Ab initio study of the two lowest triplet potential energy surfaces involved in the N(${}^{4}S$)+NO ($X {}^{2}\Pi$) reaction

P. Gamallo, Miguel González,^{a)} and R. Sayós^{b)}

Departament de Química Física i Centre de Recerca en Química Teòrica, Universitat de Barcelona, C / Martí i Franquès 1, 08028 Barcelona, Spain

(Received 30 January 2003; accepted 21 March 2003)

This work presents ab initio electronic structure calculations of the two possible $N(^4S)$ $+ NO(X^{2}\Pi)$ abstraction reaction channels on the lowest ${}^{3}A''$ and ${}^{3}A'$ potential energy surfaces (PESs). Complete active space self-consistent-field (CASSCF) calculations, second-order perturbation calculations (CASPT2), and multireference configuration interaction calculations (MR-CI) based on CASSCF wave functions, along with some coupled cluster (CC) calculations were carried out by using the standard correlation-consistent (cc-pVnZ and aug-cc-pVnZ, n=D,T,O,5) Dunning's basis sets. It was shown that there was no energy barrier along the minimum energy path in the ${}^{3}A''$ PES for the N-abstraction reaction channel. However, an energy barrier (6.74 kcal/mol) was located in the ${}^{3}A'$ PES. This energy barrier was considerably smaller than the previously reported MR-CCI value (14.4 kcal/mol). It was established that the N and O 2s electron correlation, neglected in previous studies of these authors, was the main source of this energy decrease. As a result, the present ab initio data will produce larger values of the thermal rate constants at high temperatures. High-energy barriers were found for the O-abstraction reaction channel in both PESs (41.13 and 30.77 kcal/mol for ${}^{3}A''$ and ${}^{3}A'$, respectively), which agree with the accepted idea that this channel will be only important at high collision energies. Nonetheless, current *ab initio* results show that this channel will be open at not very high collision energies (e.g., over 30 kcal/mol could take place). Experimental studies on the O-abstraction reaction channel are missing and would be useful to confirm its *ab initio* expected importance. © 2003 American Institute of Physics. [DOI: 10.1063/1.1574315]

I. INTRODUCTION

The elementary gas-phase reaction of $N(^4S)$ with nitric oxide,

$$N(^{4}S) + NO(X^{2}\Pi) \rightarrow O(^{3}P) + N_{2}(X^{1}\Sigma_{g}^{+})$$

 $\Delta_{r}H_{0K}^{o} = -75.01 \text{ kcal/mol} (\text{Ref. 1}),$
(1)

and its reverse reaction play an important role in atmospheric chemistry. The direct reaction is thought to be a dominant step for odd nitrogen removal in the upper stratosphere, the mesosphere and the thermosphere of the Earth, and possibly also in Mars and Venus.^{2–4} The accuracy of the rate constants for this reaction over a wide range of temperatures [e.g., from 185 K in mesopause to approximately 1000 K at 250 km altitude (upper thermosphere)⁵] is of great importance for the modeled concentration of NO_x species in these atmospheric regions for varying levels of solar activity. On the other hand, this reaction has been also proposed as one important step to remove the NO molecules produced in heterogeneous catalytic processes (e.g., in SiO₂-based materials) for airflow cases; this NO production could have great

effects for the heat flux on the thermal protection systems used in atmospheric reentry vehicles (e.g., space shuttle, OREX, \dots).⁶

In spite of this reaction having been extensively studied from an experimental point of view, particularly for the room temperature rate constant³ $(1.7 \times 10^{-11} \le k_{298 \text{ K}} \le 4.5)$ $\times 10^{-11}$ cm³ molecule⁻¹ s⁻¹), there are still some doubts about its slight temperature dependence. Thus, several laboratory studies covering different temperature ranges have shown somewhat different expressions. Baulch et al.⁷ presented a recommended value at high temperatures equal to $7.1 \times 10^{-11} e^{-790/T}$ cm³ molecule⁻¹ s⁻¹ between 1400-4000 K. The Jet Propulsion Laboratory⁸ proposed 2.1 $\times 10^{-11} e^{(100\pm100)/T}$ cm³ molecule⁻¹ s⁻¹ based in published kinetic data within the interval 200-400 K. Other studies based in terrestrial or martian atmospheric NO modeling have derived either a negative temperature dependence (e.g., $1.6 \times 10^{-10} e^{-460/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ for } T > 300 \text{ K}$ (Ref. 2) and $2.5 \times 10^{-10} (T/300)^{1/2} e^{-600/T} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ between 100-200 K (Refs. 9 and 10) or a positive one [e.g., $2.2 \times 10^{-11} e^{160/T}$ cm³ molecule⁻¹ s⁻¹ for $213 \le T \le 369$ K (Ref. 3)]. Besides kinetic studies, there are only very few experimental studies dealing with the dynamics properties of this reaction. Thus, only earlier studies measured some information on the product N₂ vibrational distributions, indicating a product vibrational energy fraction of 0.25-0.28.11,12 How-

^{a)}Electronic mail: miguel@qf.ub.es

^{b)}Authors to whom correspondence should be addressed. Electronic mail: r.sayos@qf.ub.es, miguel@qf.ub.es

ever, another study indicated a higher fraction due to the $75\pm5\%$ of the N₂ molecules appeared with v'>4.¹³

In several preceding papers we presented different theoretical approaches for this reaction and we also gave a detailed review of the main experimental and theoretical data that had been published for this reaction. We constructed an analytical potential energy surface (PES) (Ref. 14) based on limited *ab initio* information¹⁵ for the ground ${}^{3}A''$ PES, and we carried out dynamics studies by means of the quasiclassical trajectory (QCT) method,¹⁶ reduced quantum approaches¹⁷ (reactive-infinite-order sudden approximation) or simple models¹⁸ (angle-dependent line-of-centers model). Lately, QCT calculations on a new ${}^{3}A''$ PES, 19 which was fitted using the same *ab initio* data ¹⁵ but adding new interpolated semiempirical points, reported good thermal rate constants for $200 \le T \le 1000$ K, with the inclusion of the reactant statistical degeneracy factor (i.e., 3/16), missing in previous works. The same authors presented a QCT study²⁰ on this reaction taking also into account the first excited PES $({}^{3}A')$, previously fitted for the reverse reaction by other authors.²¹ It was concluded that only at high energies (i.e., 1-3 eV) the excited PES became important.

For the second reaction channel (i.e., the O-abstraction process):

$$N(^{4}S) + N'O(X^{2}\Pi) \rightarrow N'(^{4}S) + NO(X^{2}\Pi)$$

$$\Delta_{r}H^{0}_{0 K} = 0 \text{ kcal/mol},$$
(2)

there is almost no information. Only some experiments^{22,23} at very high energies with ¹³N and pure NO indicated that channel 2 yielding ¹³NO could account for up to a 20% of the total reaction, although with the possible contribution of the first excited states of nitrogen [i.e., $N(^2D, ^2P)$].

The present work presents a new accurate *ab initio* molecular electronic structure study of the $N({}^{4}S)$ +NO reaction taking into account both PESs (i.e., ${}^{3}A''$ and ${}^{3}A'$), and also the two possible reaction channels. Previous theoretical studies proposed that more extensive and accurate *ab initio* characterization of ${}^{3}A'$ and ${}^{3}A''$ PESs was necessary to construct reliable analytical PESs valid for dynamics and kinetics studies, as it is our goal here. New analytical PESs based in grids of *ab initio* points are at present practically finished and QCT and wave packet studies on this reaction are also in progress.

Section II will offer a summary of the *ab initio* methodology applied in this work. Section III will provide the *ab initio* results on the stationary points of both PESs (${}^{3}A''$ and ${}^{3}A'$), and the corresponding minimum energy reaction paths (MEPs) connecting minima (MIN), and transition states (TS). Finally, Sec. IV will summarize the main concluding remarks.

