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Aim: Development of fluorometholone-loaded PEG-PLGA nanoparticles (NPs) functionalized with cell-
penetrating peptides (CPPs) for the treatment of ocular inflammatory disorders. Materials & methods:
Synthesized polymers and peptides were used for elaboration of functionalized NPs, which were char-
acterized physicochemically. Cytotoxicity and ability to modulate the expression of proinflammatory cy-
tokines were evaluated in vitro using human corneal epithelial cells (HCE-2). NPs uptake was assayed in
both in vitro and in vivo models. Results: NPs showed physicochemical characteristics suitable for ocu-
lar administration without evidence of cytotoxicity. TAT-NPs and G2-NPs were internalized and displayed
anti-inflammatory activity in both HCE-2 cells and mouse eye. Conclusion: TAT-NPs and G2-NPs could be
considered a novel strategy for the treatment of ocular inflammatory diseases of the anterior and poste-
rior segment.

First draft submitted: 17 May 2019; Accepted for publication: 11 October 2019; Published online:
26 November 2019

Keywords: cell-penetrating peptides • drug delivery • fluorometholone • ocular anti-inflammatory • polymeric NPs

Uveitis is one of the most common intraocular inflammatory diseases affecting the anterior and posterior segments
of the eye. Corticosteroid eye drops such as fluorometholone (FMT) are used in the clinic for the treatment of
anterior uveitis, such as iritis, cyclitis or iridocyclitis. The main disadvantage of eye drops dosage forms is the
dilution and elimination by the tear turnover, which reduces the precorneal residence time of the formulation. This
would lead to limited pharmacological effect in the anterior segment of the eye [1–3]. In ocular diseases affecting
the posterior segment, more invasive methods such as intravitreal injections or implants are necessary to achieve
an effective pharmacological effect. These methods would result in a recurrence of undesirable side effects and
make adherence to treatment difficult [4]. In addition, benzalkonium chloride (used as a preservative in most
ophthalmic suspensions) has been reported to affect the tear film and the surface of the cornea, causing dryness
and eye irritation [5,6]. Although most ocular corticosteroids induce glaucoma by increasing intraocular pressure
in prolonged treatment, FMT has a significantly lower risk of causing this disease [7–9]. Nowadays, new strategies
such as the encapsulation of corticosteroids in polymeric nanoparticles (NPs) of average size smaller than 300 nm
and nanostructured gels have shown their capacity to increase the precorneal residence time and reach tissues of
the posterior segment of the eye [10–14]. Moreover, the objective in ocular pharmacotherapy is to prevent drug
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inactivation by cytochrome P450, and its elimination by efflux transports and multidrug resistance proteins [15,16].
Therefore, the new nanostructured systems should protect the drug and allow internalization in ocular cells avoiding
its elimination by both molecular (metabolizing enzymes) and anatomical (tear turnover and dilution) mechanisms.
With regard to the previous approach, cell-penetrating peptides (CPPs) constitute a new strategy that would allow
the internalization of nanostructured systems such as NPs. CPPs are sequences of less than 30 amino acids, rich in
arginine (Arg) residues and positively charged. The use of CPPs on the surface of the NPs improve their penetration
through cell membranes using various mechanisms such as direct translocation or receptor-mediated endocytosis.
This allows a greater pharmacological effect of the encapsulated component than NPs without CPPs on their
surface [17]. CPPs such as Penetratin (pAntp43-58) and the transcriptional activator peptide sequence (TAT49-57) of
HIV-1 have been shown to be effective for the cellular internalization of polypeptides and the transfection of nucleic
acids. Besides, many of the CPPs share characteristics with antimicrobial peptides, such as cationic sequences with
multiple Arg residues [18–20]. Within the antimicrobial peptide group, the peptide sequence G2 has antiviral activity
against the herpes simplex virus and has been shown to have the ability to internalize drugs inside cells [21–25].

In the current study, FMT-loaded maleimide-PEG-PLGA NPs (FMT-m-PEG-PLGA-NPs) functionalized with
CPPs (TAT49-57, pAntp43-58 and G2) have been developed to improve the anti-inflammatory efficacy of FMT
in the anterior and posterior segment of the eye. The maleimide-PEG-PLGA (m-PEG-PLGA) polymer was
synthesized and characterized by nuclear magnetic resonance (H-NMR), x-ray diffraction spectroscopy (XRD) and
Fourier transform infrared spectroscopy (FTIR). On the other hand, the synthesized peptides, TAT49-57, pAntp43-58

and G2, were analyzed by mass spectrometry. The physicochemical properties and the degree of conjugation of
FMT-m-PEG-PLGA-NPs with each CPP were studied. Cytotoxicity, inhibition of proinflammatory cytokines and
uptake assays (in vitro and in vivo) were carried out to provide evidence of the innocuousness and effectiveness of
functionalized NPs as a new strategy in the treatment of ocular inflammatory conditions.

