining, for example, the
relationship between AD and people with DS, identified certain
limitations. The most notable limitation is the variability of
the degree of intellectual disability of the assessed person and
the problems understanding the verbal instructions of the test
among people with severe or profound intellectual disability
(Crayton et al., 1998; Oliver, 1999). In addition, the behavioral
differences associated with dementia have an impact not only on
the person with DS but also on the professionals who administer
the tests, so the reliability of these responses must be examined
and psychometrically guaranteed (Oliver et al., 2011). Finally, it
should be noted that many psychometric scales have not been
validated in populations with AD and SD, but some studies have
made progress in addressing these gaps (Dekker et al., 2015).

Thus, our proposal in the present work is to advance
in the knowledge of all the present contributions of brain
signal neuroimaging techniques in the DS population. Many
studies have shown the advantages of using non-invasive brain
registration techniques, as these measurements have no response
bias or learning processes because when tasks are used, they
have already been learned in the preregistration phases. The use
of the main techniques such as EEG (electroencephalography),
MRI (magnetic resonance imaging), PET (positron emission
tomography), DTI (diffusion tensor imaging), and fMRI
(functional magnetic resonance imaging) provide information
on structural mechanisms and functional aspects, explaining the
connectivity networks that can be found in healthy subjects as
well as those suffering from diseases (Massoud and Gambhir,
2003; Hoehn and Aswendt, 2013; Aswendt et al., 2017).

Regarding the SD population, the systematic review presented
by Neale et al. (2018) indicates that PET techniques allow
the identification of amyloid accumulation prior to the onset
of Alzheimer’s disease (AD), while techniques based on EEG
and MRI identify cognitive impairment and can be assessed
as biomarkers for the detection and diagnosis of AD in
this population.

In addition to the already cited signals, in the general
population, fMRI registers have been used in the last 20 years as
derivatives of the images obtained from MRI data, and certainly,
the use of fMRI to assess brain activity and functioning, as
well as the use of various study designs, has become common
(Welvaert and Rosseel, 2014). Despite the amount of published
works, we believe that it is urgent to advance this field since
the data obtained from fMRI are highly valuable and their
use provides unique and remarkable results in general and
specific populations.

One of the most interesting advantages of studying the DS
population with resting-state fMRI, as with other non-invasive
techniques, is that the resting-state fMRI register does not
depend on the intellectual level of the person being evaluated.
In this approach, the person should only be at rest inside
a resonator, without doing anything special, with his or her
eyes open and without moving. In contrast, in other study
designs, the fMRI signal is recorded when a specific cognitive
task (e.g., language, memory, motor, among others) is being

performed. Clearly, based on the uses and potential of the
fMRI signal in resting-state designs (Lu et al., 2007; Biswal
et al., 2010), this approach may be an interesting option because
it allows the analysis of the cognitive activity of people with
ID and, as in the general population, facilitates the systematic
study of spontaneous fluctuations of the BOLD signal. Notably,
information from studies that involve a task is derived from a
direct source of activation when the participant is faced with the
task set, and the resting-state data are derived from an indirect
source that is not associated with the task.

