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Abstract

Grid cells in the medial entorhinal cortex (MEC) have known spatial peri-
odic firing fields which provide a metric for the representation of self location
and path planning. The hexagonal tessellation pattern of grid cells scales
up progressively along the MEC’s layer II dorsal-to-ventral axis. This scal-
ing gradient has been hypothesized to originate either from inter-population
synaptic dynamics as postulated by attractor networks, or from projected
theta frequencies to different axis levels, as in oscillatory models. Alterna-
tively, cellular dynamics, and specifically slow high-threshold conductances,
have been hypothesized to have an effect in the scaling of grid cells. To test
the hypothesis these intrinsic hyperpolarization-activated cation currents ac-
count for the scale gradient as well as the different oscillatory frequencies
observed along the dorsal-to-ventral axis, we have modeled and analyzed
data from a population of grid cells simulated with spiking neurons interact-
ing through low-dimensional attractor dynamics. To investigate the causal
relationship between oscillatory frequencies and grid scale increase, we an-
alyzed the dominant frequencies of the membrane potential for cells with
distinct after-spike dynamics. We observed that intrinsic neuronal mem-
brane properties of simulated cells could induce an increase of grid scale
when modulated by after-spike reset values. Differences in the membrane
potential oscillatory frequency were observed along the simulated dorsal-to-
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ventral axis, suggesting that, rather than driving to the increase of grid scale
as proposed by interference models of grid cells, they are the result of in-
trinsic cellular properties of neurons at each axis level. Overall, our results
suggest that the after-spike dynamics of cation currents may play a major
role in determining the grid cells’ scale and that oscillatory frequencies are a
consequence of intrinsic cellular properties that are specific to different levels
of the dorsal-to-ventral axis in the MEC layer II.
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1. Introduction1

Grid cells found in layer II of the medial entorhinal cortex (MEC) present2

multiple regularly-spaced firing fields organized in a triangular tessellation3

that spans the entire explored environment [1, 2]. Functionally, grid cells4

represent a spatial metric system signaling the position of the animal in the5

environment. Together with sensory cells in the lateral entorhinal cortex6

(LEC), grid cells in MEC layer II project to both the dentate gyrus (DG)7

and CA3 neurons of the hippocampus proper [3, 4]. Thus, the mammalian8

hippocampus robustly encodes spatial representation using a combination of9

environment-related spatial and sensory information.10

Since the discovery of grid cells, several computational models have been11

proposed to describe the spatial and temporal properties of grid fields’ for-12

mation. Most of the proposed models can be categorized into two groups:13

oscillatory interference [5] and attractor dynamics [6, 7] models. For the for-14

mer group, the typically observed hexagonal grid pattern emerges from the15

interaction of multiple phase-synchronized oscillations that are based on the16

animal’s speed vector projected to MEC layer II from earlier MEC layers.17

Thus, at the computational level, manipulating the amplitudes and phase18

differences of these oscillations modulates the scale of the resulting grid cells.19

On the other hand, in the attractor-based models, the distribution of synap-20

tic weights within an all-to-all network creates a characteristic “bump” of21

activity that converges to stable attractor points. The network weights con-22

figuration is updated according to the spatial motion of the agent at every23

timestep (t), which allows for the characteristic periodic firing across the24

explored environment. Recent studies on the intrinsic cellular properties of25

grid cells support the idea of low-dimensional continuous attractor dynamics26
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in the grid cells’ system, favoring the computational principles of attractor-27

based models of grid cells [8, 9].28

The size and spacing of grid cells’ firing fields have been shown to increase29

progressively along the dorsal-to-ventral axis of the MEC [1, 10, 11]. Func-30

tionally, such a scale gradient has been suggested to operate as an accurate31

path-integration mechanism projecting to the DG and CA3 hippocampal32

sub-regions [10]. Moreover, the interaction between grid scales and other33

spatially tuned cells have been suggested to serve for minimizing errors in34

path integration [12].35

Despite observations on hyperpolarization-activated cyclic nucleotide-gated36

(HCN) channels’ disruption and its effects on grid scale [13], the mechanism37

underlying the differences in scale of such neural populations is still not clear.38