Materials & methods
Materials
FMT and PLGA RG 503H were purchased from Capot Chemical (Hangzhou, China) and Evonik Corporation
(AL, USA), respectively. Maleimide-PEG-NH2 (m-PEG) (5 KDa) was obtained from Nanosoft Polymers (Nanosoft
Biotechnology LLC, NC, USA). Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxysuccinimide
(NHS), N-diisopropylethylamine (DIEA), rhodamine 110 (Rho) chloride, poly(vinyl alcohol) (PVA), insulin,
hydrocortisone, trypsin-EDTA (1X), lipopolysaccharide (LPS) and tetrazolium bromide (MTT) were purchased
from Sigma Aldrich (MO, USA). Isoptoflucon R©, FMT ophthalmic commercial drug (excipients: benzalkonium
chloride, polysorbate 80, sodium phosphate, disodium phosphate, sodium chloride, hydrochloric acid, sodium
hydroxide, PVA, disodium edetate, hypromellose and purified water) was purchased in a community pharmacy
(Barcelona, Spain). Keratinocyte serum-free medium, human recombinant epidermal growth factor, bovine pituitary
extract, penicillin, streptomycin, fetal bovine serum, IL-1β, IL-6, IL-8 and TNF-α Human ELISA Kit were acquired
from Thermo Fisher Scientific (Life Technologies, CA, USA). Human corneal epithelial cell line immortalized with
adenovirus 12-SV40 hybrid virus (HCE-2, ATCC R© CRL-11135) was purchased from LGC Standards (Barcelona,
Spain). Amino acids and NovaSyn TGR resin were obtained from Novabiochem (Hohenbrunn, Germany). Water
through Millipore R© MilliQ system was used for all the experiments and all the other reagents were of analytical
grade.

Synthesis of the polymers Rho-PLGA & m-PEG-PLGA
A total of 33.3 μmol of PLGA RG 503H (1.0 g) were dissolved in 3 ml of chloroform, then allowed to react
with 234.6 μmol of NHS (27 mg) and EDC (45 mg) overnight under continuous stirring in a sealed glass vial.
Subsequently, PLGA RG 503 H (NHS-PLGA) was activated, precipitated with 10 ml of cold diethyl ether and
centrifuged at 4000 r.p.m for 10 min at 20◦C. The supernatant was removed, the recovered polymer was dissolved
in 3 ml of chloroform and precipitated with cold diethyl ether. This washing/precipitation cycle was carried out
three times. The NHS-PLGA obtained was dried using nitrogen gas (N2) and then lyophilized and stored at
−20◦C.

A total of 33.2 μmol of NHS-PLGA (1.0 g), 35 μmol of m-PEG (167 mg) or Rho (12.78 mg) were dissolved in
3 ml of chloroform with 234.3 μmol of DIEA and left to react overnight under continuous stirring. The obtained
polymer was subjected to three washing/precipitation cycles using an 80/20 mixture of diethyl ether/cold methanol.
At last, the polymer was lyophilized and stored at −20◦C. The yield obtained from polymers (m-PEG-PLGA and
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Rho-PLGA) was calculated by the following equation:

Yield (%) =
weight of (m-PEG-PLGA)

weight of (NHS-PLGA + m-PEG)
× 100 (Eq. 1)

To follow the synthesis of the polymer and changes in its molecular structure, it was analyzed by H-NMR.
PLGA RG 503H, NHS-PLGA, m-PEG, m-PEG-PLGA and Rho-PLGA were dissolved in deuterated dimethyl
sulfoxide (DMSO-d6). The spectrum was recorded at 298 K on a Varian VNMRS 400 MHZ spectrometer (Agilent
Technologies, CA, USA). To calculate the PEGylation efficiency and percentage of mass relative (MR) of the m-PEG
bound to the NHS-PLGA polymer, the following equations were used [17,26]:

PEGylation efficiency (%) =
IPPEG(δ = 3.31)/n

∑
IPPLGA(δ = 5.21; 4.90; 3.31)/n

× 100 (Eq. 2)

MR (%) =
MWPEG

[
IPPEG/n

]

MWPLGA
[
IPPLA,δ=5.21/n

] × 100 (Eq. 3)

MW: molecular weight. PEG = 42.04 g·mol−1, PLGA = 130.10 g·mol−1.
IP: Integration peak.
n: number of protons PLGA = 6 +H [PLA (δ = 5.21) = 1 +H; PGA (δ = 4.90) = 2 +H; PLA (δ = 1.47) = 3 +H]

and PEG (δ = 3.31) = 4 +H.

Structural studies of polymers
The molecular changes of the synthesized polymer and its crystalline or amorphous state were evaluated by FTIR
and XRD. FTIR spectra of polymers separately were obtained using a Thermo Fisher Scientific Nicolet iZ10 with
an ATR diamond and DTGS detector. The scanning range was 525–4000 cm−1 [27]. The amorphous or crystalline
state of NHS-PLGA, m-PEG and m-PEG-PLGA were determined by XRD measurements using Siemens D500
system (Karlsruher, Germany). X-ray powder diffractograms were recorded using Cu K radiation (45 kV, 40 mA,
λ = 1.544 Å) in the range (2θ) from 2◦ to 60◦ with a step size of 0.026◦ and measuring time of 195.8 s per step [27].

Preparation & characterization of FMT-m-PEG-PLGA-NPs
FMT-m-PEG-PLGA-NPs and fluorescent NPs (RhoNPs) were prepared by the solvent displacement method [27].
Briefly, the m-PEG-PLGA (10.0 mg·ml−1) and FMT (0.5 mg·ml−1) were dissolved in 5 ml of acetone. The
organic phase was added slowly dropwise, under stirring, into 10 ml of an aqueous solution of PVA (15 mg·ml−1)
adjusted to pH 4.0. Subsequently, the organic solvent was evaporated under reduced pressure. At last, the PVA
was eliminated by ultracentrifugation (30,000 r.p.m for 30 min) and resuspended in 10 ml of phosphate buffered
saline (PBS). The same amounts of polymer (20 mg of Rho-PLGA and 80 mg of m-PEG-PLGA) and FMT were
used for the synthesis of RhoNPs.