It seems clear that some of the problems that occur when
using fMRI signals may be aggravated for the DS population.
This observation is based on the difficulties that people with DS
have been reported to have when MRI data is being obtained,
which suggests that with fMRI techniques, such the occurrence
incidents can increase. Reviews of MRI in the DS population
indicate several questions that can be applied to fMRI studies,
which we can summarize in the following points. (1) It is feasible
that the brain connectivity network in DS persons is more
weakened than that in healthy persons of the same chronological
age. We must interpret exactly what we mean by the weakening
of a network, as the points of interest to determine it are diverse
(e.g., density, laterality, entropy, and complexity, among other
possible topics). It is also possible that the manifestation of
cognitive impairment in persons with DS will, in some cases, be
compensated by the intervention of other brain areas. (2) Brain
volume and head size are smaller in DS persons than in healthy
populations (Pinter et al., 2001; Rodrigues et al., 2019), and a
smaller number of neurons and fewer synaptic extensions and
altered neuronal differentiation in fetuses with DS are detected
(Takashima et al., 1981; Bhattacharyya et al., 2009; Kanaumi et al.,
2013). This issue has led to the use of DARTEL (Ashburner,
2007) as a template in some studies with persons with DS (Lin
et al., 2014). DARTEL (Diffeomorphic Anatomical Registration
through Exponentiated Lie Algebra) is a specific brain template
used in the preprocessing phase or analysis of fMRI data to
take into account deformations that must be parameterized by
a single flow field, which is considered to be constant in time.
(3) The DS population moves excessively during the registration
of the signal, which leads to many experimental difficulties
(Pujol et al., 2014). In this sense, Lao et al. (2019) point out an
extremely important fact: the MRI signals acquired with motion
correction below 1% allow the use of a general template for
one of the general populations, which facilitates the study of
PET signals, among others. If these assessments are documented
by MRI data, it seems logical to consider them with respect to
fMRI records.

Given the aforementioned points, it seems that the use of MRI
data in the DS population is an interesting matter. Consequently,
the question whether fMRI signals are adequate for use in
this population must be addressed. The study of spontaneous
fluctuations of the fMRI BOLD signal has become the goal
of investigating connectivity and understanding how brain
networks are organized, whether based on a stimulus response or
simply at rest (Fox and Raichle, 2007; Raichle, 2009). Moreover,
resting-state fMRI (rs-fMRI) has become an increasingly popular
method of MRI that investigates synchronous activity across
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regions in the absence of an explicit signal correlation-based
task (Corbetta, 2012; Snyder and Raichle, 2012). Data acquired
by fMRI provides valuable information for explaining the
determinants of network dysfunction, either with task designs
to evaluate the person’s different cognitive abilities (Hampson
et al., 2006) or with rs-fMRI in populations that may have some
diseases such as epilepsy (Centeno and Carmichael, 2014).

Therefore, based on the extensive contributions that have
been shown in robust fMRI studies and the detailed review of
non-invasive neuroimaging techniques in the population with
DS (Baburamani et al., 2019), it is now important to establish
the best experimental option to guarantee the validity and
reliability of the brain signals recorded in individuals with DS.
Moreover, our intention is to provide a reference point that
allows us to systematically accumulate and order the available
information and the findings derived from the fMRI and DS
binomial (other signals such as PET or EEG are contemplated
in the review of Neale et al., 2018, but this is not the case for
fMRI signals.) Therefore, we want to review the works published
to date in relation to fMRI data and people with DS, provide
useful insights that identify the main difficulties and findings that
researchers could utilize, and discuss the different ways to solve
these difficulties.

METHOD

Search of Published Studies
The articles included in the present study were searched in the
Web of Science (WoS), PubMed and PsycInfo databases. The
following inclusion criteria were applied: the articles had to be
original fMRI papers that included a sample of persons with DS
and that were published from 1992 to October 17, 2019. The
literature search was conducted using a Boolean algorithm with
the following keywords: (“DOWN SYNDROME” OR “DOWN’S
SYNDROME”) in the title and (“Functional Magnetic Resonance
Imag∗” OR FMRI) in any part of the paper. If we added
the keyword Alzheimer, no works were found in the three
databases; consequently, in the present study, we worked with a
combination of DS and fMRI studies. The search was performed
independently by three researchers, and we obtained a 100% rate
of agreement between them for the search; all papers found by
the three researchers were considered in the study. Following
these search criteria, we identified a total of 15 papers in WoS,
2 papers in PubMed and 19 records in PsycInfo. After duplicates
were removed, a total of 9 papers were screened. None of these
papers were discarded; thus, 9 articles were fully reviewed and
were included in the current study (identified with an ∗ in the
bibliography). Figure 1 presents a graph that summarizes this
search process.

Three independent researchers analyzed each paper to
estimate the most important information from each of the
included articles. Table 1 shows the main characteristics of
these articles.