II. THEORETICAL METHODS

A similar strategy as that used in our recent study of the $N(^{4}S) + O_{2}$ reaction²⁴ was also applied in the present work. Thus, *ab initio* calculations have been carried out with the MOLCAS 4.1 (Ref. 25) package of programs. The complete active space self-consistent field method (CASSCF) (Refs. 26, 27) was employed throughout this study, always choosing the lowest root in C_s symmetry for both triplet PESs (i.e., ${}^{3}A''$ and ${}^{3}A'$). These two PESs are the unique ones that correlate reactants and products for reaction (1). The other PESs that also arise in reactants (i.e., ${}^{5}A''$ and ${}^{5}A'$), only correlate with very excited products [i.e., $O({}^{3}P) + N_{2}$ $(A^{3}\Sigma_{\mu}^{+})$]. The location of the different stationary points on the PESs was achieved by optimization searches of both minima and transition states employing analytical CASSCF gradients. Full characterization of them was performed by calculating the numerical Hessian matrix at the optimized geometries. Calculations at second-order perturbation theory based on a zeroth-order CASSCF wave function (CASPT2 method) using the standard correction (i.e., std) or some of the more accurate G_i (*i*=1,2,3) variants²⁸ as implemented in MOLCAS 4.1 were applied to improve the stationary points obtained at the CASSCF level. In some cases, a grid of CASPT2 points was generated to search directly for the stationary point. Thus, local fits were performed by means of bicubic splines²⁹ or Taylor expansions in the bond angle together with symmetry adapted internal coordinate expansion in the bond lengths to obtain the optimal geometry and the harmonic frequencies at the CASPT2 level by using the SURVIBTM code of molecular rovibrational analysis.³⁰

In the present study all the molecular orbitals (MO) arising from the 1s atomic orbitals were kept frozen, and two active spaces for the NNO system were considered: (a) the full-valence active space with all the atomic 2s and 2p electrons distributed among the corresponding derived bonding and antibonding MOs [i.e., CAS (16,12)], and (b) a smaller active space with only the atomic 2p electrons [i.e., CAS (10,9)], taking the 2s-derived MOs as inactive. This latter active space has been assumed to be accurate enough for this system in the most extensive preceding ab initio paper on this reaction.¹⁵ Natural MO occupation was checked for all stationary points. The CAS (16,12) comprising 16 electrons in 12 orbitals (9 a' and 3 a'') generates 56664 and 56592 configuration state functions (CSFs) for the ${}^{3}A''$ and ${}^{3}A'$ PESs, respectively, while the CAS(10,9) with 10 electrons in 9 orbitals (6 a' and 3 a') only 3804 and 3756, respectively. The major part of CASSCF and CASPT2 calculations used the lower active space [i.e., CAS(10,9)] as it reduced a lot the computer time but the accuracy was suitable in comparison with available experimental data and when comparing with CAS (16,12) results. The N and O 1s and 2s MOs were optimized at the CASSCF level; in some CASPT2 calculations, the derived 1s and 2s MOs were kept frozen to compare with earlier CASSCF followed by multireference contracted CI (MR-CCI) calculations.¹⁵ The present results will show the importance of the 2s dynamical correlation energy in the characterization of this reaction on both surfaces, not considered in previous studies.¹⁵ Moreover, two additional ab initio methods were also used to check the accuracy in the correlation energies calculated: (a) uncontracted multireference singles and doubles configuration interactions including Davidson correction for quadruple excitations (i.e., MR-CI+Q),³¹ using the CASSCF(10,9) MOs and all the CSFs with a weight up to 0.0005 in the CASSCF wave function, and (b) coupled cluster method with perturbative contribution at triple excitations³² [i.e., CCSD(T)] using the MOs derived from a restricted open shell Hartree–Fock calculation.

The standard correlation-consistent (cc-pVnZ and augcc-pVnZ, n=D,T,Q,5) Dunning's basis sets³³ were used in the present study. Supermolecule calculations were considered too in the determination of the energies of the stationary points within each PES.

III. RESULTS AND DISCUSSION

A. Stable species and reaction exoergicity

Table I summarizes the calculated bond length, the harmonic vibrational frequency, and the dissociation energy of both diatomic molecules along with the reaction exoergicity (1) for different *ab initio* levels. The CASSCF calculations with larger basis sets and both active spaces show that the lower active space is accurate enough for describing these properties. However, the introduction of dynamical correlation energy by means of the CASPT2 method is necessary to obtain results in close agreement with experimental data. The comparison of the CASSCF geometries with the experimental data shows a small but rather clear effect of the size of the basis set on the optimal bond lengths and harmonic frequencies, which slowly tend to the experimental ones. Nevertheless, the description of both N₂ and NO dissociation energies is a bit worse. The CASPT2 calculations by using the G_i variants give similar results although much better than the CASPT2 with the standard (std.) Fock matrix, as it should be expected.²⁸ The N_2 and NO dissociation energies show a significant error (errors of approximately -4.5% with respect to the experimental values) even with the inclusion of the geometry optimization at the same level *i.e.*, CASPT2 G2(10,9)/cc-pVTZ], which causes a similar error in exoergicity. Nevertheless, the results are very good with the largest basis set and active space [i.e., CASPT2 G2(16,12)/ccpVOZ gives errors lower than -1.2%]. The CCSD(T) and MR-CI+Q energies present as well good results, which improve with the size of the basis set and are quite close to the CASPT2 (10,9) G2 energies. Present MR-CI+Q results are quite good in spite of the N and O 2s electrons are not correlated, such as was also observed in similar MR-CCI+Q calculations.¹⁵ The difficulty in the theoretical treatment in diatomic molecules is well known and can only be amended with very refined and computationally expensive ab initio calculations with inclusion of large primitive basis sets³⁵ or by using also complete basis set (CBS) limits.^{36,37} However, as the main purpose of the present study is to characterize all the stationary points of the two lowest triplet PESs involved in the title reaction by using the same *ab initio* level, the CASPT2 G2(10,9)/cc-pVTZ level accuracy can be suitable for a later construction of the ${}^{3}A''$ and ${}^{3}A'$ analytical PESs, where usually some experimental diatomic data are often introduced.

B. Characterization of the lowest ${}^{3}A''$ potential energy surface

The *ab initio* study of the MEP on the ${}^{3}A''$ PES for reaction channel (1) shows only one transition state. Table II gives its properties for different *ab initio* calculations. The CASSCF method reports an earlier transition state (i.e., long NN distance) for both active spaces with several basis sets. The corresponding geometry and harmonic vibrational frequencies are very close to the preceding CASSCF results¹⁵ with a Duijneveldt basis set. The small energy barrier clearly disappears as the dynamical correlation energy is introduced by means of the CASPT2 method. This fact is in agreement with previous multireference contracted CI results,¹⁵ where it was observed a very small energy barrier of 0.5 kcal/mol. Nevertheless, the same authors recognized that due to the limitations of their calculations probably no additional barrier should be expected. To make sure that there was no energy barrier at longer NN distances, as it was observed when dynamical correlation energy was introduced,¹⁵ not only CASPT2 energies at the CASSCF geometries were calculated but also an extensive grid of CASPT2 (10,9) G2 /cc-pVTZ energies along the MEP (approx. 180 points). The local fit of these points³⁰ showed an energy profile without any energy barrier from reactants to products.