Morphometry (average particle size [Zav] and polydispersity index [PI] measured from scattering intensity)
and ζ-potential (ZP) of NPs were determined in a Zetasizer NanoZS (Malvern Instruments, Malvern, UK) by
dynamic light scattering and electrophoretic mobility, respectively. Samples were diluted in MilliQ water (1:10)
and experiments were performed with disposable capillary cells DTS1070 (Malvern Instruments) at 25◦C. The
reported values correspond to the mean ± SD.

The entrapment efficiency (EE) of FMT in the NPs was quantified indirectly by measuring the nonentrapped
drug in the dispersion medium. The free FMT was separated by a filtration/centrifugation technique (1:10 dilution)
at 25◦C and 5000 r.p.m for 10 min. The EE was calculated according to the following equation:

EE (%) =
cFMT0 − cFMT1

cFMT0
× 100 (Eq. 4)

where cFMT0 and cFMT1 are the total amount of FMT and free FMT in the filtrated, respectively. Samples
were evaluated by HPLC, according to the method described previously [27]. Data were processed using Empower
3 R© software.
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Synthesis of CPPs
The peptide sequences, TAT49-57 (CGGGRKKRRQRRR), pAntp43-58 (CGGGRQIKIWFQNRRMKWKK) and
G2 (CGGGMPRRRRIRRRQK) were synthesized by automated solid-phase parallel peptide synthesizer (Re-
sPep, Intavis AG, Aachen, Germany) using NovaSyn TGR resin (0.25 mmol·g−1) and 9-fluorenylmethoxycarbonyl
(Fmoc) strategy. Couplings were carried out with benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophos-
phate (PyBOP)/N-methylmorpholine as activator and a fivefold molar excess of Fmoc-amino acids. In order to
reduce the formation of side products, a capping step was used to permanently block any unreacted amino group
after the coupling reaction or to acetylate the N-terminus of a completed peptide. Capping solution used was based
on a ratio of 1:1:3 of acetic anhydride (Ac2O), DIEA and N,N dimethylformamide (DMF). The Fmoc-deprotection
step was performed twice with 20% piperidine in DMF for 30 min. Synthesized peptides were exposed for 3 h to
a solution composed of 94% trifluoroacetic acid (TFA): 1% triisopropylsylane: 2.5% dithiothreitol: 2.5% MilliQ
water for the deprotection of the side chain and the cleavage from the resin. Peptides were isolated by precipitation
with ice cold diethyl ether with subsequent centrifugation (3000 r.p.m for 4 min at 4◦C). Each peptide dissolved
in 30% acetic acid in water were concentrated and dried using speed-vac system (Eppendorf AG, Hamburg, Ger-
many). Peptides were purified using a Jupiter R© 3μ C18 300A column (150 × 4.6 mm, Phenomenex R©) coupled
to a 1260 semipreparative RP-HPLC (Agilent Technologies, CA, USA). The method used was a gradient of 90%
water (0.1% TFA)/90% acetonitrile (0.1% TFA). Crude peptides were purified to a yield of 90% by RP-HPLC
at 220 nm. Desalted peptides were analyzed by matrix-assisted laser desorption ionization source/tandem time-of-
flight (MALDI-TOF/TOF) mass spectrometer (Ultraflextreme, Bruker Daltonik GmbH, Mannheim, Germany)
using a α-cyano-4-hydroxycinnamic acid matrix.

Conjugation of CPPs with FMT-m-PEG-PLGA-NPs
A total of 1.45 μmol of FMT-m-PEG-PLGA-NPs (5 ml of NPs) were reacted with 1.45 μmol of CPP (2.34 mg of
TAT49-57, 3.65 mg of pAntp43-58 and 2.87 mg of G2) overnight under magnetic stirring. Next, ultracentrifugation
of the NPs was performed (28,000 r.p.m for 30 min at 4◦C) to remove the peptide unconjugated and the pellet
containing NPs was resuspended in PBS. In order to confirm the conjugation with the CPPs, derivatized NPs were
lyophilized and analyzed by H-NMR (previously dissolved DMSO-d6). MR was used for the calculation of each
CPP bound to FMT-m-PEG-PLGA-NPs according to the following equation [17]:

MR (%) =
MWCPP

[
IPCPP/n

]

MWPLGA [IPPLA/n]
× 100 (Eq. 5)

MW: molecular weight. TAT49-57 = 1612.94 g·mol−1, pAntp43-58 = 2519.36 g·mol−1, G2 = 1982.12 g·mol−1,
PLGA = 130.10 g·mol−1.

IP: Integration peak.
n: number of protons: TAT49-57 (δ = 7.0-8.2 ppm):46 +H, pAntp43-58 (δ = 6.8-8.2): 64 +H, G2 (δ = 7.0-8.2):

50 +H and PLA (δ = 5.21): 1 +H.