As shown in Table 1, the nine works were published after
2002, and seven studies were published in the last 9 years. Finally,
the work of Seyffert et al. (2002) is a conference proceeding and
therefore provides little information.

RESULTS

Main Characteristics of the Studies
Table 2 shows the main characteristics of the samples used in
the nine analyzed works. As shown in the table, seven of the
works are American, one is Taiwanese, and one is from the
United Kingdom. The total sample sizes range between 6 and 76
participants belonging to two groups, a DS group and a control
group; however, in Jacola et al. (2014) and Vega et al. (2015),
three groups are used. In Jacola et al. (2014), there are two
control groups, one paired by chronological age and the other
by mental age; in Vega et al. (2015), there is a group of DS
individuals, a group ofWilliams syndrome (WS) participants and
a control group. In general, no characteristics of the total sample
are provided; however, sample characterization is performed for
each of the groups. The percentage of males, in general, is higher
than 50% in both analyzed groups, even reaching 71.05% in the
study by Wan et al. (2017). Notably, in the eight studies in which
information on the age of the participants is available, the ages
range between 5 and 47 years old. In the majority of the papers,
the groups were paired by chronological age and/or sex.

Notably, in the work of Wan et al. (2017), the DS group is
divided into two groups, an intervention group (n = 18) and a
non-intervention group (n= 20). Because of this subdivision, the
groups are not equal in terms of sex and age, so the proportion of
men in the DS intervention group is 61.11%, while in the DS non-
intervention group, the proportion of men is 80%; the average
age in the DS intervention group is 14.09 years, while in the DS
non-intervention group, it is 12.35 years. Finally, none of the
nine studies present information on the degree of disability of the
persons with DS.

fMRI Description and Main Results
As shown in Table 3, in eight of the works, the resonator used
is 3 Teslas, while in the oldest work (Seyffert et al., 2002), the
resonator is 1.5 Teslas. In five studies, the block design is used;
therefore, the subjects must perform a task while undergoing
BOLD signal acquisition. The rest of the works use the resting-
state paradigm, but two of them employ unusual strategies, such
as presenting visual stimuli during signal acquisition (Anderson
et al., 2013, 2015). Jacola et al. (2011, 2014) and Reynolds Losin
et al. (2009) use semantic listening type tasks, whereas in the
Wan et al. (2017) study, visual perception tasks are used. The
amount of time that persons are in the resonator performing the
task is generally short, ranging from 5min 30 s in the shortest
case to 50min in the longest case. In general, the objective of
the analyzed works is to determine if there is a differentiated
activation pattern between the DS group and the analyzed control
group. Clearly, the papers estimating functional connectivity
networks try to show the difference between groups in relation
to network patterns and characteristics.

A summary of the results found in the different works is
also provided in Table 3. The task description of these works is
noteworthy since none of them mention the previous learning
periods, and the level of difficulty of the task is not indicated
in all of them. In fact, in older works using a resting-state
approach, visualization is used to avoid excessive movement.
The extent to which these sequences would be considered
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FIGURE 1 | Flow chart of the analyzed papers.

resting is debatable, since these types of records, as we have
reiterated, occur in the absence of any external stimulation. An
examination of the concrete results of each of the papers indicates
some common characteristics, even though the papers are not
strictly comparable. In general, differential activation patterns are
seen in the DS samples compared to the control groups. This
pattern is not regular, and statistically significant differences are
observed in unilateral comparisons in both the Down > Control
and Control > Down assessments. Most likely, depending on
the characteristics of the tasks, distinct and small extrapolated
activation patterns were obtained. For example, Seyffert et al.
(2002) found greater activation in the DS sample than in the
control group in a task to silently name pictures of common
objects. On the other hand, Reynolds Losin et al. (2009), in a
passive story-listening task (Blocks: Forward and Backward and
Rest), found similar effects in some comparisons. For example,
in the Forward > Backward task, statistically significant effects
were found in the unilateral comparisons of the Control > DS
groups. However, in other tasks (Forward>Rest), the statistically
significant difference was in the opposite direction DS>Control.
The works of Jacola et al. (2011, 2014) were especially consistent
since they only found statistically significant effects in the Control
> DS comparisons in all the areas studied. Inconsistent and
irregular activation patterns, as we mentioned, can be seen in
the remaining works (Vega et al., 2015; Wan et al., 2017; Wilson

et al., 2019). The two works carried out with a resting-state
approach (Anderson et al., 2015) showed less activation in the
functional connectivity networks presented in the DS samples.
However, these results are not comparable since both studies used
resting-state techniques with the presentation of visual stimuli.

