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Abstract 

In this work the extraction, structural analysis and identification as well as antimicrobial, 

anti-adhesive and anti-biofilm activities of lipopeptides produced by Enterobacter cloacae 

C3 strain were studied. A combination of chromatographic and spectroscopic techniques 

offers opportunities for a better characterization of the biosurfactant structure. Thin layer 

chromatography (TLC) and HPLC for amino acid composition determination are used. 

Efficient spectroscopic techniques have been utilized for investigations on the biochemical 

structure of biosurfactants, such as Fourier transform infrared (FT-IR) spectroscopy and mass 

spectrometry analysis. This is the first work describing the production of different isoforms 

belonging to kurstakin and surfactin families by E. cloacae strain. Three kurstakin 

homologues differing by the fatty acid chain length from C10 to C12 were detected. The 

spectrum of lipopeptides belonging to surfactin family contains various isoforms differing by 

the fatty acid chain length as well as the amino acids at positions four and seven. Lipopeptide 

C3 extract exhibited important antibacterial activity against Gram-positive and Gram-

negative bacteria, antifungal activity and interesting anti-adhesive and disruptive properties 

against biofilm formation by human pathogenic bacterial strains: Salmonella typhimurium, 

Klebsiella pneumoniae, Staphylococcus aureus, Bacillus cereus and Candida albicans. 

 

Keywords: Enterobacter cloacae C3; Kurstakin; Surfactin; Structure characterization; Anti-

adhesive property. 
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Introduction 

Biosurfactants are synthesized by a wide variety of microorganisms, mainly by bacteria 

and several yeasts.
[1]

 Lipopeptides are among the most studied bioactive molecules, produced 

by multiple bacterial genera such as Bacillus,
[2]

 Paenibacillus,
[3]

 Pontibacter,
[4]

 

Achromobacter,
[5]

 Corynebacterium,
[6]

 Pseudomonas,
[7]

 Streptomyces,
[8]

 Citrobacter and 

Enterobacter.
[9,10]

 

Lipopeptides are classified in various families and isoforms according to the peptide 

amino acid composition as well as the fatty acid chain length and the type of fatty acid 

binding. A common feature is the presence of an acyl chain bound to a cyclic peptide 

sequence; the peptide portion could be composed of either anionic or cationic residues with D 

or L configuration and might contain non-proteogenic or unusual amino acids. The peptide 

portion is non-ribosomally generated; the synthesis is directed by large multi-enzyme 

complex called Non-Ribosomal Peptide Synthetase (NRPS).
[11]

 The most known lipopeptide 

families are: surfactin, iturin and fengycin-plipastatin. Surfactin and iturin lipopeptide 

compounds are cyclic lipoheptapeptides which contain a β-hydroxy and a β-amino fatty acid 

chain, respectively, as lipophilic moieties. Fengycin lipopeptides are cyclic lipodecapeptides 

with a β-hydroxy fatty acid chain. In addition to surfactin, iturin and fengycin families, 

kurstakin represents a new family of lipopeptides discovered in 2000 produced by Bacillus 

thuringiensis and it is considered as a biomarker of this species. Kurstakins were also 

detected in other species belonging to Bacillus genus such as B. cereus; they are 

lipoheptapeptides displaying antifungal activities.
[12]

 The first isolated kurstakins did not 

contain a β-hydroxy fatty acid and were classified as linear molecules. It has been shown that 

they can be found in the form of partially cyclic compounds,
[13]

 as well as in cyclic 

structures,
[12]

 which places them in a class of non-cationic cyclic lipopeptides.
[14]

 Cyclic 

lipopeptide biosurfactants like surfactin, iturin, bacillomycin, fengycin and kurstakin are 



 

 
This article is protected by copyright. All rights reserved. 

largely produced by species of the genus Bacillus which are Gram-positive bacteria 

exhibiting antimicrobial activity.
[15,16]

 There are few studies describing the production of 

these lipopeptide families by Gram-negative bacteria.
[9,10]

 Usually, Gram-negative bacteria of 

the genera Pseudomonas, Klebsiella and Enterobacter produce rhamnolipid and glycolipid 

biosurfactants.
[17-20]

 

Different analytical techniques for chemical characterization of lipopeptides have been 

applied to elucidate their structure such as infrared spectroscopy (IR), amino acid analysis, 

high performance liquid chromatography (HPLC), capillary chromatography coupled to mass 

spectrometry (MS), gas chromatography (GC-MS) and UV/Vis spectroscopy,
[21]

 nuclear 

magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry 

(LC-MS).
[22]