Different sub-threshold theta oscillatory frequencies have been measured in39

vitro in neurons along the dorsal-to-ventral axis, suggesting that individ-40

ual cells’ intrinsic frequencies might play a key role on grid cells’ scale [14].41

Moreover, it has been shown that the distance from the dorsal surface is42

accompanied by a decrease in oscillatory frequency in MEC layer II [15].43

From the continuous attractor model perspective, different scales are often44

obtained by manipulating the variance of the Gaussian synaptic distributions.45

However, given recent insight on the effects of HCN channels disruption in46

grid cells’ metrics, the distribution of synaptic weights might not be the main47

factor accounting for grid scale and stability of the network activity.48

Coherent with such idea, previous computational models of grid cells [16]49

have explicitly pointed out that differences in grid cells’ scale along the dorsal-50

to-ventral axis are linked to differences in the cells’ intrinsic frequencies.51

Indeed, a systematic topographical change in time constants of hyperpolarization-52

activated cation currents (Ih) of stellate cells has been observed in vitro [14].53

Moreover, those topographical changes correlate with membrane potential54

oscillation frequency and differences in the time constant of the sag response.55

This suggests that different Ih kinetics, which are regulated by the HCN fam-56

ily proteins, may play a critical role in the change of oscillatory frequencies57

along the dorsal-to-ventral axis and the topographical expansion of grid scale58

[15]. Forebrain-specific knockout of the HCN1 subcomponent in mice has59

been shown to selectively affect the Y-intercept of the grid scale, indicating60

that those elements of the HCN family are involved in grid scale modulation61

[13, 17].62

Previous studies have addressed the question of how intrinsic cell’s fre-63

quency affects the grid scale along the dorsal-to-ventral axis [18]. Specifi-64
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cally, they proposed a model where the addition of physiologically plausible65

after-spike dynamics modulates the observed increase in grid scale along the66

dorsal-ventral axis of MEC.67

Whether the membrane potential oscillatory frequency is sufficient to68

determine the grid scale is still unclear. In attractor models of grid cells’69

formation, the scale of the grid is modulated by a gain parameter affecting70

the synaptic connectivity of the network and thus the speed at which the71

activity bump moves along the network as well [18, 19]. However, there is no72

biological evidence for such connectivity matrix discretization. In interfer-73

ence models, the differences in grid scale are generated due to amplitude and74

phase changes in the oscillatory inputs to the grid cells network. Despite the75

fact that differences in the oscillatory frequencies are observable in biological76

systems, it is not clear whether it emerges from intrinsic or extrinsic network77

dynamics. The fact that knocking out HCN family type genes disrupts the78

normal progressive scale increase raises the question as to whether such scale79

gradient is a network or a cellular property. We address this by presenting a80

simplified spiking computational model that describes the generation of the81

spatial and temporal properties of grid cells found in physiological studies.82

2. Materials and methods83

In order to explore the effects of intrinsic cellular properties on differences84

in spatial grid scale as seen in the dorsal-to-ventral axis of MEC layer II and85

the influence on the oscillatory frequency at each axis level, we created a86

simulated environment where a virtual agent was randomly exploring either87

a one-dimensional linear track or a two-dimensional square arena (see Fig. 1).88

In both environments, the agent’s speed vector is fed as the input to an89

ensemble of simulated neuronal populations (which we describe below).90

In line with Yoon et al. [9] observations of low-continuous attractor dy-91

namics in grid cells’ populations, we built on elements of a previously pre-92

sented grid cells model based on attractor dynamics [19] and translated it93

to a spiking neuronal model, approximating the spiking behavior oberved94

in MEC layer II stellate cells. A total of 19 populations of grid cells were95

included in the model, each containing 100 neurons connected in an all-to-all96

fashion (Fig. 1A). Recordings from large ensembles of grid cells in individual97

rats have suggested that MEC layer II modules are functionally and anatom-98

ically discrete and independent from each other [11]. Building upon such99
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observations, we assumed no synaptic connectivity between cells belonging100