DISCUSSION

We should wait a few more years for more studies using
fMRI techniques to be published and to include various specific
populations. Even so, it is quite pertinent to promote the use
of these techniques, which deserve special attention in the DS
population for their singularities in relation to their cognitive
functioning and intellectual level. Generally, the increase in the
use of neuroimaging techniques has led to the appearance of
many underpowered studies with small sample sizes, which leads
to many missed results (Button et al., 2013). This leads us to
continue to explore the different findings.

Presently, it is optimistic to talk about generalized conclusions
given the small amount of evidence available (eight or nine papers
depending on the consideration of Seyffert et al., 2002). In any
case, we aim to provide useful reference points to support future
work that utilizes fMRI techniques with the DS population.
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TABLE 1 | Main characteristics of the analyzed papers.

Title Authors Year Journal

Abnormal brain synchrony in Down Syndrome. Andesrson J. S., Nielsen J. A., Ferguson M. A.,

Burback M. C., Cox E. T., Dai L. et al.

2013 NeuroImage

Violence: heightened brain attentional network response is selectively

muted in Down syndrome.

Anderson J. S., Treiman S. M., Ferguson M. A.,

Nielsen J. A., Edgin J. O., Dai L. et al.

2015 Journal of Neurodevelopmental

Disorders

Functional magnetic resonance imaging of cognitive processing in

young adults with Down syndrome.

Jacola L. M., Byars A. W., Chalfonte-Evans M.,

Schmithrst V. J., Hickey F., Patterson, B. et al.

2011 American Journal on Intellectual

and Developmental Disabilities

Functional magnetic resonance imaging of story listening in

adolescents and young adults with Down syndrome: evidence for

atypical neurodevelopment.

Jacola L. M., Byars A. W., Hickey F., Vannest J.,

Holland S. K. and Schapiro M. B.

2014 Journal of Intellectual Disability

Research

Abnormal fMRI activation pattern during story listening in individuals

with Down syndrome.

Reynolds Losin E. A., Rivera S. M., O’Hare E. D.,

Sowell E. R. and Pinter J. D.

2009 American Journal on Intellectual

and Developmental Disabilities

Functional magnetic resonance imaging shows aberrant language

lateralization in Down syndrome.

Seyffert M., Field K. and Pinter J. 2002 Annals of Neurology

Resting-state functional connectivity in individuals with Down syndrome

and Williams syndrome compared with typically developing controls.

Vega J. N., Hohman T. J., Pryweller J. R., Dykens

E. M., and Thornton-Wells T. A.

2015 Brain Connectivity

The effectiveness of the computerized visual perceptual training

program on individuals with Down syndrome: An fMRI study.

Wan Y.T., Chiang C. S., Chen S. C. and Wuang Y.

P.

2017 Research in Developmental

Disabilities

Differential effects of Down’s syndrome and Alzheimer’s

neuropathology on default mode connectivity.

Wilson L. R., Vatansever D., Annus T., Williams G.

B., Hong Y. T., Fryer T. D. et al.

2019 Human Brain Mapping

First, there is evidence of functional and structural differences
between populations. Lower brain volume and lower activity
(activation) recorded by fMRI appear to be typical in the DS
population. It is evident that the morphological differences in
the brain of a person with DS brain fuel the discussion about the
normalized atlases, which were also revealed in the MRI studies
of persons with DS. For instance, Pujol et al. (2018) used SPM
voxel-based morphometry (VBM) with DARTEL algorithms in
the image preprocessing phase.