 Furthermore, matrix-assisted laser desorption ionization-time of flight mass 

spectrometry (MALDI-TOF-MS) has proven to be very effective in the detection and 

identification of lipopeptides. Tandem mass spectrometry is a simple, fast, sensitive method 

and the appropriate technique to elucidate complex structures and mixtures on biological 

processes. Thousands of reports on applications of MS for microorganism characterization in 

research, clinical microbiology, food safety, environmental monitoring, and quality have been 

published.
[23]

 

There is a high demand for new antimicrobial agents because of the increased resistance 

shown by pathogenic microorganisms against the existing antimicrobial drugs. Several 

natural lipopeptides produced by microorganisms have been developed as new therapeutic 

products and exploited for biomedical applications thanks to their antibacterial,
[24,25]

 

antifungal,
[26]

 antiviral
[27]

 and anti-adhesive properties
[4,6,28] 

against several pathogenic 

microorganisms. In fact, some of the oldest available antibiotics in the market are cyclic 

antimicrobial peptides, such as polymyxins, gramicidin and bacitracin.
[29,30]
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The present work provides an insight into the search of new bioactive molecules from the 

Gram-negative bacteria E. cloacae C3. Chemical structure characterization and identification 

of different lipopeptide isoforms produced, as well as antimicrobial, anti-adhesive and anti-

biofilm activities were carried out. 

 

Experimental 

Bacterial strain and biosurfactants production 

The microorganism used in this study was isolated from soil at the area “Nakta” near the 

company “British gas”, Sfax City, Tunisia, contaminated by natural-gas condensate, which 

comes from the gas of Miskar Asset field. It was identified as Enterobacter cloacae C3 strain 

based on the 16S rDNA gene sequence analysis.
[31]

 It was inoculated into a 250 ml shake 

flask containing 25 ml Luria-Bertani broth medium and cultivated at 37 °C with shaking at 

200 rpm for 18 h. A 3% (v/v) of inoculum [OD600 nm = 6.7] was transferred into a 2 l shake 

flask containing 250 ml of Landy medium
[32]

 and incubated in an orbital shaker at 30 °C and 

150 rpm for 72 h. 

 

Biosurfactants extraction 

Biosurfactants recovery was performed as reported in our previous study.
[33]

 Acid 

precipitated biosurfactant (1 g) was subjected to extraction with 45 ml tetrahydrofuran (THF) 

solvent four times and the mixture was stirred and centrifuged at 8000 rpm, for 15 min at 4 

°C. The recuperated organic phases were combined and concentrated in a rotary vacuum 

evaporator (Büchi laborotechnik AG Postfach, Switzerland) at 40 °C. 
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Chemical characterization and identification of biosurfactants 

FT-IR spectra of the crude dried biosurfactants 

The functional groups and the chemical bonds present in the crude biosurfactants C3 

were determined using Fourier transform infrared spectroscopy (FT-IR) in order to determine 

the chemical nature of biosurfactants. FT-IR analysis was performed by using Analect 

Instruments fx-6 160 FT-IR spectrometer at a wavenumber range 4000-400 cm
-1

. 

 

Thin layer chromatography (TLC) analysis 

Biosurfactants extract was tested by TLC on silica gel plates 60 G (Macherel-Nagel, 

Düren, Germany) with mobile phase: chloroform/methanol/water (65:25:4). Staining was 

carried out with phosphomolybdic acid for the detection of lipids and o- Tolidine specific for 

peptide moiety, to detect the spots showing the presence of both fatty acid and peptide 

moieties. 

 

Bradford assay for protein quantitation 

The protein content of biosurfactants C3 was measured using Bradford Assay Kit 

through the microassay procedure as described in our previous study.
[34]

 

 

Amino acid composition determination 

The crude biosurfactants (4 mg) were hydrolyzed in 1 ml 6 M HCl at 110 °C overnight in 

a sealed tube. Aliquotes of AABA (L-α-Aminobutyric acid) and NLE (L-Norleucine) 

solutions were added as internal standards. Samples were evaporated to dryness and 

resuspended in water. The amino acids were then analyzed by HPLC with UV detection, 

using the Waters AccQTag pre-column derivatization method.
[35]
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Characterization of the lipopeptides by mass spectrometry (ESI and MALDI-TOF) 

The molecular weight of the lipopeptide molecules was determined by positive/negative-

ion modes electrospray ionization (ESI) analyses (LC/MSD-TOF, Agilent Technologies, Palo 

Alto, CA). The capillary voltage was 4 kV and 3.5 kV for the positive/negative-ion modes, 

respectively, with nitrogen as the nebulizing and drying gas. Tandem mass spectrometry 

(4800 Plus MALDI TOF/TOF, ABSciex, Dublin, CA) was used in the experiment. The full 

mass spectrum was acquired in the reflector positive-ion mode for the lipopeptides, using 

dihydroxybenzoic acid (DHB) as the matrix. Subsequent fragmentation of the observed ions 

was obtained by positive MS
2
 analysis. 