The CCSD(T) and the uncontracted MR-CI+Q calculations at the CASSCF(10,9) optimal geometries seem to confirm also the absence of any energy barrier. Present MR-CI calculations used the following nine reference CSFs, where the electronic occupation of the 6a' and 3a'' MOs are indicated: (222100 210), (220120 210), (221110 210), (222100 012), (122101 111), (212110 111), (022102 210), (112111 210), and (221110 201) with a total weight of 0.9837. This originated the following number of CSFs depending on the basis set: 318644 (cc-pVDZ), 2202524 (cc-pVTZ), 1177190 (aug-cc-pVDZ), and 5778909 (aug-cc-pVTZ) to be compared with previous MR-CCI calculations¹⁵ with approximately 1000000 of CSFs. Our MR-CI calculations kept frozen also the N and O2s electrons to compare directly with previous studies.¹⁵ The importance of the N and O 2s electron correlation, which was neglected in the past, is here ascertained by means of the CASPT2 method. Thus, for example, the CASPT2(10,9) G2 energy for cc-pVDZ, ccpVTZ, and cc-pVQZ basis sets at the corresponding CASSCF optimal geometry (-1.90, -4.88, and -6.12 kcal)mol, respectively; see Table II) become more positive when 2s electron correlation is neglected (i.e., -0.58, -3.14, and -4.07 kcal/mol, respectively). This energy lowering probably would vanish the MR-CCI energy barrier¹⁵ or our MR-CI calculations at its optimal geometry (possibly with a longer NN distance than in the CASSCF level). A similar trend with the addition of the N and O 2s electron correlation has also been revealed in our similar study²⁴ on the two lowest PESs (i.e., ${}^{2}A'$ and ${}^{4}A'$) of the N(${}^{4}S$) +O₂ reaction.

The second reaction channel (2) have been also studied by using the CASSCF(10,9) and the CASPT2 (10,9) G2 methods and the cc-pVTZ basis set. This *ab initio* level seems accurate enough to describe this less important channel, as it has been shown too in the reaction channel (1) study or in other similar recent studies for the $N({}^{4}S) + O_{2}$

TABLE I. Ab	initio	properties	of	reactants	and	products. ^a
-------------	--------	------------	----	-----------	-----	------------------------