Second, related to the last point, in fMRI sessions, we have
already reiterated that the recording problems stem primarily
from the movement of the person within the resonator. This
problem is common in children and in populations with
pathologies that compromise motor control (Aranyi et al., 2017).
This tendency is observed among DS persons. As a consequence,
some records have to be eliminated, or statistical routines are
required to correct broadband movement in the preprocessing
phase. It is a source of noise to consider in this type of work.
Except for the work of Wilson et al. (2019), this issue is not
mentioned in the rest of the works. In this regard, the proposals of
Ciric et al. (2017) should be taken into account in all fMRI studies
and with more intensity in high-movement populations such as
persons with DS. Even if their suggestions do not provide specific
corrections for DS samples, they have been shown to be effective
in reducing the perverse effects of excess movement. The work
of Wilson et al. (2019) may be a reference for the appropriate
application of these corrections.

Third, in the same manner, the sample sizes are small. This
finding is not new; it is a recurring theme in many works,
not necessarily just DS studies. Therefore, this factor is not a
distinctive aspect of these samples. The difficulties of sampling
are well-known but are not different from many other proposals
for fMRI. From a classical perspective, the expected minor

sampling error in this work would not be inferior to 0.1124
assuming a CI of 95% and a theoretical parameter π = 0.5.

From a methodological point of view, and as the fourth
issue, we can identify certain doubts in the configuration of
control groups of healthy people in the employed designs. It is
important to note that the mental development of subjects with
intellectual disability is not the same as that of healthy subjects of
equal chronological age but should not differ significantly when
matched for their mental age (Carducci et al., 2013). The focus is
on the selection of an appropriate control group, and the options
are matching by chronological age or by mental age. In the first
case, we consider a non-specific maturation process, and in the
second, we address cognitive skills, which are also developmental
but focus fundamentally on performance. Notably, in the case
of studies that involve tasks, it would be appropriate to promote
having control groups matched by mental age, as it is a question
of comparing cognitive performance and brain signals (Jacola
et al., 2014). Only one study analyzed described two paired
control groups, one by chronological age and another by mental
age, because basal functioning was being evaluated rather than
factors associated with an explicit cognitive task or component.
In this respect, there is one aspect that is of little or no
consideration. If a control group is generated from the estimation
of mental age matching, strict matching must be performed
(consisting with having an exact mirror in the control group of
each case in the experimental group). If a poorlymatched group is
used due to sampling difficulties, the control is usually verified by
comparing the means of the mental age between the two groups;
relevantly, IQ ranges differ greatly between individuals with and
without DS. In people without ID, the IQ ranges between 85
and 115 in almost 66% of people (according to the normal
curve properties); the population of ID individuals is usually
distributed into those that exhibit slight or medium delays, that
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TABLE 2 | Sample description of the analyzed papers.

Paper Sample Country n % men Groups n by group % men by group Age mean by

group

Sampling Matching

Anderson et al. (2013) USA 29 58.62 2 DS: 15

C: 14

DS: 60.00

C: 57.14

DS: 20.20

C: 23.70

Accidental Chronological age

and sex

Anderson et al. (2015) USA 29 58.62 2 DS: 15

C: 14

DS: 60.00

C: 57.14

DS: 20.20

C: 23.70

Accidental Chronological age

and sex

Jacola et al. (2011) USA 25 60.00 2 DS: 13

C: 12

DS: 61.54

C: 58.33

DS: 18.30

C: 19.00

Accidental Chronological age

and sex

Jacola et al. (2014) USA 36 47.22 3 DS: 11

C_CA: 13

C_MA: 12

DS: 54.54

C_CA: 53.85

C_MA: 33.33

DS: 18.3

C_CA: 18.3

C_MA: 5.4

Accidental C_CA:

chronological age

C_MA: mental age

Reynolds Losin et al. (2009) USA 18 50.00 2 DS: 9

C:9

DS: 44.44

C: 55.56

DS: 16.5

C: 17.8

Accidental Chronological age

Seyffert et al. (2002) USA 6 2 DS: 3

C: 3

Accidental

Vega et al. (2015) USA 68 60.29 3 DS: 10

WS: 18

C: 40

DS: 40

WS: 72.22

C: 60.00

DS: 38.98

WS: 25.89

C: 46.95

Accidental

Wan et al. (2017) Taiwan 76 71.05 2 DS: 38

C: 38

The DS group was

divided in two

samples:

intervention (n = 18)

and control (n =20)