 

Antimicrobial activities 

The antimicrobial activity of C3 lipopeptides was estimated by agar well diffusion 

method against selected human pathogens. Antibacterial activity was tested against three 

Gram-positive bacteria: Bacillus cereus ATCC 11778, Micrococcus luteus ATCC 4698, 

Staphylococcus aureus ATCC 25923 and five Gram-negative bacteria: Escherichia coli 

ATCC 25922, Klebsiella pneumoniae ATCC 13883, Salmonella enterica ATCC 27853, 

Salmonella typhimurium ATCC 19430 and Enterobacterium sp. Antifungal activity was 

tested against Aspergillus niger, Aspergillus flavus and Fusarium oxysporum. 

The culture suspension (200 μl) of the tested microorganisms (10
6 

colony-forming units 

cfu/ml) of bacteria cells (estimated by absorbance at 600 nm) and 10
8 

spores/ml of fungal 

strains (measured by Malassez blade) were spread uniformly using sterile pipette on Luria-

Bertani agar and malt extract agar media, respectively. Then, wells were made using a sterile 

well borer and were filled with 100 μl of lipopeptide sample (2 mg/ml concentration). 
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The zone of growth inhibition was measured in millimeters after incubation for 24 h at 

37 °C for bacteria and for 72 h at 30 °C for fungal strains. All the results were represented as 

the average of three independent experiments with ≤ 5% deviation. 

 

Anti-adhesion treatment with lipopeptide C3 extract 

For surface pre-treatment, the wells of a sterile polystyrene microtiter plate (Costar; 

Corning Incorporated, Corning, NY, USA) were filled with 200 µl of C3 lipopeptide extract 

at different concentrations ranging from 0.008 to 1 mg/ml, dissolved in PBS composed of 

(g/l): NaCl, 8; KCl, 0.2; Na2HPO4, 1.44; KH2PO4, 0.24 (pH 7.2). Microtiter plates were 

incubated for 6 h at room temperature (25 °C) and then washed twice with PBS. 

For biofilm formation, Klebsiella pneumoniae ATCC 1388, Staphylococcus aureus 

ATCC 25923, Salmonella typhimurium ATCC 14028, Bacillus cereus ATCC 11778 and 

Candida albicans ATCC 10231 were cultured overnight in Luria Bertani medium (LB). 

Cultures were diluted 1/100 in the medium proposed by O´Toole
[36]

 (g/l): glucose, 2; 

casamino acids, 5; KH2PO4, 3; K2HPO4, 7; (NH4)2SO4, 2, MgSO4 7H2O, 0.12. Then, 200 µl 

of each dilution were added to the microtiter plate wells and plates were incubated for 20 h at 

37 °C. Cultures were discarded and wells were washed three times with distilled water to 

remove non-adherent cells, fixed for 15 min with methanol and stained with 125 µl crystal 

violet (0.1%, w/v) for 20 min, then washed with water and drying. For quantifying the 

microbial adhesion, 200 µl of acetic acid in water (33%, v/v) were added and the absorbance 

was determined at 595 nm. Percentages of microbial adhesion inhibition were calculated 

using the following formula: 

Microbial adhesion inhibition =[1 − (Ac/A0)] × 100 
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where Ac represents the absorbance of the well with lipopeptides at concentration c and A0 

represents the absorbance of the positive control wells (in absence of lipopeptides). Negative 

control wells contained only lipopeptides dissolved in PBS. Assays were carried out three 

times with ≤ 5% deviation. 

 

Mature biofilm treatment with lipopeptide C3 extract 

The wells of a sterile polystyrene microtiter plate were loaded with 200 µl of bacterial 

suspension prepared as mentioned above, then the plates were incubated for 20 h at 37 °C. 

After incubation, the unattached microbial cells were removed by washing the wells three 

times with distilled water. Then, 200 µl of C3 lipopeptides at different concentrations ranging 

from 0.008 to 1 mg/ml, were added to each well and the plates were incubated for 6 h at room 

temperature (25 °C). The quantification was carried out as in the pre-treatment. All the results 

were represented as the average of three independent experiments with ≤ 5% deviation. 

 

Methods of analysis 

All data presented are the average of at least three measurements which deviated by not 

more than 5%. 