to the different populations.101

At the topological level, the network is based on the twisted toroidal102

architecture (Fig. 1E) and synaptic weights are dependent on the Cartesian103

distance of each cell to its postsynaptic cells and updated according to the104

input provided by the speed vector of the simulated agent moving within the105

virtual environment ( (Fig. 1E) and [19] for more details).106

Given our aim to clarify the functional role of HCN-channels in modu-107

lating grid scale, we isolated the simulated grid cell populations from other108

anatomically connected brain regions, such as earlier MEC layers. There-109

fore, apart from the injection of a current to initialize the model, there was110

no further afferent signal input throughout the simulations. Nevertheless,111

due to the recurrent connectivity nature of the network topology, as well as112

the changing in synaptic distribution depending on the simulated agent’s dis-113

placement, individual cells were susceptible of firing, as observed in previous114

models [31].115

MEC layer II stellate cells were modelled using the simplified Izhikevich’s116

spiking model [22]. Such a model allows for the direct manipulation of the117

resonant properties affected by HCN channels in biological stellate cells [13]118

through a single parameter. Parameters values were selected to reproduce119

the characteristic bursting behavior of MEC layer II grid cells observed ex-120

perimentally in stellate cells recordings [22, 23, 24]. The activation function121

of each neuron in the network was defined by a system of ordinary differential122

equations given by:123

dv/dt = 0.04v2 + 5v + 140− u+ I (1)

du/dt = a(bv − u) (2)

where 0.04v2 +5v+140 mimics the spike initiation dynamics of a neuron,124

I represents synaptic currents or injected DC-currents, v represents the cell’s125

membrane potential and u describes the membrane recovery variable. a de-126

scribes the time scale of the recovery variable u and b describes the sensitivity127

of the recovery variable u to the subthreshold fluctuations of the membrane128

potential v.129

The after-spike resetting mechanism is given by:130

if v30 mV , then { v ← cu← u+ d (3)
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where c and d describe the after-spike membrane value and recovery vari-131

able, respectively.132

To test whether the modulation of HCN channels is sufficient to trigger133

changes in grid cells’ scale, the after-spike reset value of cation currents d134

was varied across populations in the range 0.2 - 3.8 mV/ms with linearly135

increasing steps (Fig. 1B). The parametric space was defined in order to136

maintain the spiking behavior of stellate cells (Fig. 1C-D). All the other137

model parameters were kept constant over all the neuronal populations.138

The parameter a, which describes the cell’s current recovery variable time139

scale, was set to 0.03. The parameter b, describing the cell’s current recovery,140

was set to 0.2. The parameter c, describing the after-spike reset value of the141

cell’s membrane potential, was set to -50 mV. The spike train activity of each142

cell was recorded and used for the subsequent analysis.143

The virtual agent’s method of exploration was set to exhibit two different144

behaviors depending on the environment. In order to analyze differences in145

periodicity and size of grid cells’ firing fields for populations with different146

Ih currents, the first behavior of the agent was to run back-and-forth in a147

linear track environment. For the second environment, the square arena, the148

agent would explore the arena randomly. Thus, in the second environment,149

the characteristic 2D rate maps of grid cells can be depicted.150

Simulations were initialized with grid cells receiving an external current151

input sampled from a uniform random distribution with mean 5.0. The main152

input of the network is the speed vector s of the agent’s translation at each153

time step. This input is independent on any absolute information about154

animal’s location.155

Previous computational models of grid cells relied on a subset of neurons156

encoding for distinct head-orientations to modulate the activity bump dis-157

placement along the neural sheet [32]. In our model, the network’s weight158

distribution is reliant on the speed vector of the simulated agent’s displace-159