DS: 71.05

C: 71.05

DS: 13.17

C: 13.07

Accidental Chronological age

and sex

Wilson et al. (2019) United Kingdom 54 50.00 2 DS: 34

C:20

DS: 55.00

C: 47.00

DS: 43.5

C_CA: 43.5

Accidental Chronological age

DS, Down syndrome group; C, control group; C_CA, control group matched by chronological age; C_MA, control group matched by mental age; WS, Williams syndrome group.

is, those with IQs up to 70 in most cases. In addition, IQs are
stable in the adult population but much less stable in the child
population; thus, comparison with this type of matching can be
misleading (Amador and Forns, 2019). No matching analyses
have been reported with empirical evidence of homoscedasticity
between groups paired with lax criteria.

In this sense, as a fifth point, the works analyzed here
show comparisons between groups of statistically significant
activations or networks obtained from the fMRI records
during a semantic recognition task, passive listening, non-verbal
denomination of objects, a visual perception task or a resting
state (see Table 3). In all cases, activation differences are reported
in certain areas of the brain with intergroup comparison. The
fact that the visual areas are activated less in the DS sample
than in the control group or that there are differences in other
areas due to visual stimuli does not indicate specific properties of
the DS population. The same consideration must be addressed
in network differences. In fact, in general, all studies agree
in reporting a lower activation intensity in DS groups than
control groups, and the study by Wan et al. (2017) presents an
interesting intragroup comparison that does describe intrinsic
properties of the DS population. However, the lower activation
level obtained in the DS group than in the controls confirmed the
effects of brain impoverishment described above. We can make
many comparisons with many different stimuli; however, these
comparisons will not directly lead us to discovering unique brain
behavior properties of the DS population. In fact, an activation

increment is described in some connections, and a decrement
is noted in others in the comparisons between networks in
DS samples and the paired control groups. However, these
differences do not allow the establishment of a stable and regular
pattern typical of DS people.

These findings lead us to another crucial point. The use
of tasks that previously published papers have used are tasks
adapted to the peculiarities of the target population. Comparison
with a healthy control group of similar chronological age
does not in any way support characteristic outcomes among
the DS population. The comparison between DS and non-DS
groups does not provide relevant evidence regarding individuals
with DS. It seems more methodologically reasonable to make
intragroup comparisons than intergroup comparisons and, when
feasible, use internal classification criteria for the identification
of subgroups. For instance, to compare older and younger
individuals, those with higher cognitive competence and those
with lower competence, those with a higher cognitive reserve
level and those with a lower level and so on within the DS
population, any other criteria that allows characterization of
cognitive competence by signals and study of its distribution
should be utilized.

Intragroup comparisons present other types of statistical
issues that extend beyond the objective of this paper but
are reasonably resolved and can be used in DS studies. We
can observe examples of these issues in AD or Parkinson’s
populations or in populations with other pathologies with
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TABLE 3 | Principal characteristics of the fMRI design and principal results obtained.

ID Teslas Design Task Task

time

Main aim Principal results

Anderson et al. (2013) 3T Resting-state imaging

with visualizing cartoons

50’ Compare fMRI scans of 15 individuals with

Down syndrome to 14 typically developing

control subjects while they viewed cartoon

video clips

Measurements of subject motion were significantly

higher in Down syndrome subjects than in controls.