In vitro biological studies
Cell culture
The culture medium for HCE-2 cells was keratinocyte serum-free medium supplemented with bovine pituitary
extract 0.05 mg·ml−1 and epidermal growth factor 5 ng·ml−1 containing insulin 0.005 mg·ml−1, fetal bovine
serum 10%, hydrocortisone 500 ng·ml−1 and penicillin 100 U·ml−1 plus streptomycin 100 mg·ml−1. Cells were
grown on 25 cm2 culture flask to confluency (80%) in a humidified 10% CO2 atmosphere at 37◦C. The culture
medium was changed every 3 days.

Cytotoxicity study
The effect on cell viability of NPs conjugated with each CPP was evaluated in vitro using the MTT assay. For
this, 1 × 105 HCE-2 cells in 0.1 ml were seeded in 96-well plates and incubated for 24 h at 37◦C. Then, cells
were exposed to different drug concentrations contained in TAT-NPs, pAntp-NPs, G2-NPs and Isoptoflucon
(ophthalmic commercial drug). After 24 or 48 h of incubation, cells were washed with PBS and incubated with
0.25 % MTT in fresh medium for 2 h at 37◦C in dark. Subsequently, medium was removed, and cells were lysed by
the addition of 99% DMSO. At last, the absorbance was measured at λ = 560 nm using an automatic Modulus™
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Microplate Photometer (Turner BioSystems, CA, USA). The data were analyzed by calculating the percentage of
MTT reduction compared with the control (untreated cells, 100% viability).

Determination of proinflammatory cytokines
To evaluate the anti-inflammatory activity of the derivatized NPs (TAT-NPs, pAntp-NPs and G2-NPs) and the
commercial drug (Isoptoflucon), HCE-2 cells were seeded (1 × 105 cell·ml−1) in 12-well plates and grown until
90% confluency. The different NPs were added to the culture medium at 50 μg·ml−1 (drug concentration loaded
NPs) and inflammation was induced with LPS (1 μg·ml−1). Cells stimulated only with LPS were considered
the positive control and untreated cells as the negative control. After 48 h incubation, the supernatants were
collected and centrifuged (10,000 r.p.m for 5 min) at 4◦C and stored at 80◦C until use. Secreted levels of the
pro-inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α were quantified by ELISA sets (BD Biosciences, CA,
USA) according to manufacturer’s instructions. The results were expressed as pg·ml−1.

Cellular uptake study
To assess internalization of NPs in HCE-2 cells, 1 × 105 cell·ml−1 HCE-2 were grown in eight-well chamber slider
(ibidi R©, Gräfelfing, Germany) until approximately 80% confluence and then incubated with 50 μg·ml−1 (drug
concentration loaded NPs) RhoNPs (RhoTAT-NPs, RhopAntp-NPs, RhoG2-NPs and RhoFMT-m-PEG-PLGA-NPs)
at 37◦C for 48 h. Noninternalized RhoNPs were then removed by three PBS washes and cells were fixed with 3%
paraformaldehyde for 30 min at 25◦C. Afterwards, cells were washed three times with PBS and the nuclei were
stained with 4’,6-diamidino-2-phenylindole (DAPI) for 15 min at 25◦C. Finally, the cells were washed three times
and mounting solution (PBS) was added for microscopic analysis. Images were acquired using a Leica TCS SP5
confocal laser scanning microscopy (Leica Microsystems, Wetzlar, Germany) with a 63x oil immersion objective
lens.

In vivo study: ocular uptake
C57BL/6J wild-type male mice of 3 months of age were used. Animals were under controlled temperature, humidity
and light conditions with ad lib access to food and water. Mice were treated in accordance to ethical guidelines of
the European Community Council Directive 86/609/EEC and the procedures established by the Department of
Agriculture, Branch and Fisheries of the Government of Catalonia (approved by the ethics committee of University
of Barcelona).

Fluorescent formulations (50μl) were administered in the right eye and the contralateral eye was used as a control.
After 48 h of treatment, all animals were sacrificed. The eyes were enucleated and fixed in 4% paraformaldehyde for
24 h at 4◦C. Then, the samples were embedded in optimal cutting temperature compound and stored at −40◦C.
Horizontal sections of 20 mm were collected using a Leica CM3050s cryostat (Leica Microsystems, Wetzlar,
Germany). The bright and fluorescent fields of the sections were taken by a fluorescent inverted microscope (Leica
DMI4000 B).

Statistical analysis
Multiple comparisons were developed using two-way analysis of variance (ANOVA) with Tukey post hoc test with
a significance of p < 0.05 after having confirmed the normality and equality of variances by Bartlett in the groups.
All analyzed data were presented as mean ± SD. GraphPad Prism 6.01 software and ImageJ was used to analyze
the data and images, respectively.

Results
Synthesis of Rho-PLGA & m-PEG-PLGA
The yield of the synthesis of the polymers Rho-PLGA and m-PEG-PLGA after lyophilization was 85.7–92.1% and
81.4-90.1%, respectively. The H-NMR analysis identified the characteristic peaks of each polymer synthesized.
Particularly, in the PLGA RG 503H the peaks are visualized at 5.21 ppm for CH proton of lactide, 4.90 ppm for
CH2 proton of glycolide and 1.47 ppm for CH3 proton of lactide (Supplementary Figure 1A). In the case of the
NHS-PLGA, the same previous peaks are revealed plus a peak at 2.70 ppm corresponding to the CH2 proton of
the NHS (Supplementary Figure 1B). The polymer synthesized m-PEG-PLGA (Figure 1), showed the same peaks
as the PLGA RG 503H with the presence of the characteristics of m-PEG (Supplementary Figure 1C) at 7.00 ppm
for CH proton of the maleimide and 3.31 ppm for CH2 of ethylene glycol proton. In addition, the binding of

future science group 10.2217/nnm-2019-0201



Research Article Gonzalez-Pizarro, Parrotta, Vera et al.