ment, s := (sx, sy), allowing the activity bump of the network to drift along160

the neural sheet when the agent moves according to its speed vector. Even161

though there is no evidence for synaptic modulation at such short temporal162

intervals in biological systems, we used such method (as described in [19]) to163

abstract direction tuned grid cells as in [32].164

Whereas in the original grid cell model proposed by [19] the speed vector165

s is susceptible of modulation via a gain parameter, affecting the grid scale, in166

our simulations, the speed vector was kept constant throughout the simulated167

conditions.168
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Figure 1: Illustrative description of the methods used in this study. A. A virtual
agent is set to randomly explore a squared virtual arena. During exploration, 19 different
populations of grid cells are activated and all receive inputs from the vestibular system
encoding the speed vector of the virtual agent. Each population of grid cells was initial-
ized with specific cell model parameters as shown in B. The spatial rate map of each cell
belonging to each population was stored for further analysis. B. Izhikevich model pa-
rameters used per each population (condition). Every parameter value was kept constant
for every population, with the exception of the d parameter ranging from 0.2 to 3.8 in
steps of 0.2. C. Number of spikes as a function of the d parameter. With all the other
cell’s parameters maintained constant a plateau is observed for reset values larger than
3. D. Simulations of hippocampal stellate neurons for the 19 populations included in the
model by varying the d parameter. E. 3-dimensional representation of the model topology
based on the twisted-toroidal synaptic distribution. Note the 2 dark-blue lines illustrating
twist and how the Cartesian distance (sigma) between neuron i and neuron j modulates
their synaptic strength. F. Synaptic weights Wij implemented in the current model are
modulated by the Cartesian distance (sigma) between neurons in the neural lattice.
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The synaptic weights distribution was defined as:169

wij(t) = I ∗ exp
(
− ‖ci − cj + s(t)‖2tri

σ2

)
− T (4)

where ‖ci − cj‖2tri denotes the Cartesian distance between cells ci and cj170

in the network matrix, I (= 0.3) defines the synaptic strength, σ (= 0.48)171

modulates the width of the synaptic weight distribution and T (= 0.05) is172

the excitatory and inhibitory distance threshold.173

2.1. Data analysis174

The model was implemented using NEST neural networks simulator [20],175

and all the analyses were done using the SciPy python scientific library [21].176

Occupancy maps were calculated as the total time an agent spent in each177

spatial bin (50 × 50 pixels) within the virtual arena. Rate maps were then178

obtained by normalizing each cell’s spiking activity within a spatial bin with179

the agent’s occupancy map. Autocorrelograms were then obtained by the180

spatial autocorrelation of the rate map of each cell in the 2-dimensional181

plane.182

Frequency analyses were obtained by averaging the dominant frequency183

provided by the power spectral density (PSD). To compute the dominant184

membrane potential oscillation frequency, continuous, contiguous and non-185

overlapping windows of 10 seconds were extracted from each cell membrane186

potential and their PSD was computed. The second highest peak of the187

averaged PSD was considered the dominant frequency for a given cell.188

An Ipython notebook with the complete model’s code is available at the189

following repository: https://osf.io/w96fq/.190

3. Results191

To verify that the manipulation of the intrinsic cellular properties in the192

chosen cell model simulation would not affect the attractor mechanism of193

the networks, we set every simulation to be a random state of activity and194

visually ensured that an activation bump was formed and remained stable195

throughout the virtual agent navigation. The formation of the activity bump196

during the initial simulation steps for three representative populations with197

different after-spike reset values are shown in Fig. S1.198
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3.1. Grid scale is modulated by Ih199

3.1.1. Linear track simulation200

The virtual agent was set to run along a linear track environment, mea-201

suring 200 virtual units, at a constant speed of 20 virtual units/second. A202

total of 1900 spike trains were recorded.203

Figure 2: Progressive increase in grid scale from dorsal to ventral MEC. Spike-
trains of four representative cells from dorsal (A) to ventral (D) axis populations. Left
trajectories (red) and right trajectories (blue) are differentiated. Top subplots represent
the raw spikes against the position of the linear track per each run. Middle subplots
represent the spike density per position (same color code as in top plot). Bottom subplots
show the correlations of spike density along the linear track. Higher to lower oscillation of
spike density and correlation is observed from dorsal to ventral levels.