Down syndrome subjects showed higher levels of

synchrony between distributed brain networks as well as

between the vast majority of gray matter regions. Down

syndrome subjects exhibited weaker correlations only for

a relatively small subset of the most correlated regions,

whether negatively or positively related. Regardless of

the distance separating the regions, pairs of regions that

showed anticorrelation in a large control sample showed

increased correlation (reduced anticorrelation) in Down

syndrome.

Anderson et al. (2015) 3T Resting-state imaging

with visualizing cartoons

50’ Examine functional brain activation in

response to stylized violence stimuli in Down

syndrome and in typically developing

individuals to determine whether regional

brain activation patterns could be

characterized, as well as whether atypical

neural activation might be present that could

provide clues to a basis for the deficits seen

in Down syndrome

In typically developing individuals, the brain’s dorsal

attention network was most active during violent scenes

in the cartoons; this was significantly and specifically

reduced in Down syndrome participants. Individuals with

Down syndrome exhibited significantly reduced

activation in the primary sensory cortices, and such

perceptual impairments may constrain their ability to

respond to more complex social cues such as violence.

Jacola et al. (2011) 3T Block design Paradigm that required participants to

make a decision based on semantic

information derived from visually

presented stimuli

5’30” Understand the relationship between

cognitive processing and brain activation in

individuals with Down syndrome on tasks

that measured aspects of both verbal and

visual-spatial abilities

A significant difference was present in task performance

between the mean of DS and control individuals; the

mean of DS individuals was inferior to that of controls. In

relation to fMRI, controls had 13 areas activated,

whereas DS had 20 areas activated.

Jacola et al. (2014) 3T Block design Language processing: a passive story

listening paradigm

5’30” Explore neural activation during language

processing in participants with DS compared

with typically developing groups matched for

chronological and mental age

Random effects group analyses documented a reduced

activation magnitude in the DS cohort than in both

control groups. The pattern of activation within the DS

cohort additionally included significantly greater

activation in the midline frontal regions (BA 9 and 10) and

cingulate gyri (BA 23, 24, 30 and 32).

Reynolds Losin et al.

(2009)

3T Block design Passive story-listening task (Blocks:

forward, backward and rest)

6’08” Investigate whether individuals with DS

exhibit aberrant language-related activation

patterns compared to an approximately

age-matched typically developing control

group during an easily performed passive

story-listening task

Control > DS: Forward > Backward—Right middle

temporal gyrus.

DS > Control: Forward > Rest—Right precuneus;

Backward > Rest—Right precuneus.

Seyffert et al. (2002) 1.5T Block design Silent naming of pictures of common

objects presented through fiber-optic

goggles. As a control condition,

subjects viewed pixilated images of the

same objects with instructions to look

without attempting to name them

Unspecific objective related to language

deficits in Down syndrome

Greater activation was observed in the right inferior

frontal and right superior temporal gyrus in the DS group

than in the controls.

(Continued)
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TABLE 3 | Continued

ID Teslas Design Task Task

time

Main aim Principal Results

Vega et al. (2015) 3T Resting state 5’ First aim: confirm previous findings of

increased between-network connectivity in

DS individuals compared with TD controls

and determine whether such differences are

specific to DS or are also observed in another

developmental disability disorders, such as

WS.

Characterize how the within-network

connectivity profiles of DS and WS could be

compared with each other and with TD

participants. Together, these aims are

intended to support the replication of

previous work while providing new insights

into resting-state brain function across two

different neurodevelopmental disorders.

The results showed that alterations of between-network

connectivity, particularly in the DMN, are a characteristic

of a number of neurodevelopmental disorders involving

intellectual disability, including DS and WS. Perhaps

within-network connectivity is a feature that shows more

variable patterns across different neurodevelopmental

disorders.