 

Results and discussion 

Chemical structure characterization of biosurfactants 

Preliminary chemical characterization 

The IR spectrum of the crude biosurfactants from E. cloacae C3 strain showed several 

strong bands (Figure 1). The peak with the highest absorbance in the spectrum at 1655 cm
-1

,
 

results from the stretching mode of the carbonyl group (C=O) of the amide bond (-CONH-), 

also there is a small contribution from carbonyls of the ester bond and carboxyl side chains of 
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some amino acids such as Glu, Gln, Asp and Asn indicating the presence of peptide groups in 

the molecule.
[37] 

Adjacent to this peak, there is another high intensity peak at 1540 cm
-1

 

resulting from the deformation mode of N–H bonds.
[38]

 The absorbance peaks at 2959, 2928 

and 2850 cm
-1

 indicate the presence of C–H bonds of the alkyl chains. Another peak at 1405 

cm
-1

 corresponds to C–H bending vibrations, it is common in compounds with alkyl chains. 

The ester carbonyl group is detected from the absorbance peaks at 1057, 1254 and 1104 cm
−1

. 

The strong peak at 3300 cm
-1

 can be attributed to the presence of carboxyl side chains of 

glutamic/aspartic acids (O-H stretching) and –NH bonds of the amide group which overlaps 

the stretching in the same region. The observed peaks are similar to those reported by Das et 

al.
[39]

 and Jemil et al.
[28]

 for lipopeptide biosurfactants. The lipopeptide biosurfactant, 

surfactin (Sigma) also yielded a similar IR absorption pattern and absorbed approximately at 

the same wavenumber positions.
[39]

 

The characterization of biosurfactant C3 extract by TLC analysis showed many spots at 

different levels of migration after spraying with phosphomolybdic acid reagent, yellow color 

was revealed after treatment with o- Tolidine which correspond to the presence of peptide 

moieties. The appearance of many spots at different levels of migration suggest the presence 

of lipopeptide molecules with different polarities. 

 

Amino acid composition determination 

The amino acid content of the crude lipopeptides synthesized by E. cloacae C3 strain 

was determined and results are presented in Table 1. The pairs Glu/Gln and Asp/Asn cannot 

be determined by this technique as hydrolysis of the peptide converts Gln and Asn amino 

acids into Glu and Asp, respectively. The sample of the crude lipopeptides C3 has a 36% of 

peptide content. Amino acids with high molar ratio are Leu, Glx and Asx with percentages of 

13.54%, 12.47% and 11.39%, respectively. The amino acid Leu is present with three or four 
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residues in surfactin lipopeptide and with four or five residues in pumilacidin lipopeptide. 

The amino acids Glu or Gln are present with one or three residues in different lipopeptide 

isoforms belonging to different families. Asp is in the composition of surfactin and 

pumilacidin with one residue. 

Amino acids Gly and Ala are present in lipopeptides with percentages of about 9.0% and 

8.0%, respectively. These two amino acids are in the composition of lipopeptides belonging 

to kurstakin family with one residue. Val and Thr have molar ratios of 6.6% and 6.0%, 

respectively, in lipopeptides C3. The amino acid Val is with one or two residues in surfactin 

lipopeptide and Thr is with one residue in kurstakin molecules. Also, Ile and Ser have molar 

ratios of 5.5% and 5.3%, respectively. The amino acid Ile is in the composition of 

lipopeptides belonging to surfactin family with one residue at most and Ser is in the 

composition of kurstakin lipopeptide with one residue. While, the amino acid His with 2.0% 

molar ratio, is present with one residue at position 5 in the peptide moiety of kurstakin 

isoforms. 

 

Detection of lipopeptides by mass spectrometry analysis 

Mass spectrometry analysis of lipopeptide C3 extract reported in Figure 2 shows the 

presence of two well-resolved clusters of peaks, the first at m/z values between 887.5 and 

915.6 (Figure 2A) and the second within the mass range 1044.7 and 1100.7 Da (Figure 2B). 

By comparing the mass (m/z) with the mass values reported for others identified 

lipopeptides,
[12,34,40]

 we can conclude that the first group of peaks (887.5 - 915.6 Da) 

corresponds to kurstakin lipopeptide and the second (1044.7 - 1100.7 Da) corresponds to 

lipopeptides belonging to surfactin family. 
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Identification of kurstakin isoforms 

Figure 2A shows different peaks corresponding to kurstakin lipopeptide isoforms. The 

precursor ion at m/z 887.5 corresponds to a sodium ion adduct of cyclic kurstakin lipopeptide 

with a fatty acid chain of 10 carbon atoms. Other lipopeptide homologues detected at m/z 

901.6 and 915.6 could be attributed to C11 and C12 kurstakin [M + Na]
+
, respectively. Each 

adduct yields an isotopic distribution of 3 peaks differing by 1 mass unit. 