To test whether the modulation of HCN channels is sufficient to trigger204

changes in grid cells’ scale, the after-spike reset values of cation currents205

d were varied across populations. Fig. 2 illustrates the effects of varying206
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the after-spike dynamics on the firing fields of 4 representative cells from207

the simulated dorsal-to-ventral axis level conditions (d = 3.6, 2.2, 1.2, 0.2).208

Within the linear track, spike activity relative to the agent’s position in the209

environment points to an increase in firing-fields size and distance that is210

dependent on the value of d. The effect appears more evident from the211

spike density plots (Fig. 2 middle subplots) and by the periodic regions of212

high activity observed in the spike density autocorrelations (Fig. 2 bottom213

subplots).214

Figure 3: Grid field sizes and spatial distance in simulations run with varying
after-spike-reset values. Firing field distance (left) and size (center) decrease along
the simulated conditions for larger d. left Together, firing fields size and distance are
tightly correlated and modulated by Ih values. Data points represent the average ± SD
of all cells in a simulated neuronal population.

To quantify the increase in grid scale at the population level, we have215

quantified each simulated cell firing field’s size and distance (Fig. 3). To do so,216

we obtained the firing rate, spike count, at each position of the linear track as217

in Fig. 2 (bin size = 5 virtual points). A peak detection algorithm was applied218

to identify the firing fields. Firing fields whose peak rate was larger than 1.2219

standard deviations (z-scored) were included in the sample and the averaged220

distance between consecutive fields of each cell was computed. Increasing the221

hyperpolarization reset value d caused a decrease in the averaged firing field222

distance (Pearson r = −0.34, p < 0.01, Fig. 3-top left). Similarly, in order to223

quantify each cell’s firing field size, we obtained the spatial distance between224

the two firing rate points on each side of its peak whose first derivative was225

≥ 0. As for distance, we found that firing fields size is negatively modulated226

by the after-spike reset parameter (Pearson r = −0.31, p < 0.01, Fig. 3-top227

right). We next asked whether firing fields size and distance were equally228

affected by the hyperpolarization reset value of each condition. To do so, we229

averaged firing fields size and distance of cells belonging to the same condition230
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(Fig. 3-bottom). A strong correlation between size and distance revealed231

significance (Pearson r = 0.79, p < 0.01). Moreover, the increase in these232

spatial measures was accompanied by a decrease in the hyperpolarization233

reset value (see Ih condition in Fig. 3-bottom, colorbar).234

Further, we analyzed the relationship between the size and the distance235

of the firing fields of every cell used in our simulations with the hyperpo-236

larization reset value of each condition through a generalized linear model237

(GLM). According to the output, firing field size was modeled accordingly238

by: logit(πi) = 5.3 − 0.1 ∗ size, and variance = 0.019. Firing field dis-239

tance was modeled accordingly by: logit(πi) = 6.6 − 0.07 ∗ distance, and240

variance = 0.012.241

3.1.2. 2D arena simulation242

With the linear track simulations, we have shown that the intrinsic prop-243

erties of grid cells can effectively modulate firing field size and spacing. How-244

ever, testing such grid cell properties in a linear trajectory could fail to245

demonstrate possible deformations in the characteristic grid pattern.246

In order to observe the stereotypical pattern of grid cell and the accounts247

of after-spike hyperpolarization behavior in grid resolution, we have set the248

virtual agent to perform random exploration within a two-dimensional open249

field arena. Similar to the 1D runs, we recorded the membrane potentials of250

stellate cells belonging to different simulated dorsal-to-ventral axis levels. As251