7.5

7.05 7.00 6.95

Maleimide

CH
(maleimide)

PEG

ppm ppm

PLA PGA

CH
2

(PEG)

CH
2

(PGA)

CH
(PLA)

CH
3

(PLA)

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5
ppm

3.0 2.5 2.0 1.5 1.0 0.5 0.0

2.75 2.70 2.65

H
2 H

2

H
2

H
2

H
2

H
2

H
2

C
C

C
N
H

C
C

O
C

C
N
H

C

O O

C C
C

O

O
H

CH
3

OHHC

HC
C

N

C

O

O
x

n m

Figure 1. Nuclear magnetic resonance spectrum of m-PEG-PLGA.

m-PEG and Rho (Supplementary Figure 1D) to the NHS-PLGA polymer is confirmed by the absence of the CH2

proton NHS peak at 2.70 ppm. The PEGylation efficiency of the NHS-PLGA polymer was between 26.9 and
30.1% (MR between 7.6 and 9.0%).

Structural studies of polymers
To investigate the degree of crystallization after the conjugation between the polymers NHS-PLGA and m-PEG, a
study was carried out in XRD. In Figure 2A, it is possible to show that the polymers PLGA RG 503H, NHS-PLGA
and m-PEG-PLGA showed similar diffractograms of amorphous characteristics. In the case of m-PEG, it exhibits
two peaks indicative of crystallinity at 19.15◦ and 23.41◦ (2Ө).

FTIR spectra of PLGA polymers RG 503H, NHS-PLGA, m-PEG and m-PEG-PLGA are shown in Figure 2B.
The m-PEG spectrum exhibits a characteristic peak at 2877 cm−1 corresponding to the stretching vibration of
CH2. The repeating CH2-CH2-O unit of m-PEG is visualized at 1280 (stretching of C-C-O) and 1099 cm−1

(stretching of C-O-C). The bands at 1466 and 1342 cm−1 represent CH bending of the m-PEG. At last, the peak
at 1707 cm−1 is attributed to the C=O of the maleimide. PLGA RG 503H, NHS-PLGA and m-PEG-PLGA are
shown to present similar spectra with characteristic stretching vibration peaks at 2862-3025 (CH3, CH2 and CH),
1749 (C=O), 1162 (C-O) and 1087 cm−1 (C-C-O). In addition, the NHS-PLGA has a wide band at 3321 cm−1

corresponding to the C-O-N of the NHS. The carbonyl groups (C=O) of the NHS are represented at peaks 1653
and 1560 cm−1.

Characterization of FMT-m-PEG-PLGA-NPs
Once the FMT-m-PEG-PLGA-NPs and RhoNPs were synthesized and resuspended in PBS, their physicochemical
characteristics such as Zav, PI, ZP and EE were evaluated (Table 1).
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Figure 2. Structural studies of polymers. (A) XRD diffractograms. (B) FTIR spectra.
FTIR: Fourier transform infrared spectroscopy; XRD: X-ray diffraction spectroscopy.
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Table 1. Characterization of nanoparticles.
Formulation Zav (nm) PI ZP (mV) EE (%) Drug-loaded NPs (μg

drug/mgNPs)
Functionalization grade
(%)

FMT-m-PEG-PLGA-NPs 150.3 ± 1.2 0.112 ± 0.007 −8.32 ± 0.65 99.3 ± 0.2 49.7 N/A

RhoNPs 170.9 ± 1.3 0.139 ± 0.038 −13.30 ± 0.49 98.6 ± 0.1 49.3 N/A

TAT49-57 164.0 ± 0.7 0.077 ± 0.030 −0.29 ± 0.06 QNPs QNPs 2.0

pAntp43-58 167.2 ± 2.6 0.074 ± 0.008 0.15 ± 0.06 QNPs QNPs 4.6

G2 169.7 ± 2.1 0.078 ± 0.180 −1.06 ± 0.27 QNPs QNPs 0.6

EE: Entrapment efficiency; N/A: Not applicable; NP: Nanoparticle; PI: Polydispersity index; QNP: Quantified in the FMT-m-PEG-PLGA-NP (EE = 99, 3 ± 0.2%; 49.7 μg drug/mg NPs); Zav:
Average particle size; ZP: � -potential.

Synthesis of CPPs
Amidated CPPs that possess in their sequence 4 glycine as a spacer and a cysteine in the N-terminus to be linked
with the maleimide were synthesized by the solid-phase method with an automatic synthesizer. The molecular
weight of the CPPs with a purity of 90% was analyzed by MALDI-TOF/TOF (Supplementary Figure 2).

Conjugation of CPPs with FMT-m-PEG-PLGA-NPs
After lyophilizing the NPs conjugated with the CPPs, these were analyzed by H-NMR (Supplementary Figure 3)
in order to calculate MR (%) in the polymer. Functionalization was calculated by integrating the aromatic and
amide/amine regions of the peptides in contrast to the CH integration of the PLA (δ = 5.2). The TAT49-57 were
integrated amide/amine regions (δ = 7.0–8.2 ppm) with 46 protons corresponding to amides, amines and the
guanidinium side chains. The pAntp43-58 with 64 protons, the regions of the aromatic groups (tryptophan and
phenylalanine) and amide/amine were integrated (δ = 7.0–8.2). At last, the G2 with 57 protons, the corresponding
amide/amine regions were integrated (δ = 7.0–8.2). According to the previous analysis, the functionalization grades
and physicochemical characteristics (Zav, PI and the ZP) of TAT-NPs, pAntp-NPs and G2-NPs are visualized in
Table 1.