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(S) + NO							
CASSCH(16,12) cc-pVDZ -183,363 81,1640 1914,45 125,21 -183,89132 1.161 260,40 211,58 -183,69 cc-pVDZ -183,81942 1150 1955,71 1955,71 1953,75 11,657 1853,9753 1,653,9753 1,657 1853,9753 1,657 1853,9753 1,657 1853,9753 1,657 1853,9753 1,657 1853,9753 1,657 1843,975 1,150 1853,9753 1,657 1843,975 1,150 1853,9753 1,657 1843,975 1,153 -78,55 CASPT2(16,12) si cc-pVUZ -184,080 1 141,233 -184,1273 1 211,58 -69,52 CASPT2(16,12) G cc-pVUZ -184,080 1 143,239 -114,132,56 211,58 -75,57 ang-cc-PVUZ -184,080 1 147,29 -184,123,79 121,58 -72,57 cc-pVUZ -184,075 1.619 190,75 141,47 141,23 211,41 -72,57 cc-pVUZ -184,075 1.610 <th>Method</th> <th>Basis set</th> <th>E/a.u.</th> <th>$R_e/\text{\AA}$</th> <th>$\omega_e/\mathrm{cm}^{-1}$</th> <th>$D_e$ /kcal mol⁻¹</th> <th>E/a.u.</th> <th>$R_e/\text{\AA}$</th> <th>$\omega_e/\mathrm{cm}^{-1}$</th> <th>$D_e$ /kcal mol⁻¹</th> <th>ΔD_e^{-6} kcal mol⁻¹</th>	Method	Basis set	E/a.u.	$R_e/\text{\AA}$	$\omega_e/\mathrm{cm}^{-1}$	D_e /kcal mol ⁻¹	E/a.u.	$R_e/\text{\AA}$	$\omega_e/\mathrm{cm}^{-1}$	D_e /kcal mol ⁻¹	ΔD_e^{-6} kcal mol ⁻¹
cc.pVTZ -183.09 10 1.1587 198.57 -183.09 55 1.168 211.58 -181.68 cc.pVTZ -183.773 4 1.1657 1895.71 130.66 -183.390 55 1.170 234.32 212.93 -82.27 aug-cc-pVTZ -183.078 34 1.1657 1894.57 127.15 -183.090 76 1.170 234.42 207.14 -79.52 CASPT2(16.12) ad cc-pVTZ -184.056 80 - 141.23 -184.132 65 - 210.74 -69.52 aug-cc-pVTZ -184.026 80 - 145.29 -184.302 53 - 211.58 -69.50 CASPT2(16.12) G2 cc-pVTZ -184.026 50 - 146.24 -184.132 56 - 211.58 -69.50 CASPT2(16.12) G2 cc-pVTZ -184.056 151.81 -184.32 56 - 211.58 -72.57 aug-cc-pVTZ -184.136 56 107.75 124.42 -184.32 76 1.104 217.54 -72.57 aug-cc-pVTZ -184.379 1 1.155 107.75 1	CASSCF(16,12)	cc-pVDZ	-183.763 88	1.1640	1914.45	125.21	-183.891 32	1.1161	2360.34	205.17	-79.97
cc.pVQZ -183.01-24 1.1570 1895.71 1.066 -183.90753 1.0103 245.34 212.03 75.95 aug-cc-pVTZ -183.30783 1.1657 1894.87 129.00 183.30780 1.1170 2344.82 207.11 -79.95 CASPT2(16,12) ed c-pVTZ -184.305 28 1.98.37 129.00 -184.30760 - 2.112.8 69.52 cc-pVQZ -184.105 28 - 141.23 -184.112.79 - 2.15.8 -69.50 cc-pVTZ -184.019.08 - 146.04 -184.123.79 - 2.15.8 -69.50 CASPT2(16,12) C2 cc-pVTZ -184.019.28 - 1.16.41 -184.312.75 - 2.15.8 -72.57 cc-pVTZ -184.019.78 - 1.16.14 1.92.0 -184.312.75 - 2.05.62 85.86 cc-pVTZ -184.307.89 1.16.15 1.90.75 1.18.14 -184.326 1.1101 2.05.10 75.41 aug-cc-pVTZ -183.378.71 1.15.6		cc-pVTZ	-183.807 10	1.1587	1895.64	129.73	-183.937 55	1.1056	2345.80	211.58	-81.86
nugcevpUZ -183.73 3.1 1.167 1894.87 127.15 -183.09076 1.107 2244.82 207.11 -79.25 CASPT2(16,12) ad cevpUZ -184.0308 1.158 188.78 139.52 -184.1280 -184.128 -184.1280 -184.1280 -184.1280 -184.1280 -184.1280 -184.129 -184.1280 -184.129 -184.1280 -184.129 -184.1280 -184.129 -184.1280 -184.129 -184.129 -184.128 -184.129 -184.129 -184.128 -184.129 -184.128 -184.129 -184.128 -184.129 -184.131 -184.132 -184.131		cc-pVQZ	-183.819 42	1.1570	1895.71	130.66	-183.950 53	1.1039	2345.34	212.93	-82.27
Auguce pVTZ -18.80/875 1.1580 1888.78 12.900 -18.40.280 1.1054 243.00 212.14 62.23 CASPT2(16,12) -0.94.02 -184.026 - 1.41.23 -184.1375 - - 69.52 auguce pVTZ -184.237 - 1.41.23 -184.3076 -		aug-cc-pVDZ	-183.773 34	1.1657	1894.87	127.15	-183.900 76	1.1170	2344.82	207.11	-79.95
CASPT2(16,12) sil cc-PVDZ -184,036 c3 199,52 -184,130 f3 -184,130 f3 -210,04 -69,52 cc-PVDZ -184,026 80 145,23 -184,130 f3 -215,95 -70,65 augcc-PVDZ -184,083 01 145,23 -184,129 73 -215,95 -70,65 cc-PVDZ -184,010 23 -184,129 73 -215,95 -69,50 -69,50 CASPT2(16,12) (2 cc-PVDZ -184,106 91 -184,123 79 -218,31 76 -73,92 augcc-PVDZ -184,207 65 -194,312 56 -219,86 -72,57 cc-PVDZ -184,207 65 195,61 -184,323 88 -21,14 -73,82 augcc-PVTZ -184,307 87 1,165 1907,75 124,13 -184,323 88 1144 197,02 -73,52 augcc-PVTZ -183,310 80 1,165 1907,75 124,13 -183,328 81 1143 197,02 -83,43 -79,63 augcc-PVTZ -183,310 80 1,165 1907,75 124,13 -183,328 76 110,02 237,62 203,76 -90,10 augcc-PVTZ -184,314 41 10,155 100,75 <td></td> <td>aug-cc-pVTZ</td> <td>-183.808 75</td> <td>1.1586</td> <td>1888.78</td> <td>129.90</td> <td>-183.939 80</td> <td>1.1054</td> <td>2343.00</td> <td>212.14</td> <td>-82.23</td>		aug-cc-pVTZ	-183.808 75	1.1586	1888.78	129.90	-183.939 80	1.1054	2343.00	212.14	-82.23
cc-pVTZ -184.206.80 -141.23 -184.307.59 -210.74 -69.52 cc-pVTZ -184.257.16 -135.29 -184.309.76 -21.55 -70.65 aug.cc-pVTZ -184.030.28 -133.26 -184.122.53 -21.56 -65.58 CASPT2(16.12) C2 cc-pVTZ -184.030.28 -146.29 -184.123.79 -20.56 -70.55 cc-pVTZ -184.030.28 -146.29 -184.123.79 -20.56 -25.57 -73.52 aug.cc-pVTZ -184.078.59 -147.29 -184.137.68 -22.14 -72.57 aug.cc-pVTZ -184.078.59 1.169 1926.77 119.52 -183.878.68 -21.41 97.02 -77.51 cc-pVTZ -183.798.7 1.1565 1907.97 124.13 -183.926.08 1.102 237.52 20.50.7 -79.63 aug.cc-pVTZ -183.798.78 1.157 1997.91 121.50 -183.926.08 1.102 237.52 20.50.76 -79.63 aug.cc-pVTZ -183.798.78 1.157 199.79 124.58<	CASPT2(16,12) std	cc-pVDZ	-184.036 28			139.52	-184.128 06			198.36	-58.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		cc-pVTZ	-184.206 80			141.23	-184.317 59			210.74	-69.52