expected, the firing properties of cells at the ventral level presented larger and252

further distributed firing-fields when compared with the ones at the dorsal253

level (Fig. 4)254

In order to quantify the stability of our model in the grid cells’ spatial255

representation, we used the gridness score measure for every cell’s autocor-256

relogram using correlations of rotational symmetry [25], by comparing the257

spatial autocorrelation maps to the rotated versions of themselves with 30◦
258

rotations as:259

GS = min (Acorr60◦ , Acorr120◦)−max (Acorr30◦ , Acorr90◦ , Acorr150◦) (5)

Overall, rate maps along the simulated conditions revealed to be in the260

range of gridness scores observed in tessellation patterns activity (> 0.15) and261

were not affected by the hyperpolarization reset value (Pearson r = 0.061, p =262

0.23), suggesting a stable spatial representation across the simulated dorsal-263

to-ventral axis.264
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Figure 4: Single cell’s rate maps and autocorrelograms of neurons along dorsal-
to-ventral axis. Cell’s spatial activity from ventral (top) to dorsal (bottom) axis level.
Hyperpolarization-reset value represented by d at left most side. Progressively decrease
of grid cell scale (left column), accompanied by its autocorrelogram (right column).

In order to quantify for differences along dorsal-to-ventral levels, we have265

correlated membrane potentials of cells within each module. Lags calculated266

after correlating membrane potential signals were taken as a measure of the267

periodic increase in the amplitude of cells firing rate. Thus, high-resolution268

grid cell rate-maps at the dorsal level (smaller scale) should reveal shorter269

distances between firing fields and larger distances for the ones at the ven-270

tral level (larger scale). As expected, we observed a progressive decrease271

in membrane potential autocorrelations lags as a function of the after-spike272

parameter (Pearson r = −0.94, p < 0.01, Fig. 5-right). As grid cell hexag-273

onal tessellation patterns and membrane potentials are not dissociable, we274

have also quantified spatial lags in between firing fields. As for membrane275

potentials, lags between spatial firing-fields were larger for smaller hyper-276
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polarization reset values (Pearson r = −0.91, p < 0.01, Fig. 5-left) as well277

as for rate maps spatial auto-correlation (Pearson r = −0.96, p < 0.01,278

Fig. 5-middle). Fig. S2 further illustrates pairwise distances between spatial279

observations.280

Figure 5: Spatial correlation lags from spike-train and membrane potential along
dorsal-to-ventral axis. Lags of correlation along most ventral (0.2) to most dorsal (3.8)
conditions. Left and middle plots represent lags of cross- and autocorrelation from 10 cells
at each condition. Right plot represents the lags of autocorrelation for membrane potential
of each cell. Increase of hyperpolarization-reset value is accompanied by the decrease of
lags from ventral to dorsal axis locations.

Despite spatial grid-cell scale distribution found along the dorsal-to-ventral281

axis levels of MEC layer II, the oscillatory properties of stellate grid cells are282

also organized on the same axis [10, 18]. To verify whether the hyperpolar-283

ization behavior accounting for the spatial resolution organization was also284

sufficient to modulate the dominant frequencies of simulated neurons, we285

have compared dominant frequencies of cells at multiple dorsal-to-ventral286

axis modules. As in [10], dominant frequencies were observed to decrease287

from dorsal to ventral modules, ranging 14-22 Hz (Pearson r = 0.45, p <288

0.01, Fig. 6-left). Note that frequencies are not in a theta range as ex-289

pected in MEC, which could be due to the absence of inhibitory projec-290

tions either from within the MEC population or arriving from hippocampus291

proper feedback projections. However, there is evidence that modulation of292

hyperpolarization-after values is sufficient to explain a decrease of membrane293

potential frequency from dorsal to ventral levels. Thus, spatial scale and os-294

cillatory frequency might be explained by the intrinsic cell hyperpolarization295

mechanism.296
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Figure 6: Increase of dominant frequencies from ventral (left) to dorsal (right).