Cytotoxicity study
Toxicity of NPs on the HCE-2 cell line was evaluated at two different concentrations using the MTT viability assay.
Cell viability was analyzed at 24 and 48 h (Figure 3). Results showed that at 24 h, none of the NPs conjugated
with CPPs was cytotoxic as cell viability was kept close to 100% when assayed both at low (5 μg·ml−1) and high
(50 μg·ml−1) FMT concentration. At 48 h, cell viability was reduced to about 80–90% with TAT-NPs and pAntp-
NPs at 5 μg·ml−1 and close to 70% at 50 μg·ml−1. In contrast, no toxicity was observed for G2-NPs. In this case,
the increased MTT activity compared with untreated cells could be attributed to a proliferative effect of theses NPs.
Cytotoxicity of Isoptoflucon eye drops (containing FMT as the active drug) was also analyzed in parallel at the same
concentrations, and cell viability was of around 82% (at 5 μg·ml−1) and 38% (at 50 μg·ml−1 concentration) at
24 h, and 72 and 28%, respectively, when cells were incubated for 48 h. These results indicate that encapsulation of
FMT in NPs reduces cytotoxicity of the commercial drug, as it avoids the use of preservatives such as benzalkonium
chloride or solubilizers such as polysorbate 80, which are excipients that decrease cell viability [28,29].

Evaluation of the anti-inflammatory activity of NPs
Since LPS induces inflammation via TLR4 receptors, we sought to evaluate the capability of NPs conjugated
with CPPs to inhibit the inflammatory response by analysing secreted IL-1β, IL-6 , IL-8 and TNF-α cytokines in
LPS-stimulated HCE-2 cells. Results are shown in Figure 4. In the absence of NPs (positive control) LPS induced
a significant increase in all cytokines analyzed. The TAT-NPs, pAntp-NPs and G2-NPs significantly decreased the
expression of IL-1β similarly to Isoptoflucon (p < 0.001) (Figure 4A). Concerning IL-6, IL-8 and TNF-α, secreted
levels were reduced by TAT-NPs and G2-NPs, whereas pAntp-NPs only reduced IL-8 although to a lesser extent
than the other NPs (Figure 4B–D). In the case of TNF-α (Figure 4D), the formulation pAntp-NPs showed a
greater cytokine expression than the positive control (LPS-treated cells). Overall, these results indicated that the
best anti-inflammatory effect was achieved with G2-NPs. In this case, the reduction of LPS-induced cytokine levels
was close to that observed for Isoptoflucon, except for IL-8. The formulations developed are in accordance with
other nanostructured systems such as nanosponges, which improve the activity of the encapsulated compound in
contrast to the free compound [30].
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Figure 3. Effect of nanoparticles on the viability of HCE-2 cells. (A) at 24 h, and (B) 48 h. MTT reduction values of
untreated control cells were set as 100% cell viability.
Data are expressed as mean ± SD: *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001 significant difference
compared with Isoptoflucon R© at the same concentration.
MTT: Tetrazolium bromide; NP: Nanoparticle.

Cellular uptake of RhoNPs
Cellular uptake of RhoNPs (50 μg·ml−1) was analyzed in the HCE-2 cell line. After 48 h incubation, the NP-
associated green fluorescence was visualized by confocal fluorescence microscopy in all cells challenged with NPs
but not in the untreated control cells (Figure 5). The nucleus was visualized with DAPI. In the merged images,
the RhoNPs were visualized in the cytoplasm. The formulations RhoTAT-NPs and RhoG2-NPs yielded the stronger
fluorescence signal. The analysis with Interactive 3D Surface Plot of ImageJ confirmed this fact and allowed
to discern that cells treated with RhoTAT-NPs displayed higher intensity than cells incubated with the RhoG2-
NPs formulation. Intensity of fluorescence emitted by the other internalized formulations (RhopAntp-NPs and
RhoFMT-m-PEG-PLGA-NPs) was lower, without apparent accumulation within of HCE-2 cells.
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Figure 4. Quantification of secreted proinflammatory cytokines in lipopolysaccharide-stimulated HCE-2 cells incubated in the absence
and presence of the indicated nanoparticles (50 μg·ml−1) for 48 h. (A) IL-1β, (B) IL-6, (C) IL-8, (D) TNF-α. Negative control: untreated
control cells.
Values are expressed as mean ± SD: *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001 significantly different compared with positive
control (LPS-stimulated cells). $p < 0.05; $$p < 0.01; $$$p < 0.001 and $$$$p < 0.0001 significantly different compared with Isoptoflucon R©.
LPS: Lipopolysaccharide; NP: Nanoparticle.