Kurstakin lipopeptide synthesized by E. cloacae C3 strain consist of cyclic 

lipoheptapeptides with fatty acid chains from C10 to C12 differing by (m/z of CH2 = 14 Da) 

and a peptidic sequence composed of L Thr - Gly - L Ala - L Ser - L His - L Gln - L Gln with 

the presence of an amide bond between the fatty acid chain and the first threonine residue and 

the presence of a lactone linkage between the serine at position 4 and the C terminus of 

glutamine at position 7. Abderrahmani et al.
[41]

 detected the presence of the three kurstakin 

isoforms C11, C12 and C13 in six B. thuringiensis strains. According to Béchet et al.
[12]

, 

kurstakins were typically identified by the molecular ions at m/z 889, 905, 917 and 933. 

 

Identification and characterization of surfactin and pumilacidin lipopeptides by tandem 

mass spectrometry 

The precursor ions at m/z 1044.7, 1058.7, 1072.7, 1086.7 and 1100.7 (Figure 2B) were 

assigned as the sodium ion adducts of homologous surfactin lipopeptides with 1021.7, 

1035.7, 1049.7, 1063.7 and 1077.7 Da mass, respectively. The structure characterization of 

surfactin lipopeptides was elucidated by MS
2 

fragment analysis. The tandem mass 

spectrometry analysis was used to carry out the fragmentation of lipopeptides in order to 

obtain more precise information on their chemical structure. However, there is more 

ambiguity in the fragmentation of the parent ions detected by LC/MSD-TOF analysis and we 
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obtained two different fragmentation models for each peak corresponding to two different 

molecules (Figures 3 and 4). 

The fragmentation patterns of the peak 1044.7 were illustrated in Figure 3a. The first 

fragmentation model resulted in the appearance of product ions from the C-terminal tail of 

the aliphatic peptide moiety at m/z 945.6, 832.6 and 717.5 corresponding respectively, to the 

losses of Val (−99 Da), Val-Leu (−212 Da) and Val-Leu-Asp (−327 Da) from the parent ion 

m/z 1044.7. Therefore, the amino acid at position 7 is Val. An other product ion resulted from 

the fragmentation on the side of the fatty acid chain and the N-terminal tail, m/z observed was 

693.4 corresponding to the losses of C15 β-hydroxy fatty acid chain-Glu (−351 Da) from the 

precursor ion m/z 1044.7. The obtained results indicated that the peak at m/z 1044.7 may 

corresponds to surfactin, a cyclic lipopeptide with a fatty acid chain of 15 carbon atoms and 

Val residue at position 7. The second fragmentation pattern resulted in the appearance of 

product ions from the C-terminal tail of the aliphatic peptide moiety at m/z 931.6, 818.5 and 

800.5 corresponding respectively, to the losses of Leu/Ile (−113 Da), Leu/Ile-Leu (−226 Da) 

and Leu/Ile-Leu-H2O (−244 Da) from the parent ion m/z 1044.7. Therefore, the amino acid at 

position 7 is Leu/Ile. Other product ions resulted from the fragmentation on the side of the 

fatty acid chain and the N-terminal tail, m/z observed were 594.4 and 463.3 corresponding 

respectively, to the losses of C14 β-hydroxy fatty acid chain-Glu-Leu (−450 Da) and C14 β-

hydroxy fatty acid chain-Glu-Leu-Leu-H2O (−581 Da) from the precursor ion m/z 1044.7. 

The obtained results indicated that the peak at m/z 1044.7 may also corresponds to surfactin, 

a cyclic lipopeptide with a fatty acid chain of 14 carbon atoms and Leu/Ile residue at position 

7. Thus, we can conclude that this lipopeptide may corresponds to C14 surfactin [Leu/Ile7] 

and C15 surfactin [Val7]. 

The same fragmentation sites were observed for the parent ions m/z 1058.7, 1072.7, 

1086.7 and 1100.7 (Figures 3 and 4). Results showed that these lipopeptides correspond to 
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C16 surfactin [Val7] and C15 surfactin [Leu/Ile7], C16 pumilacidin [Val7] and C15 pumilacidin 

[Leu/Ile7], C17 pumilacidin [Val7] and C16 pumilacidin [Leu/Ile7], and C17 pumilacidin 

[Leu/Ile7], respectively. 

The precusor ions at m/z values of 1044.7 and 1058.7 correspond to surfactin isoforms 

differing by the acid chain length (m/z of CH2 = 14 Da). Also, the difference between the 

sodiated molecules [M + Na]
+
 at m/z 1058.7 and 1072.7 is 14 Da, these two lipopeptides have 

the same acid chain length but differ by the amino acid at position 4, which is valine for 

surfactin and leucine for pumilacidin lipopeptide. Based on the fragmentation results, the 

precursor ions at m/z values of 1072.7, 1086.7 and 1100.7 were assigned as the sodium ion 

adducts of pumilacidin isoforms differing by the acid chain length. According to Pabel et 

al.
[42]

, the mass peak 1086.9 was assigned to sodiated C17 pumilacidin. 