nug-cc-pVDZ -184.088 01 133.26 -184.192 53 198.34 -65.58 CASPT2(16,12) 62 cc-pVDZ -184.218 28 146.18 -184.329 03 205.6 -55.68 CASPT2(16,12) 62 cc-pVTZ -184.196 91 147.29 -184.312 56 205.6 -55.86 cc-pVTZ -184.267 55 151.81 -184.364 36 225.73 -73.92 ang-c-pVTZ -184.267 55 151.81 -184.323 68 271.84 107.02 -77.51 CASSCF(10.9) C-epVTZ -184.078 51 11547 190.79 119.52 -183.878 32 11.163 2357.62 205.10 -78.63 c-epVTZ -183.78 79 1.1565 1907.91 121.50 -183.878 98 11.53 2357.02 205.01 -80.04 ang-ce-pVZ -183.78 98 1.1547 1907.91 121.50 -183.987 96 11.052 2357.62 205.10 -78.58 ang-ce-pVZZ -184.051 194.04 -184.79 -184.387 98 11.052 257.62 20.67 -75.92 </td <td></td> <td>cc-pVQZ</td> <td>-184.257 16</td> <td></td> <td></td> <td>145.29</td> <td>-184.369 76</td> <td></td> <td></td> <td>215.95</td> <td>-70.65</td>		cc-pVQZ	-184.257 16			145.29	-184.369 76			215.95	-70.65
ang-cc-pVTZ -184.218 28 146.18 -184.329 03 211.58 -69.50 CASPT2(16,12) 62 cc-pVTZ -184.030 28 -184.023 79 -184.123 79 205.62 -58.68 cc-pVQZ -184.076 55 -173.92 -184.137 64 -21.56 -72.57 cc-pVQZ -184.076 55 -151.81 -184.363 36 -22.57.3 -73.92 ang-cc-pVTZ -184.076 55 -183.98 06 -184.326 36 -22.57.3 -73.92 CASSCF(10.9) cc-pVTZ -183.787 7 1.161 192.67 119.52 -183.878 32 1.114 237.184 070.02 -77.53 cc-pVTZ -183.787 71 1.165 190.75 124.13 -183.987 80 1.102 2357.02 0.010 -77.53 cc-pVTZ -183.787 81 1.1635 190.79 121.50 -183.987 80 1.102 2357.02 0.01.0 -77.53 ang-cc-pVTZ -184.040 21 -183.987 60 1.102 2357.02 0.04.0 -77.53 cc-pVTZ -184.040 21 -184		aug-cc-pVDZ	$-184.088\ 01$			133.26	-184.192 53			198.84	-65.58
CASPT2(16,12) G2 cc pVDZ -184,030 28 146,94 -184,123 79 205,62 -58,68 cc pVTZ -184,196 91 147,29 -184,312 56 225,73 -73,29 aug cc-pVTZ -184,078 59 139,18 -184,364 36 225,73 -73,29 aug cc-pVTZ -184,078 59 148,06 -184,323 68 221,41 -72,81 CASSCF(10,9) cc-pVTZ -183,379 17 1.156 1907,75 124,13 -183,398 82 1.144 237,62 203,76 -79,63 cc-pVQZ -183,379 81 1.156 1907,91 121,50 -183,383 06 1.102 2357,62 205,70 -79,63 aug cc-pVTZ -183,379 85 1.156 1907,91 124,32 -183,392 70 1.103 2357,62 204,22 -79,91 aug cc-pVTZ -184,379 85 1.156 1907,91 124,32 -183,393 76 1.102 2353,26 204,22 -79,91 aug cc-pVTZ -184,051 1.154 1907,31 124,87 -183,387 6 1.102 2353,26 204,22 -79,91 aug cc-pVTZ -184,254		aug-cc-pVTZ	-184.218 28			146.18	-184.329 03			211.58	-69.50
cc-pVTZ -184.196 91 147.29 -184.312 56 219.86 -72.57 aug-c-pVTZ -184.246 56 151.81 -184.361 36 225.73 -73.52 aug-c-pVTZ -184.207 55 139.18 -184.361 36 227.57 -73.52 CASSCF(0.9) cc-pVDZ -183.798 17 1.1619 192.677 119.52 -183.378 30 1.144 2371.84 197.02 -77.51 cc-pVQZ -183.798 10 1.155 1907.95 124.13 -183.395.08 1.102 2357.52 205.10 -80.04 aug-cc-pVDZ -183.798 1 1.155 1907.91 121.50 -183.897 80 1.105 2357.52 205.55 -68.04 aug-cc-pVDZ -184.304 34 1.165 1907.91 121.50 -183.397.08 1.105 2357.52 205.55 -68.04 aug-cc-pVDZ -184.304 34 1.165 1907.91 121.50 -183.397.01 1.105 2352.19 205.55 -68.02 CASPT2(10.9) 61 cc-pVDZ -184.20511 -144.31	CASPT2(16,12) G2	cc-pVDZ	-184.030 28			146.94	-184.123 79			205.62	-58.68
ccpVQZ -184.246.56 151.81 -184.364.36 225.73 -73.92 aug-cc-pVDZ -184.075.59 139.18 -184.187.64.30 207.61 -68.43 cc-pVDZ -183.757.77 1.1619 1926.77 119.52 -183.875.83 1.114 2371.84 271.74 -77.81 cc-pVDZ -183.754.77 1.1565 1907.75 124.13 -183.925.08 1.1020 2357.62 203.76 -79.63 cc-pVDZ -183.7943 1.1553 1907.75 124.13 -183.925.08 1.1020 2357.62 203.76 -79.63 aug-cc-pVDZ -183.799.85 1.154 1907.91 124.32 -183.927.00 1.1035 2357.07 199.10 -77.88 aug-cc-pVDZ -184.321.107 1.1547 1907.31 124.87 -183.928.76 1.1035 2357.07 199.10 -75.88 aug-cc-pVDZ -184.321.17 -184.329.175 100.02 -184.314.44 208.83 -68.82 aug-cc-pVDZ -184.206 7 -184.206.77 209.75 <td></td> <td>cc-pVTZ</td> <td>-184.196 91</td> <td></td> <td></td> <td>147.29</td> <td>-184.312 56</td> <td></td> <td></td> <td>219.86</td> <td>-72.57</td>		cc-pVTZ	-184.196 91			147.29	-184.312 56			219.86	-72.57
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cc-pVQZ	-184.246 56			151.81	-184.364 36			225.73	-73.92
$ \begin{array}{c} \mbox{aug-cc-pVTZ} & -184.207 65 & 148.60 & -184.323 68 & 221.41 & -72.81 \\ \mbox{c-pVTZ} & -183.784 79 & 1.1619 & 192.677 & 119.52 & -183.878 32 & 1.1144 & 2371.84 & 197.02 & -77.51 \\ \mbox{c-pVTZ} & -183.784 79 & 1.156 & 1907.75 & 124.13 & -183.938 06 & 1.1032 & 2357.52 & 205.10 & -80.04 \\ \mbox{aug-cc-pVTZ} & -183.796 35 & 1.154 & 1907.98 & 124.52 & -183.9378 06 & 1.1020 & 2357.62 & 205.10 & -80.04 \\ \mbox{aug-cc-pVTZ} & -183.797 85 & 1.156 & 1899.89 & 124.32 & -183.9378 06 & 1.1020 & 2357.52 & 204.22 & -79.91 \\ \mbox{aug-cc-pVTZ} & -183.791 70 & 1.1547 & 1907.31 & 124.87 & -183.938 76 & 1.1020 & 2352.19 & 205.35 & -80.12 \\ \mbox{aug-cc-pVTZ} & -184.05211 & 1.1547 & 1907.31 & 124.87 & -183.938 06 & 1.1020 & 2352.19 & 205.35 & -66.59 \\ \mbox{aug-cc-pVTZ} & -184.0521 & 1.144.22 & -184.3164 & 208.83 & -68.82 \\ \mbox{aug-cc-pVTZ} & -184.0521 & 1.144.22 & -184.3164 & 208.83 & -68.82 \\ \mbox{aug-cc-pVTZ} & -184.204 77 & 140.02 & -184.157 19 & 196.61 & -64.85 \\ \mbox{aug-cc-pVTZ} & -184.206 7 & 144.32 & -184.326 07 & 209.75 & -68.78 \\ \mbox{aug-cc-pVTZ} & -184.216 45 & 131.77 & -184.188 60 & 209.75 & -68.78 \\ \mbox{aug-cc-pVTZ} & -184.216 45 & 135.43 & -184.372 19 & 214.92 & -99.98 \\ \mbox{CASPT2(10.9) G2 & cc-pVTZ & -184.206 07 & 144.83 & -184.372 19 & 214.92 & -99.88 \\ \mbox{cc-pVTZ} & -184.206 07 & 137.69 & -184.361 7 & 209.75 & -68.78 \\ \mbox{aug-cc-pVTZ} & -184.207 69 & 150.79 & -184.361 7 & 224.00 & -73.21 \\ \mbox{aug-cc-pVTZ} & -184.207 69 & 150.79 & -184.361 7 & 225.03 & -73.29 \\ \mbox{aug-cc-pVTZ} & -184.249 49 & 150.79 & -184.361 7 & 225.03 & -73.29 \\ \mbox{aug-cc-pVTZ} & -184.249 74 & 151.61 & -184.309 24 & 201.96 & -67.72 \\ \mbox{aug-cc-pVTZ} & -184.249 74 & 151.61 & -184.307 5 & 219.58 & -72.31 \\ \mbox{aug-cc-pVTZ} & -184.249 74 & 151.61 & -184.363 1 & 200.60 & -68.63 \\ \mbox{aug-cc-pVTZ} & -184.249 6 & 131.97 & -184.366 7 & 225.03 & -73.29 \\ \mbox{aug-cc-pVTZ} & -184.249 6 & 131.97 & -184.366 7 & 219.58 & -72.31 \\ \mbox{aug-cc-pVTZ} & -184.249 5 & 133.68 & -184.372 91 & 20.60 & -68.63 \\ $		aug-cc-pVDZ	-184.078 59			139.18	-184.187 64			207.61	-68.43