Ocular uptake of RhoNPs
After ocular treatment of C57BL/6J wild-type mice for 48 h with RhoTAT-NPs, RhoG2-NPs, RhopAntp-NPs and
RhoFMT-m-PEG-PLGA-NPs, the sectioned eyes were analyzed by fluorescence microscopy (Figure 6). Again, greater
fluorescence was observed in both the anterior and posterior segment in samples treated with the formulations
RhoTAT-NPs and RhoG2-NPs. The formulations RhopAntp-NP and RhoFMT-m-PEG-PLGA-NPs had a greater
presence in the posterior than in the anterior segment of the eye.
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Figure 5. Cellular uptake of nanoparticles conjugated with cell-penetrating peptides. HCE-2 cells were incubated
with the indicated fluorescent-labeled NPs (50 μg·ml−1) for 48 h and analyzed using laser scanning confocal spectral
microscope. Images are representative of three independent biological experiments. Quantification of the green
signal corresponding to internalized NPs is shown by 3D surface plots.
NP: Nanoparticle.

Discussion
In the present study, the polymers Rho-PLGA and m-PEG-PLGA were successfully synthesized with high perfor-
mance using the carbodiimide pathway as a conjugation strategy [31,32]. The conjugation of both Rho and m-PEG
to NHS-PLGA was confirmed by the removal of the CH2 group from the NHS in the H-NMR spectrum (Figure 1
& Supplementary Figure 1D). Furthermore, the m-PEG moiety was identified in the PLGA due to the appearance
of ethylene glycol and maleimide peaks (Figure 1), with a PEGylation degree close to 30% (MR ∼9%) [33,34]. The
XRD and FTIR profiles confirmed the information obtained by H-NMR regarding the synthesis of the m-PEG-
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Figure 6. Ocular uptake of nanoparticles conjugated with cell-penetrating peptides. C57BL/6J wild-type male mice
were treated with the indicated fluorescent-labeled NPs (50 μg·ml−1) for 48 h and analyzed using fluorescent
inverted microscope.
NPs: Nanoparticles.

PLGA polymer. The diffractogram of the m-PEG-PLGA (Figure 2A) showed a profile of amorphous characteristics
without the presence of crystalline peaks of PEG, agreeing with other authors that the presence of less than 10%
(m/m) of PEG in the polymer and its peaks are not visualized in the XRD or in the FTIR spectrum [35–37]. Despite
this fact, the structural change of the NHS-PLGA to the m-PEG-PLGA was evidenced in the FTIR and H-NMR
analysis by the elimination of C=O and C-O-N peaks of the NHS, confirming the union m-PEG to the polymer
(Figure 2B). The developed FMT-m-PEG-PLGA-NPs displayed a Zav less than 150 nm with a monodisperse
population distribution, a negative surface charge and EE close to 99% (0.5 mg·ml−1). It has been described that
particles with sizes greater than 10 μm could cause ocular irritation. Hence, the NPs elaborated in this study would
circumvent such an effect. Moreover, the agglomeration and/or precipitation of NPs would be avoided with their
negative ZP [38,39].

The CPPs TAT49-57, pAntp43-58 and G2 characterized by MALDI-TOF/TOF presented an m/z value of
1613.296, 2520.192 and 1983.102, respectively (Supplementary Figure 2). These CPPs, properly purified and
characterized, were conjugated with the FMT-m-PEG-PLGA-NPs. The monodisperses system was maintained in
the final NPs and the Zav increased by an average of 17 nm more. Furthermore, the conjugation of the CPPs to
the NPs was evidenced both by the change of the Zav and by the change of the ZP to a less negative value by
the cationic characteristics of the CPPs (Table 1) [17]. Through H-NMR analysis, it was possible to calculate the
MR of the functionalized CPPs in the NPs. The pAntp43-58 (MR = 4.6%) was the CPP that was conjugated to
a greater degree in mass followed by TAT49-57 (MR = 2.0%) and G2 (MR = 0.6%). These data indicate that the
maleimide-cysteine conjugation pathway is a thermodynamically favorable reaction that allows the conjugation of
small amounts of peptides to polymeric NPs [40–42].
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Functionalized NPs with CPPs did not show cytotoxicity at both low and high concentration (5 and 50 μg·ml−1)
at 24 h (Figure 3). At the same incubation time, the commercial drug tested at the low concentration reduced cell
viability close to 84%, a value that was significantly different (p < 0.05) to the formulation pAntp-NPs. At a higher
concentration, Isoptoflucon increased its cytotoxicity. This may be due to the composition of the commercial drug,
which contains excipients such as benzalkonium chloride and polysorbate 80 that decrease cell viability [28,29,43].
After 48 h treatment, cells incubated with 5 μg·ml−1 of the formulations TAT-NPs, pAntp-NPs and Isoptoflucon
displayed viability rates close to 80%. At 50 μg·ml−1, the cytotoxicity of the commercial drug (Figure 3B) was more
evident than that of the formulations TAT-NPs, pAntp-NPs and G2-NPs (p < 0.0001). The G2-NPs formulation
had no cytotoxic effects as cell viability was kept around 100% at both low and high concentrations. At 48 h
viability values were even higher than 100%, which can particularly be due to the nonconjugated sites of the
maleimide with G2. The low percentage of MR of G2 in the polymer m-PEG-PLGA in comparison to the other
CPPs indicate that the accessible sites of unreacted maleimide may cause an increase in the cellular metabolism
and therefore a greater MTT response [44]. Supplementary Figure 4 shows that the formulation without conjugated
CPP (FMT-m-PEG-PLGA-NPs) with all the sites of unconjugated maleimide had greater MTT values than G2
(p < 0.01) and the other formulations (p < 0.0001) when assayed in HCE-2 cells at a concentration of 50 μg·ml−1