Our results of fragmentation of the parent ions at m/z 1044.7 and 1058.7 resulting in the 

sodiated lipopeptides C14 surfactin [Leu/Ile7] and C15 surfactin [Leu/Ile7], respectively, are in 

accordance with those demonstrated by Pecci et al.
[43]

,
 
Jemil et al.

[34]
 and Dimkić et al.

[44]
,
 

who characterized lipopeptides produced by B. licheniformis V9T14, B. methylotrophicus 

DCS1 and Bacillus spp. strains, respectively. Also, according to You et al.
[10]

, the 

fragmentation of the parent ion at m/z 1058.6 was recognized to be sodium adducts of C15 

surfactin. Plaza et al.
[45]

 reported that the sodiated molecules [M + Na]
+
 m/z 1044, 1058 and 

1072 correspond to C14, C15 and C16 surfactin homologues, respectively, obtained from 

lipopeptides produced by B. subtilis KP7 strain. According to Savadogo et al.
[46]

, two strains 

B. subtilis S6 and B. licheniformis S12 produce biomolecules with m/z related to [M + Na]
+
 

forms of surfactin C14 (m/z 1044) and [M + Na]
+
 forms of surfactin C15 (m/z 1058). In another 

study, Chen et al.
[40]

 reported that the sodium peaks at m/z 1044 and 1058 are the 

characteristic peaks of surfactin molecular weight produced by B. licheniformis MB01. 
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This is the first work describing kurstakin, surfactin and pumilacidin lipopeptide mixture 

production from E. cloacae strain. In fact, the study of You et al.
[10] 

describes the production 

of surfactin homologues from Enterobacter sp. N18 strain. Mandal et al.
[9] 

reported that the 

comprehensive mass spectral (MALDI-TOF-MS and GC-MS) analysis of HPLC purified 

antimicrobial lipopeptides obtained from E. cloacae subsp. dissolvens S-11 strain revealed 

the occurrence of C17 fengycin B’2, C14 iturin and C15 kurstakin. Whereas, the antimicrobial 

lipopeptide obtained from E. homaechei S-5, E. mori S-9, Enterobacter sp. S-4, E. cloacae 

subsp. dissolvens S-10 and S-12 is C15 kurstakin. 

 

Antimicrobial activities 

The antimicrobial activities of lipopeptide mixture produced by E. cloacae C3 strain 

were tested against different Gram-positive, Gram-negative bacteria and fungi strains. The 

results showed that lipopeptides C3 exhibited interesting antibacterial and antifungal 

activities (Table 3). K. pneumoniae is the most sensitive strain toward antibacterial activity of 

lipopeptides C3 with a maximum zone diameter inhibition of 35 mm, while the lowest 

inhibition activity was observed against S. aureus with a zone diameter inhibition of 14 mm. 

However, lipopeptides C3 did not exhibit antibacterial activity against B. cereus, E. coli, S. 

enterica and Enterobacterium sp. at 2 mg/ml concentration. The inhibitory activity was more 

effective against Gram-negative bacteria compared to Gram-positive bacteria with inhibition 

zones diameters in the range of 28-35 mm and 14-18 mm, respectively. Our results are in 

contrast with those of Ben Ayed et al.
[25]

 who reported that Gram-positive bacteria are more 

sensitive to the inhibitory activity of lipopeptides produced by B. mojavensis A21 strain, 

compared to Gram-negative bacteria. 

Surfactin lipopeptides are the first and the most well-known member by their 

antimicrobial activities. According to Iyer and Sandhya
[47]

, the maximum inhibition activity 
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of the crude surfactin sample (1.5 mg/ml) was observed against Salmonella paratyphi A, 

Staphylococcus sp. and E. coli with a zone diameter inhibition of 6 mm. Also, 

Sivapathasekaran et al.
[48] 

showed the antibacterial activity of HPLC purified fractions 

containing surfactin. Mandal et al.
[9] 

reported that lipopeptides belonging to kurstakin, iturin 

and fengycin families produced by Citrobacter S-3 and Enterobacter S-11 strains, have an 

unusual broad sprectrum antibacterial activity. Lipopeptides which differ in their 

composition, follow the same mechanisms such as involving pore formation on bacterial 

membrane
[49]

 or by other non-specific interactions with the membrane
[50]

 as a result of their 

antimicrobial activity. Sotirova et al.
[51]

 reported that biosurfactants act disturbing the 

cytoplasmic membrane, as they have an amphipathic nature that allows its interaction with 

phospholipids, altering permeability with consequent cell damage. 