$ \begin{array}{c} {\rm CASSCF}(10,9) & {\rm ce-pVDZ} & -183.754~79 & 1.1619 & 1926.77 & 119.52 & -183.878~32 & 1.1144 & 2371.84 & 197.02 & -77.51 \\ {\rm ce-pVDZ} & -183.798~17 & 1.1565 & 1907.75 & 124.13 & -183.925.08 & 1.1036 & 2357.52 & 203.76 & -79.63 \\ {\rm aug-ce-pVDZ} & -183.708~11 & 107.98 & 125.05 & -183.388~79 & 1.1035 & 2357.67 & 199.10 & -77.8 \\ {\rm aug-ce-pVDZ} & -183.798~5 & 1.1564 & 1899.89 & 124.32 & -183.927.20 & 1.1035 & 2353.26 & 204.22 & -79.91 \\ {\rm aug-ce-pVDZ} & -183.798~5 & 1.1564 & 1899.89 & 124.32 & -183.928~76 & 1.1020 & 2352.19 & 205.35 & -80.12 \\ {\rm ce-pVDZ} & -184.05211 & 100.40 & -184.157~19 & 196.36 & -65.94 \\ {\rm ce-pVDZ} & -184.05211 & 130.40 & -184.157~19 & 196.36 & -66.59 \\ {\rm ce-pVDZ} & -184.255~41 & 144.22 & -184.366~93 & 214.18 & -69.98 \\ {\rm aug-ce-pVDZ} & -184.255~41 & 131.77 & -184.188~86 & 196.61 & -64.85 \\ {\rm aug-ce-pVDZ} & -184.26~51 & 131.77 & -184.138~60 & 209.75 & -68.78 \\ {\rm aug-ce-pVDZ} & -184.26~67 & 144.83 & -184.372~19 & 214.92 & -69.98 \\ {\rm CASPT2}(10.9)~62 & {\rm ce-pVDZ} & -184.04~42~5 & 140.97 & -184.326~07 & 209.75 & -68.78 \\ {\rm aug-ce-pVDZ} & -184.04~4~5 & 140.97 & -184.366~70 & 214.92 & -69.98 \\ {\rm CASPT2}(10.9)~62 & {\rm ce-pVDZ} & -184.04~4~5 & 15.41 & -184.372~19 & 205.40 & -77.21 \\ {\rm aug-ce-pVDZ} & -184.04~70 & 150.79 & -184.361~57 & 224.00 & -73.21 \\ {\rm aug-ce-pVDZ} & -184.04~70 & 150.79 & -184.361~57 & 225.03 & -73.39 \\ {\rm CASPT2}(10.9)~62^2 & {\rm ce-pVTZ} & -184.24~90 & 150.79 & -184.366~70 & 225.03 & -73.39 \\ {\rm CASPT2}(10.9)~62^2 & {\rm ce-pVTZ} & -184.24~97 & 190.44~5 & 146.15 & -184.307~5 & 219.58 & -72.12 \\ {\rm aug-ce-pVTZ} & -184.24~97 & 137.69 & -184.386~11 & 205.40 & -67.72 \\ {\rm aug-ce-pVTZ} & -184.24~97 & 137.69 & -184.387~1 & 225.53 & -72.12 \\ {\rm aug-ce-pVTZ} & -184.297~1 & 190.44~5 & 146.15 & -184.390~75 & 219.58 & -72.12 \\ {\rm aug-ce-pVTZ} & -184.297~1 & 190.44~5 & 146.15 & -184.390~75 & 219.58 & -72.12 \\ {\rm aug-ce-pVTZ} & -184.297~1 & 133.68 & -184.292~81 & 20.18.01 & -73.30 \\ {\rm CASPT2}(10.9)~62^2 & {\rm ce-pVTZ} & -184.397~13 & 144.84 & -184.3976~1 & 208.85~4 & -$		aug-cc-pVTZ	-184.207 65			148.60	-184.323 68			221.41	-72.81
cc-pVTZ -183.798 17 1.156 1907.75 124.13 -183.925 08 1.1036 2357.52 203.76 -79.63 cc-pVQZ -183.810 50 1.1647 1907.98 125.05 -183.988 06 1.1020 2357.62 205.10 -80.04 aug-cc-pVDZ -183.798 55 1.1654 189.99 121.50 -183.978 98 1.153 2357.07 199.10 -77.58 aug-cc-pVQZ -183.798 55 1.1654 189.98 124.32 -183.997 80 1.1035 2352.62 204.22 -79.91 aug-cc-pVQZ -183.798 17 1.154 1907.31 124.87 -183.938 76 1.1020 2352.19 205.35 -80.12 CASPT2(10.9) std cc-pVQZ -184.05211 130.40 -184.157 19 196.36 -65.94 aug-cc-pVQZ -184.254 41 144.22 154.14 209.75 -68.78 aug-cc-pVQZ -184.045 51 144.97 -184.366 93 214.18 -69.98 CASPT2(10.9) G2 cc-pVTZ -184.044 25 135.43 -184.326 07 209.75 -68.78 aug-cc-pVQZ -184.049	CASSCF(10,9)	cc-pVDZ	-183.754 79	1.1619	1926.77	119.52	-183.878 32	1.1144	2371.84	197.02	-77.51
c.e.pVQZ -183.810 50 1.1547 1907.98 125.05 -183.938 06 1.1020 2357.62 205.10 -80.04 aug-cc-pVDZ -183.769 43 1.1635 1907.91 121.50 -183.887 98 1.1153 2357.07 199.10 -77.58 aug-cc-pVDZ -183.799 85 1.1547 1890.89 124.32 -183.937 80 1.1020 2352.19 205.35 -80.12 CASPT2(10.9) sid cc-pVDZ -184.0511 1.1547 1907.31 124.87 -184.937 86 1.1020 2352.19 205.35 -80.12 CASPT2(10.9) sid cc-pVDZ -184.02511 130.40 -184.31444 208.83 -66.82 aug-cc-pVDZ -184.255 41 144.22 -184.366 93 214.18 -69.98 aug-cc-pVDZ -184.256 51 140.97 -184.326 7 203.67 -68.22 cc-pVDZ -184.260 67 144.83 -184.329 44 214.92 -69.98 CASPT2(10.9) G2 cc-pVDZ -184.044 25 135.43 -184.316 31 205.40 -73.21 aug-cc-pVDZ -184.045 94 150.79 -184.316 31 <td></td> <td>cc-pVTZ</td> <td>-183.798 17</td> <td>1.1565</td> <td>1907.75</td> <td>124.13</td> <td>-183.925 08</td> <td>1.1036</td> <td>2357.52</td> <td>203.76</td> <td>-79.63</td>		cc-pVTZ	-183.798 17	1.1565	1907.75	124.13	-183.925 08	1.1036	2357.52	203.76	-79.63
$ \begin{array}{c} \mbox{aug-cc-pVDZ} & -183.764 34 & 1.1635 & 1907.91 & 121.50 & -183.88798 & 1.1153 & 2357.07 & 199.10 & -77.58 \\ \mbox{aug-cc-pVDZ} & -183.799 85 & 1.1564 & 1899.89 & 124.32 & -183.927 20 & 1.1035 & 2353.26 & 204.22 & -79.91 \\ \mbox{aug-cc-pVDZ} & -184.3107 & 1.1547 & 1907.31 & 124.87 & -183.93876 & 1.102 & 2352.19 & 205.35 & -80.12 \\ \mbox{cc-pVTZ} & -184.2017 & 100.02 & -184.3164 91 & 208.83 & -68.82 \\ \mbox{cc-pVDZ} & -184.255 41 & 144.22 & -184.36693 & 214.18 & -69.98 \\ \mbox{aug-cc-pVDZ} & -184.255 41 & 144.22 & -184.36693 & 214.18 & -69.98 \\ \mbox{aug-cc-pVDZ} & -184.255 41 & 144.22 & -184.36693 & 214.18 & -69.98 \\ \mbox{aug-cc-pVDZ} & -184.260 67 & 144.83 & -184.17219 & 209.75 & -68.78 \\ \mbox{aug-cc-pVDZ} & -184.260 67 & 144.83 & -184.37219 & 203.67 & -68.92 \\ \mbox{cc-pVDZ} & -184.260 67 & 144.83 & -184.37219 & 203.67 & -68.92 \\ \mbox{aug-cc-pVDZ} & -184.260 67 & 144.83 & -184.320 74 & 203.67 & -78.29 \\ \mbox{aug-cc-pVDZ} & -184.260 67 & 144.83 & -184.37219 & 203.67 & -68.92 \\ \mbox{cc-pVDZ} & -184.260 67 & 144.83 & -184.37219 & 203.67 & -68.92 \\ \mbox{aug-cc-pVDZ} & -184.240 90 & 150.79 & -184.361 57 & 224.00 & -73.21 \\ \mbox{aug-cc-pVDZ} & -184.076 09 & 150.79 & -184.361 57 & 224.00 & -73.21 \\ \mbox{aug-cc-pVDZ} & -184.076 09 & 150.79 & -184.361 57 & 224.00 & -73.21 \\ \mbox{aug-cc-pVDZ} & -184.076 94 & 151.61 & -184.3607 & 2331.25 & 218.46 & -72.31 \\ \mbox{cc-pVDZ} & -184.076 94 & 131.97 & -184.3707 & 2331.25 & 218.46 & -72.31 \\ \mbox{cc-pVDZ} & -184.076 94 & 131.97 & -184.377 & 216.44 & -72.88 \\ \mbox{cc-pVDZ} & -184.076 94 & 131.97 & -184.34777 & 216.44 & -72.88 \\ \mbox{cc-pVDZ} & -184.279 26 & 148.48 & -184.39781 & 222.87 & -74.39 \\ \mbox{aug-cc-pVDZ} & -184.279 26 & 148.48 & -184.39781 & 222.87 & -74.39 \\ \mbox{aug-cc-pVDZ} & -184.279 26 & 148.48 & -184.39781 & 222.87 & -74.39 \\ \mbox{aug-cc-pVDZ} & -184.279 26 & 148.48 & -184.39781 & 222.87 & -75.88 \\ \mbox{cc-pVDZ} & -184.279 26 & 148.48 & -184.39781 & 222.87 & -75.98 \\ \mbox{cc-pVDZ} & -184.279 26 & 148.48 & -184.39781 & 222.87 & -75.9$		cc-pVOZ	-183.810 50	1.1547	1907.98	125.05	-183.938.06	1.1020	2357.62	205.10	-80.04
aug-cc-pVTZ -183.799 85 1.1564 1899.89 124.32 -183.927 20 1.1035 2353.26 204.22 -79.91 aug-cc-pVQZ -183.811 07 1.1547 1907.31 124.87 -183.938 76 1.102 2352.19 205.35 -80.12 CASPT2(10.9) std cc-pVDZ -184.05211 130.40 -184.157 19 196.36 -65.94 cc-pVQZ -184.204 77 140.02 -184.314.44 208.83 -68.82 aug-cc-pVQZ -184.255.41 144.22 -184.366 63 214.18 -69.98 cac-pVQZ -184.206 67 144.83 -184.372 19 214.92 -69.98 CASPT2(10.9) G2 cc-pVDZ -184.194 99 146.15 -184.309 44 217.96 -71.82 aug-cc-pVDZ -184.244 90 150.79 -184.361 57 224.00 -73.21 aug-cc-pVDZ -184.207 69 137.69 -184.184 01 205.40 -67.72 aug-cc-pVDZ -184.204 74 -184.307 45 219.58 -72.12 24.00 -73.21 <		aug-cc-pVDZ	-183.764 34	1.1635	1907.91	121.50	-183.887 98	1.1153	2357.07	199.10	-77.58
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		aug-cc-pVTZ	-183.799 85	1.1564	1899.89	124.32	-183.927 20	1.1035	2353.26	204.22	-79.91
$ \begin{array}{cccc} CASPT2(10,9) \mbox{ std } cc-pVDZ & -184.05211 & 130.40 & -184.157 19 & 196.36 & -65.94 \\ cc-pVDZ & -184.204 77 & 140.02 & -184.314 44 & 208.83 & -68.82 \\ cc-pVQZ & -184.255 41 & 144.22 & -184.366 93 & 214.18 & -69.98 \\ aug-cc-pVDZ & -184.255 51 & 131.77 & -184.188 86 & 196.61 & -64.85 \\ aug-cc-pVDZ & -184.266 67 & 144.83 & -184.372 19 & 214.92 & -69.98 \\ cc-pVDZ & -184.266 67 & 144.83 & -184.372 19 & 214.92 & -69.98 \\ cc-pVDZ & -184.240 42 5 & 135.43 & -184.152 97 & 203.67 & -68.22 \\ cc-pVDZ & -184.249 0 & 150.79 & -184.361 57 & 224.00 & -73.21 \\ aug-cc-pVDZ & -184.044 25 & 135.43 & -184.320 5 & 219.58 & -72.12 \\ aug-cc-pVDZ & -184.249 0 & 150.79 & -184.361 57 & 224.00 & -73.21 \\ aug-cc-pVDZ & -184.249 74 & 151.61 & -184.366 70 & 225.03 & -73.39 \\ cASPT2(10,9) G2^c & cc-pVDZ & -184.076 94 & 131.97 & -184.186 31 & 200.60 & -68.63 \\ cc-pVDZ & -184.249 74 & 151.61 & -184.366 70 & 225.03 & -73.39 \\ CASPT2(10,9) G2^c & cc-pVDZ & -184.076 94 & 131.97 & -184.186 31 & 200.60 & -68.63 \\ cc-pVDZ & -184.249 74 & 151.61 & -184.366 70 & 225.03 & -73.39 \\ CASPT2(10,9) G2^c & cc-pVDZ & -184.076 94 & 131.97 & -184.186 31 & 200.60 & -68.63 \\ cc-pVDZ & -184.249 74 & 151.61 & -184.367 7 & 225.03 & -73.39 \\ CASPT2(10,9) G2^c & cc-pVDZ & -184.271 64 & 131.97 & -184.386 31 & 200.60 & -68.63 \\ cc-pVDZ & -184.279 26 & 148.48 & -184.2918 1 & 221.80 & -76.13 \\ aug-cc-pVDZ & -184.231 63 & 143.57 & -184.397 5 & 227.52 & -70.31 \\ aug-cc-pVDZ & -184.231 61 & 144.91 & -184.329 66 & 218.01 & -73.10 \\ MR-CI + Q^c & cc-pVDZ & -183.885 54 & 137.21 & -183.997 59 & 207.52 & -70.31 \\ aug-cc-pVTZ & -183.971 10 & 149.34 & -184.092 20 & 225.32 & -75.99 \\ cc-pVCZ & -183.971 3 & 154.18 & -184.192 12 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.971 3 & 154.18 & -184.078 12 & 220.95 & -70.12 \\ aug-cc-pVTZ & -183.971 3 & 154.18 & -184.092 20 & 225.53 & -75.99 \\ cc-pVCZ & -183.971 3 & 154.18 & -184.078 12 & 209.52 & -70.12 \\ aug-cc-pVTZ & -183.971 3 & 154.18 & -184.092 20 & 225.53 & -75.99 \\ cc-pVDZ & -183.971 3 & 154.18 & -184.078 12 & 209.52 & -70.5$		aug-cc-pVOZ	-183.811 07	1.1547	1907.31	124.87	-183.938 76	1.1020	2352.19	205.35	-80.12
cc-pVTZ -184.204 77 140.02 -184.314 44 208.83 -68.82 cc-pVQZ -184.255 41 144.22 -184.366 93 214.18 -69.98 aug-cc-pVDZ -184.265 51 131.77 -184.188 86 196.61 -64.85 aug-cc-pVDZ -184.260 67 144.83 -184.326 07 209.75 -68.78 aug-cc-pVDZ -184.044 25 135.43 -184.302 44 214.92 -69.98 CASPT2(10,9) G2 cc-pVDZ -184.044 25 135.43 -184.309 44 217.96 -71.21 aug-cc-pVQZ -184.044 25 135.79 -184.361 57 224.00 -73.21 aug-cc-pVQZ -184.076 09 137.69 -184.310 22 1.1040 2331.25 218.46 -72.23 aug-cc-pVQZ -184.249 74 151.61 -184.310 22 1.1040 2331.25 218.46 -72.31 aug-cc-pVQZ -184.206 94 131.97 -184.366 70 225.03 -73.39 CASPT2(10,9) G2 ^c cc-pVTZ -184.079 4 151.61 -184.310 22 1.1040 2331.25 218.46 -72.88 CCSD(T	CASPT2(10,9) std	cc-pVDZ	-184.05211			130.40	-184.157 19			196.36	-65.94
c-pVQZ -184.255 41 144.22 -184.366 93 214.18 -69.98 aug-cc-pVDZ -184.085 51 131.77 -184.188 86 196.61 -64.85 aug-cc-pVDZ -184.216 45 140.97 -184.326 07 209.75 -68.78 aug-cc-pVDZ -184.04 25 135.43 -184.322 97 203.67 -68.22 cc-pVTZ -184.04 25 135.43 -184.309 44 217.96 -71.82 cc-pVTZ -184.04 25 135.43 -184.307 19 203.67 -68.22 cc-pVTZ -184.04 09 150.79 -184.301 42 205.40 -77.12 aug-cc-pVTZ -184.076 09 137.69 -184.307 5 219.58 -72.12 aug-cc-pVTZ -184.0494 151.61 -184.307 5 219.58 -72.12 aug-cc-pVTZ -184.194 99 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ⁴ cc-pVTZ -184.194 91 145.57 -184.39781 222.87 -74.39		cc-pVTZ	-184.204 77			140.02	-184.314 44			208.83	-68.82