Discussion297

Grid cells in MEC layer II have been characterized by their grid scale,298

which progressively increases along the dorsal-to-ventral axis. So far, grid299

cells’ computational models either use oscillatory interference or attractor-300

based dynamics to elicit the desired behaviors. Hybrid models have also been301

proposed [26]. Regardless, the mathematical formulation to modulate grid302

scale has been attributed to network dynamics, in the case of attractor-based303

models, and to network inputs, in the case of interference-based models. In-304

terference models affect its grid cell scale by modulating the frequency of305

oscillatory signals being projected to the ensemble of grid cells in the net-306

work [5]. Attractor dynamics-based grid cell models affect grid cells scale by307

modulating the gain parameter which reflects how fast the bump of activity308

in the network is translated to neighbor cells [19]. Even though both cate-309

gories of grid cell models use network parameters to affect the grid cell scale,310

it is still unclear what is modulating grid cells’ scale in the hippocampus.311

Based on the findings by Giocomo et al. [14, 27], in this study, we hypoth-312

esized that grid cells’ scale could be modulated exclusively through intrinsic313

single-cell properties instead of network properties. To test our hypothesis,314

we have built upon a previously presented model for grid cells formation315

based on attractors dynamics [19], as has recently been observed in such316

cell type [8, 9]. We used spiking neurons to mimic the properties of stellate317

grid cells and thus modulate their hyperpolarization behavior. We found318

that after-spike-reset scalars are sufficient to affect both the size and scale319
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of grid cells at different axis levels in the medial entorhinal cortex layer II.320

Specifically, we observed changes in the firing fields’ size and scale, and their321

respective autocorrelation periodicity bumps from different after-spike-reset322

values conditions for linear track simulations.323

Contrary to Brun et al. [10], we found periodic activity events for the324

population vector activity analysis. Indeed, one should argue that grid cell325

periodicity must be observed at the population level and, thus, whether such326

a phenomenon is accounted for in a living organism might depend on higher-327

level spatial encoding mechanisms such as environmental compartmentaliza-328

tion [28].329

Because wild rodents typically navigate within two-dimensional environ-330

ments, we have also tested our model in a virtual agent moving in a 2D331

arena. As in the 1D environment, the agent had no spatial target position or332

goal and moved at random within the squared arena. Again, the attractor-333

based network was set to form grid cells as in Guanella et al. [19] using334

the Izhikevich neuron model [22] to mimic stellate cells found in MEC layer335

II. The only parameter differing among cells was the after-spike-reset val-336

ues specific to each sub-population. As expected, the size and scale of grid337

cells firing fields increased progressively across the simulated MEC layer II338

dorsal-to-ventral axis. Also, 2D navigation simulations allow us to confirm339

that gridness remained stable and was not affected by hyperpolarization re-340

lated properties. Linear decays along simulated conditions were observed for341

both spatial and membrane potential correlations lag, allowing the quantifi-342

cation of firing-fields distances.343

In accordance with Brun et al. [10] and as hypothesized by Navratilova et al.344

[18], both oscillatory frequencies and spatial scale were affected by cellular345

after-spike-reset parameters, suggesting that biophysical mechanisms alone346

are sufficient to modulate multiple grid cell properties.347

The flexibility of the synaptic connections has been previously questioned348

and marked as an implausible mechanism to update the attractor activity349

bump in the biological brain (McNaughton, 2006). One possibility to over-350

come such constraint was also discussed in the same paper (McNaughton,351

2006), with the solution to rely on multiple networks of conjunctive cells352

whose activity is dependent on the animal motion. On the other hand, slower353

mechanisms of synaptic matrix changes might compromise the efficacy of the354

model.355

We have addressed the question of whether MEC layer II grid cell scale356

was determined by the network synaptic connectivity distribution, as pre-357
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dicted by low-continuous attractor models, or whether intrinsic properties358