Lipopeptides produced by E. cloacae C3 strain showed an interesting antifungal activity 

against A. niger and F. oxysporum, but without inhibitory effect against A. flavus. Some other 

results have mentioned the antifungal activity of surfactins
[52-55]

 which would participate to 

the preservation of the products against molds. Similar results are reported by Jadhav et al.
[20]

 

who showed that biosurfactants produced by Enterobacter sp. MS16 strain exhibited a 

potential antifungal activity and inhibit fungal spores germination. The antimicrobial 

activities of lipopeptides C3 may be related to a synergistic effect of both surfactins and 

kurstakins. The antimicrobial properties of biosurfactants have been widely reported. 

However, the biosurfactants with antimicrobial properties reported till date are produced 

mostly by the terrestrial origin microorganisms as a part of defence mechanism to survive in 

complex environments.
[56]

 

  



 

 
This article is protected by copyright. All rights reserved. 

Anti-adhesive activity 

Adhesion to surfaces and biofilm formation is a surviving strategy used by 

microorganisms in many environments, protecting them from dehydration, biocides and 

extreme conditions.
[57]

 Biosurfactants have a great influence on the process of biofilm 

formation due to their strong anti-adhesive properties.
[58]

 Lipopeptides produced by E. 

cloacae C3 strain exhibited a potential antiadhesive activity against all microorganisms tested 

even at very low concentrations (Figure 5a). Inhibition of biofilm formation increased with 

increasing lipopeptide concentration and the rate of inhibition remains nearly constant above 

a concentration of 0.5 mg/ml with all microorganisms tested. A very high antiadhesive 

capacity was observed against B. cereus, S. typhimurium and C. albicans with inhibition 

percentages of 96.7%, 92% and 89.3%, respectively. A high inhibition percentage was also 

obtained against K. pneumoniae and S. aureus with 70.4% and 60.80% inhibition, 

respectively. Lipopeptides C3 were very effective against C. albicans, they reached nearly 

the maximum of biofilm formation inhibition (85%), at a very low concentration of about 

0.03 mg/ml. Araujo et al.
[59]

 reported that surfactin significantly reduced adhesion of Listeria 

monocytogenes ATCC 19112 on polystyrene surfaces with 54% inhibition, when used at a 

concentration of 0.50% (w/v). 

Lipopeptides produced by E. cloacae C3 strain are highly effectives, having a very low 

calculated effective dose (ED50 with 50% adhesion inhibition) with all microorganisms 

tested: 5, 100, 130, 346 and 453 μg/ml for C. albicans, B. cereus, S. typhimurium, K. 

pneumoniae and S. aureus, respectively. The prior adsorption of lipopeptides to solid surfaces 

might constitute a new and effective strategy to reduce microbial adhesion and preventing 

colonization by pathogenic microorganisms, not only in the biomedical field, but also in the 

food industry.
[60,61]

 This effect could be related to biosurfactants influence on the reduction of 

bacterial cell hydrophobic properties or on the repulsion between bacteria and abiotic 
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surfaces.
[62]

 According to Araujo et al.
[59]

, biofilm formation is inhibited by the conditioning 

of polystyrene and stainless steel 304 with rhamnolipids and surfactin biosurfactants, 

transforming the surfaces hydrophilic or less hydrophobic compared to the control. The 

decrease in surface hydrophobicity as a result of conditioning by biosurfactants entails a 

decrease in hydrophobic interactions with cell wall of microorganisms and as a result, 

adhesion/biofilm formation is reduced. 

 

Disruptive activity on pre-formed biofilm 

In order to assess the potential of lipopeptides to remove biofilms, the cultures of the 

pathogens were treated with the mixture of lipopeptides C3 at different concentrations. They 

disrupted the biofilms of all tested microorganisms at different levels. As shown in Figure 5b, 

disruptive effect is dose dependent and percentages remain nearly constants above 

lipopeptide concentration of 0.5 mg/ml. The greatest biofilm disruption activity produced by 

lipopeptides C3 was observed against C. albicans with a percentage of 89.7%, followed by 

87% against S. typhimurium, 77.7% against S. aureus, 71.3% against K. pneumoniae and 

70.3% against B. cereus. Our findings are in disagree with those of Coronel-león et al.
[63]

 who 

reported that lichenysin produced by B. licheniformis AL1.1 is not very potential in the 

removal of biofilm formed by C. albicans ATCC 10231 (37.97%) at a concentration of 4 

mg/ml. The effectiveness of lipopeptides in removing pre-formed biofilms using different 

microorganisms is similar to that in preventing the formation of these biofilms. Results 

obtained are in accordance with our findings in a previous study showing that lipopeptides 

belonging to surfactin, iturin and fengycin families produced by B. methylotrophicus DCS1 

strain are effectives in pre-treatment as well as in post-treatment of biofilm formation.
[28]

 

The effective dose (ED50) is very low in post-treatment with all microorganisms tested: 

8, 44.28, 156, 260 and 273 μg/ml for S. typhimurium, K. pneumoniae, B. cereus, C. albicans 
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and S. aureus, respectively. Biosurfactants can adsorb at the interface between the attached 

biofilm-forming bacteria and the solid surface by orienting polar and nonpolar groups. This 

interaction between biosurfactants and the surface alters the surface hydrophobicity, thereby 

interfering with microbial adhesion and desorption processes.
[64,65]

 The results suggest that 

lipopeptides produced by E. cloacae C3 strain are potential against all microorganisms tested. 