for 48 h.
Functionalized NPs (TAT-NPs, pAntp-NPs and G2-NPs) and the commercial drug (Isoptoflucon) showed

similar anti-inflammatory effect (p > 0.05) in the reduction of IL-1β production in cells stimulated with LPS
(Figure 4A) (p < 0.0001). However, concerning IL-6 (Figure 4B), only G2-NPs triggered comparable effects to the
commercial drug (p < 0.0001), whereas pAntp-NPs were unable to diminish the high IL-6 expression induced by
LPS. All the conjugated NPs significantly decreased the expression of IL-8 (Figure 3C), but none of them managed
to reduce it as did Isoptoflucon. Remarkably, the G2-NPs formulation showed a higher effect in the reduction
of TNF-α expression than the commercial drug (p < 0.05) while TAT-NPs reduced TNF-α levels to the same
proportion as Isoptoflucon (p > 0.05) (Figure 3D). In contrast, pAntp-NPs promoted greater TNF-α secretion
than positive control (LPS-stimulated cells). This effect could probably be related with the mechanism used for
cellular internalization of pAntp43-58. Particularly, the most accepted cellular internalization mechanism for the
pAntp43-58 is translocation, which would generate excessive destabilization of the cell membrane in HCE-2 cells,
activating the inflammatory cascade that lead to increased secretion of certain cytokines. The most prominent effect
was evidenced for TNF-α [45].

Overall, this study shows that G2-NPs is the formulation that has a greater effect in the reduction of the
proinflammatory cytokines tested, followed by TAT-NPs. The G2 peptide, although not described as a CPP, has
been characterized as an antiviral peptide and contain the conserved features of a CPP, such as a 5–30 amino acid
sequence rich in Arg residues and positively charged (cationic) [22,46]. This study provides evidence that G2 and
TAT allow the internalization of NPs in HCE-2 cells through the creation of transmembrane pores, thus increasing
the anti-inflammatory efficacy. In fact, in vitro/in vivo uptake studies confirmed that RhoTAT-NPs and RhoG2-NPs
were the formulations that displayed higher internalization scores. In vitro studies in HCE-2 cells revealed that
the highest density of internalized NPs, represented by the intensity of emitted fluorescence, was achieved with
RhoTAT-NPs (Figure 5). The other formulations were internalized but with a lower extent, without fluorescence
accumulation as in the case of RhoTAT-NPs and RhoG2-NPs. At the in vivo level (Figure 6), fluorescence intensity
of RhoG2-NPs increased with respect to the in vitro study. This effect could be mainly due to unreacted maleimide
(without G2), which can be conjugated with the sulfhydryl groups of mucin present in the lacrimal film [47]. This
would increase the residence time in the cornea, helping internalization of the NPs in the ocular internal tissues.
Analysis of the nonfunctionalized NPs (RhoFMT-m-PEG-PLGA-NPs) also reflects an increase in the internalized
NPs signal, that could also be attributed to their interaction with mucin. At last, a certain number of pAntp-NPs
manages to reach the posterior segment of the eye (optic nerve) without being retained at the cornea level.

Conclusion
NPs functionalized with the peptides TAT49-57, pAntp43-58 and G2 had physicochemical characteristics suitable
for ocular topical administration. TAT-NPs and G2-NPs were shown to be the most effective both in vitro and
in vivo studies, mainly reducing proinflammatory cytokines. This work demonstrated that NPs conjugated with
CPP increase the residence time of the nanostructured system. According to the above reasons, TAT-NPs and
G2-NPs could constitute a new noninvasive system for ocular treatment of conditions affecting both the anterior
and posterior tissues.
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Future perspective
In this study, the efficacy of using CPPs conjugated to polymeric NPs to increase the cellular uptake into the
posterior segment of the eye has been demonstrated. This research has showed that the presence of G2 linked to
FMT-loaded NPs increased the ocular penetration thanks to a further link with mucin glycoproteins. A future
investigation, we suggest, be related to explore the physicochemical characteristics of G2-nanostructures system
as new noninvasive drug delivery vehicle. Specifically, to study whether the antimicrobial properties of G2 are
preserved, increasing the synergistic effect of antimicrobial drugs both at the pharmacological level and increasing
their cellular internalization.

Summary points

• Cell-penetrating peptides linked to polymeric nanoparticles increase the cellular uptake.
• Fluorometholone-loaded polymeric nanoparticles are an effective drug delivery system to improve the treatment

of inflammatory eye diseases.
• G2, antiviral peptide, conjugated with polymeric nanoparticles, allowed internalization to the posterior segment

of the eye.
• The functionalization of nanoparticles with cell-penetrating peptides decreased the expression of TNF-α, IL-6, IL-8.
• TAT-NPs and G2-NPs showed an increasing of fluorescence signal in the human corneal epithelial cells as result of

major intercellular accumulation.
• The developed fluorometholone-loaded PEG-PLGA nanoparticles displayed a monodisperse distribution, negative

charge and entrapment efficiency close to 99%.
• High performance was obtained using the carbodiimide pathway for the synthesis of rhodamine-PLGA and

maleimide-PEG-PLGA polymers.
• In vivo and in vitro uptake studies showed that TAT-NPs and G2-NPs were formulations with the highest density

of internalized NPs.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/sup
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