of stellate cells accounting for individual cell’s hyperpolarization behavior359

was sufficient to modulate the rate-map resolution of explored environments.360

Our results suggest that biophysical grid-cell properties may be responsible361

for their spatial scale.362

Despite the computational evidence, it is still not clear what are the363

mechanisms determining the differences in cells response across the dorsal-364

to-ventral axis level. During development, dorsal regions mature earlier than365

the ones at ventral levels [29]. Similarly, as the animal’s development ad-366

vances, so does its spatial exploration, covering more extensive regions of the367

environment. Thus, it is still uncertain as to what are the causal relation-368

ships between behavioral components of exploration, such as the magnitude369

of environmental exploration, and cellular development and organization. In370

this line, the work of [14] presented differences in the frequency of subthresh-371

old membrane potential oscillations in entorhinal cells. Moreover, in [13], the372

authors observed a modulation of the cell’s spatial scale in nucleotide-gated373

(HCN) channels knockout mice compared to sham, which suggests a func-374

tional role for HCN in mediating the topographic organization of firing fields375

in the explored environment.376

Although only excitatory cells have been used in our implementation, the377

low-continuous attractor mechanism defines the synaptic weight between cells378

accordingly to their Cartesian distance in the neural sheet in a range from379

strong excitation to neighboring cells to strong inhibition to further apart380

cells. Excitation and inhibition projections from the same neuron is defi-381

nitely implausible in biological brains, however, that could be solved compu-382

tationally by setting the synaptic weights to the excitatory range and adding383

a population of inhibitory interneurons mediating neuronal competition, as384

suggested by the E%-max winner-take-all mechanism of gamma frequencies385

(de Almeida et al., 2009)386

Along those lines, our work proposes specific physiological and develop-387

mental questions that could be tested experimentally. Specifically, character-388

ization of the bursting behavior observed in entorhinal stellate cells along the389

dorsal-ventral axis, as well as optogenetic stimulation modulating the neu-390

ron’s oscillatory dynamics could, potentially, support our modeling results.391

Moreover, at the computational level, this study proposes future work to un-392

veil the interactions between attractor dynamics and intrinsic properties of393

stellate cells in the MEC layer II.394

In the presented form, our model served as an attempt to test the effects395
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of cell-specific spiking behavior in governing grid cell scale. As is, the cur-396

rent implementation allows testing hypothesis concerned with the individual397

dynamics of precise activity in such population as, for instance, spike-time398

dependent plasticity processes [33] or membrane-related contributions on net-399

work activity modulation. However, in doing so, this spiking implementa-400

tion of grid cells increases the difficulty to integrate and test the interplay401

between multiple brain regions involved in spatial representation [34]. In-402

deed, one limitation of our model is the absence of spatially tuned signals403

contributing to grid-cell stabilization [12]. Similarly, in our simulations, the404

spiking activity grid cells was modulated by, but did not contribute to, the405

agents displacement in the environment. Nevertheless, the learning dynamics406

of the navigational system have been observed to contribute to overt behav-407

ior during spatial decision making in both rodents [35] and humans [36]. To408

cope with such limitations, our model could, in future work, benefit from the409

recent advances in the development of brain-inspired artificial intelligence410

(BI-AI) systems to enhance our understanding of how these networks con-411

tribute, generate and maintain internal representations of spatial location in412

biological systems [30].413
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Supporting information544

Figure S1: Evidence of attraction at the simulation initial steps. Every cell at
each population (assemble) starts with random activity. The bump of activity is formed
and attracted to a set of cells. A, B and C represents activity from population 1, 10 and
19, respectively.

Figure S2: Pairwise distances between spatial observations. Gaussian kernel sigma
of firing fields for ten cells at each condition is shown. Decrease of condensed distance
matrix against pairwise distances from ventral (left) to dorsal (right) conditions.
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