 

Conclusion 

In this study, different cyclic lipopeptides belonging to kurstakin and surfactin families 

were detected in E. cloacae C3 strain and their structures were elucidated through tandem 

mass spectrometry. Twelve lipopeptide variants belonging to the two different families were 

identified; lipopeptide isoforms differ by the fatty acid chain length as well as the amino acid 

composition of the peptide cycle. These lipopeptides exhibited an important antimicrobial 

activity mainly against K. pneumoniae. In addition, they displayed an excellent anti-adhesive 

and disruptive properties against biofilm formation by a variety of bacteria. In conclusion, E. 

cloacae C3 strain is a good biocontrol and therapeutic agent for use in combating many 

diseases and infections thanks to the antimicrobial and anti-adhesive properties of 

lipopeptides produced. 
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Table 1. Total amino acids in the hydrolyzed crude lipopeptides C3 

 

Amino acid Molar ratio (%) 

Leu 13.54 

Asx 12.47 

Glx 11.39 

Gly 8.91 

Ala 8.11 

Val 6.64 

Thr 6.03 

Ile 5.50 

Ser 5.29 

Pro 3.22 

Tyr 3.02 

His 2.01 

Phe 3.42 

Arg 3.15 
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Table 2. Different lipopeptide isoforms identified by mass spectrometry 

 

Family [M + Na]
+
 ion Nature of lipopeptide isoforms 

Kurstakin 

 

 

 

 

Surfactin 

 

 

 

 

 

 

887.5 

901.6 

915.6 

 

1044.6 

 

1058.6 

 

1072.6 

 

1086.6 

 

1100.7 

C10 Kurstakin 

C11 Kurstakin
 

C12 Kurstakin
 

 

C14 Surfactin [Leu7/Ile7] and C15 

Surfactin [Val7] 
 

C15 Surfactin [Leu7/Ile7] and C16 

Surfactin [Val7] 
 

C15 Pumilacidin [Leu7/Ile7] and C16 

Pumilacidin [Val7]
 

 

C16 Pumilacidin [Leu7/Ile7] and C17 

Pumilacidin [Val7]
 

 

C17 Pumilacidin [Leu7/Ile7]
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Table 3. Antimicrobial activity spectrum of C3 lipopeptides (2 mg/ml) 

 

Indicator organisms  Inhibition zone diameter (mm) 

 Gram (+)  

 

S. aureus (ATCC 25923) 

B. cereus (ATCC 11778) 

M. luteus (ATCC 4698) 

 

  

             14 ± 1.4 

            - 

       18 ± 0 

 Gram (-)  

 

K. pneumoniae (ATCC 13883) 

E. coli (ATCC 25922) 

S. typhimurium (ATCC 19430) 

S. enterica (ATCC 27853) 

Enterobacterium sp. 

 

  

35 ± 0,7 

- 

28 ± 0,7 

- 

- 

 Fungi  

 

A. niger 

A. flavus 

F. oxysporum 

  

+++ 

- 

++ 

 

Determinations were performed in triplicate and data correspond to mean values ± standard 

deviations. 
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Figure. 1 Fourier transforms infrared spectrum of biosurfactants synthesized by E. cloacae 

C3 strain 
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Figure. 2 Mass spectrometry (LC-MSD-TOF) analysis of lipopeptide C3 molecular signals. 

Spectra of lipopeptides belonging to kurstakin (A) and surfactin families (B) 

 

  

B 
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Figure. 3 Product ions spectra obtained by MALDI-TOF/TOF MS
2
 of the sodiated molecules 

[M+Na]
+
 of surfactin isoforms at m/z 1044.7 (a) and 1058.7 (b) 

(a) 

(b) 
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Figure. 4 Product ions spectra obtained by MALDI-TOF/TOF MS
2
 of the sodiated molecules [M+Na]

+
 of pumilacidin isoforms at m/z 1072.7 

(a), 1086.8 (b) and 1100.7 (c) 

 

(a) (b) 

(c) 
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Figure. 5 Biofilm formation inhibition (a) and disruption (b) by C3 lipopeptides. 
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