Wan et al. (2017) 3T Block design Two types of visual perceptual tasks:

two-choice revised version of Hooper

Visual Organization Test (T-HVOT) and

Full Picture Matching Test (FPMT)

6’42” (1) Develop and implement a one-year

computerized visual perceptual training

(CVPT) program for DS, (2) use a

standardized visual perception assessment

to evaluate the effectiveness of the CVPT

program, and (3) examine the changes of

cortical activation patterns of DS individuals

after one-year of CVPT intervention by

utilizing functional magnetic resonance

imaging (fMRI)

The results showed that the DS intervention group had

significant improvements in TVPS-3 after the

intervention. The fMRI results indicated more activation in

the superior and inferior parietal lobes (spatial

manipulation), as well as the precentral gyrus and dorsal

premotor cortex (motor imagery) in the DS intervention

group. In the T-HVOT vs. FPMT comparison, TD

individuals showed highly significant bilateral activations

in the middle occipital gyrus, middle temporal gyrus,

middle frontal gyrus, and inferior frontal gyrus.

Wilson et al. (2019) 3T Resting state Eyes closed while awake 10’ (a) Determine the potential functional

connectivity alterations of the DMN in people

with Down syndrome; (b) examine the

relationship between DMN connectivity and

age, IQ and performance on memory and

executive function tasks in people with Down

syndrome; and (c) investigate differences in

DMN connectivity in people with Down

syndrome with and without fibrillar Aβ

accumulation, indicative of Alzheimer’s

disease neuropathology

The Down syndrome (all) group did not display a typical

profile of DMN connectivity; almost no anti-correlation

with other cortical regions was observed. Disrupted

functional connectivity of the DMN is an early biomarker

of Alzheimer’s disease neuropathology.
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characteristic intellectual deficits, such as Williams syndrome,
Fragile FXS syndrome, Rett syndrome and Turner’s syndrome
(Beaton et al., 2010; Thornton-Wells et al., 2010; Chai et al., 2012;
Stevenson et al., 2012; Venuti et al., 2012; Klabunde et al., 2015;
Reynolds et al., 2015).

While previously mentioned, it is surprising that there are
scarce resting-state fMRI records. Several studies have shown
the relationship between the default mode network (DMN) and
healthy aging processes; thus, the estimation of this type of well-
known network should also be a good vehicle for the study of
brain functioning through fMRI in the DS population (Farràs-
Permanyer et al., 2019), which leads to a final point that we must
propose. The study of brain signals in pathologies with cognitive
deficits is common; however, it is not commonly used to evaluate
people with DS, and the lack of studies with this approach cannot
be explained by the difficulties of sampling or the workload
of registration alone. The sampling difficulties and workload
are the same those for other pathologies, but there are more
published studies on people with other diagnosis than on people
with DS.

The issue is that if fMRI (or other types of signals) data
are used as indicators of cognitive status, they are likely to
be perceived as being unnecessary in these (and other) cases.
However, this is not the essential question. The conception
of the brain signal cannot currently be conceived as the
study of a specific activity associated with a stimulus. The
nature of brain function requires a much broader consideration
than designs associated with tasks in which the statistical
detection of increased activation in a specific area of the brain
through intergroup or intragroup comparisons is a priority.
Our proposal is based on the need to study functional and
effective connectivity networks for the whole brain at rest
and in series that are not less than 5min, according to the
recommendations of Cole et al. (2010) and Van Dijk et al. (2010).
This recommendation provides a measure of brain functionality
(i.e., connectivity networks) in a short and feasible time and with
no bias.

CONCLUSIONS

To conclude, we want to summarize the notable points discuss
above. First, it is feasible to use fMRI signals in a population
with DS, as long as measures are provided with the utmost rigor.
Second, it seems preferable to use the resting-state paradigm in
this population. Third, it would be beneficial to invest time and
effort in studying how the brain signal in the population with
DS could be used as a biomarker of cognitive activities. Fourth,
this type of data must be exhaustively analyzed to estimate
classification and discrimination functions between differential
groups within the same population of DS. Techniques such
as linear or non-linear discriminant analysis and latent profile
analysis, among others, may be especially relevant. Finally,
we must remember that the techniques related to movement
reduction can help improve recruitment and sampling, especially
reducing experimental mortality due to register errors. All these
questions are very limited thus far with respect to the effort
to meta-analyze data from fMRI signal studies in populations
with DS.
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