aug-cc-pVDZ -184.085 51 131.77 -184.188 86 196.61 -64.85 aug-cc-pVDZ -184.216 45 140.97 -184.326 07 209.75 -68.78 aug-cc-pVDZ -184.04 25 135.43 -184.372 19 214.92 -69.98 CASPT2(10,9) G2 cc-pVDZ -184.04 25 135.43 -184.309 44 217.96 -71.82 cc-pVQZ -184.04 25 135.79 -184.309 44 217.96 -71.82 cc-pVQZ -184.04 99 146.15 -184.309 44 217.96 -71.82 cc-pVQZ -184.076 09 137.69 -184.307 5 224.00 -73.21 aug-cc-pVDZ -184.208 82 147.47 -184.302 75 219.58 -72.31 cxp-c-pVTZ -184.999 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ^d cc-pVTZ -184.076 49 131.97 -184.186 31 200.60 -68.63 cc-pVTZ -184.216 13 143.57 -184.347 77 216.44 -72.88 cc-pVTZ -184.216 148.48 -184.3		cc-pVQZ	-184.255 41			144.22	-184.366 93			214.18	-69.98
CASPT2(10,9) G2 -184.216 45 140.97 -184.326 07 209.75 -68.78 CASPT2(10,9) G2 cc-pVDZ -184.040 25 135.43 -184.372 19 214.92 -69.98 CASPT2(10,9) G2 cc-pVDZ -184.044 25 135.43 -184.152 97 203.67 -68.22 cc-pVQZ -184.194 99 146.15 -184.309 44 217.96 -71.82 aug-cc-pVDZ -184.076 09 137.69 -184.184 01 205.40 -67.72 aug-cc-pVZZ -184.249 74 151.61 -184.320 75 219.58 -72.12 aug-cc-pVZZ -184.194 99 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ^d cc-pVTZ -184.076 94 131.97 -184.316 31 200.60 -68.63 cc-pVZZ -184.279 26 148.48 -184.3177 216.44 -72.88 aug-cc-pVTZ -184.279 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVZZ -184.216 61 144.91 -184.35966 218.01 -73.10 MR-CI + Q ^e cc-		aug-cc-pVDZ	-184.085 51			131.77	-184.188 86			196.61	-64.85
CASPT2(10,9) G2 cc-pVDZ -184.260 67 144.83 -184.372 19 214.92 -69.98 CASPT2(10,9) G2 cc-pVDZ -184.044 25 135.43 -184.152 97 203.67 -68.22 cc-pVQZ -184.194 99 146.15 -184.309 44 217.96 -71.82 cc-pVQZ -184.244 90 150.79 -184.361 57 224.00 -73.21 aug-cc-pVDZ -184.076 09 137.69 -184.184 01 205.40 -67.72 aug-cc-pVQZ -184.249 74 151.61 -184.320 75 219.58 -72.12 aug-cc-pVQZ -184.249 74 151.61 -184.366 70 225.03 -73.39 CASPT2(10,9) G2 ^c cc-pVTZ -184.194 99 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ^d cc-pVDZ -184.076 94 131.97 -184.186 31 200.60 -68.63 cc-pVTZ -184.219 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.122 7 133.68 -184.23971 221.84 -72.88 cc-pVDZ -184.12 7 133.68 -184.239781 222.87 -74.39 aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^c cc-pVDZ -183.885 54 137.21 -183.997 59 207.52 -70.31 cc-pVDZ -184.397 10 149.34 -184.092 20 225.32 -75.99 cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.905 48 139.42 -184.018 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		aug-cc-pVTZ	-184.216 45			140.97	-184.326 07			209.75	-68.78
$\begin{array}{cccc} CASPT2(10,9) \ G2 & cc-pVDZ & -184.044 \ 25 & 135.43 & -184.152 \ 97 & 203.67 & -68.22 \\ cc-pVDZ & -184.194 \ 99 & 146.15 & -184.309 \ 44 & 217.96 & -71.82 \\ cc-pVQZ & -184.244 \ 90 & 150.79 & -184.361 \ 57 & 224.00 & -73.21 \\ aug-cc-pVDZ & -184.076 \ 09 & 137.69 & -184.184 \ 01 & 205.40 & -67.72 \\ aug-cc-pVQZ & -184.249 \ 74 & 151.61 & -184.320 \ 75 & 219.58 & -72.12 \\ aug-cc-pVQZ & -184.249 \ 74 & 151.61 & -184.366 \ 70 & 225.03 & -73.39 \\ CASPT2(10,9) \ G2^c & cc-pVTZ & -184.194 \ 99 & 1.1571 & 1904.45 & 146.15 & -184.310 \ 22 & 1.1040 & 2331.25 & 218.46 & -72.31 \\ CCSD(T)^d & cc-pVDZ & -184.076 \ 94 & 131.97 & -184.186 \ 31 & 200.60 & -68.63 \\ cc-pVTZ & -184.231 \ 63 & 143.57 & -184.347 \ 77 & 216.44 & -72.88 \\ cc-pVQZ & -184.279 \ 26 & 148.48 & -184.39781 & 222.87 & -74.39 \\ aug-cc-pVDZ & -184.21 \ 63 & 143.57 & -184.347 \ 77 & 216.44 & -72.88 \\ cc-pVDZ & -184.21 \ 64 & 144.91 & -184.359 \ 66 & 218.01 & -73.10 \\ MR-CI + Q^e & cc-pVDZ & -183.885 \ 54 & 137.21 & -183.997 \ 59 & 207.52 & -70.31 \\ aug-cc-pVTZ & -183.971 \ 90 & 149.34 & -184.092 \ 20 & 225.32 & -75.99 \\ cc-pVQZ & -183.971 \ 91 & 149.87 & -184.092 \ 20 & 225.32 & -75.99 \\ cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 29 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 29 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 29 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 20 & 225.32 & -75.99 \\ cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 20 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 20 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 20 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.997 \ 149.87 & -184.092 \ 20 & 225.32 & -75.99 \\ cc-pVDZ & -183.997 \ 13 & 154.18 & -184.121 \ 29 & 232.08 & -77.91 \\ aug-cc-pVDZ & -183.997 \ 149.87 & -184.092 \ 20 & 225.32 & -75.98 \\ Experimental^f & 1.1508 \ 1904.20 & 152.53 & 1.0977 \ 2358.57 & 228.41 & -75.88 \\ \end{array}$		aug-cc-pVOZ	-184.260 67			144.83	-184.372 19			214.92	-69.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CASPT2(10,9) G2	cc-pVDZ	-184.044 25			135.43	-184.152 97			203.67	-68.22
cc-pVQZ-184.244 90150.79-184.361 57224.00-73.21aug-cc-pVDZ-184.076 09137.69-184.184 01205.40-67.72aug-cc-pVTZ-184.205 82147.47-184.320 75219.58-72.12aug-cc-pVQZ-184.249 74151.61-184.366 70225.03-73.39CASPT2(10,9) G2 ^c cc-pVTZ-184.076 94131.97-184.186 31200.60-68.63cc-pVTZ-184.216 34143.57-184.347 77216.44-72.88cc-pVQZ-184.279 26148.48-184.39781222.87-74.39aug-cc-pVDZ-184.243 16144.91-184.359 66218.01-73.10MR-CI + Q ^c cc-pVTZ-183.997 13154.18-184.121 29232.08-77.91aug-cc-pVDZ-183.997 13154.18-184.092 20225.32-75.99cc-pVQZ-183.997 13154.18-184.017 22209.52-70.12aug-cc-pVDZ-183.997 13154.18-184.017 22209.52-70.12aug-cc-pVDZ-183.997 13154.18-184.098 08226.15-76.28Experimental ^f 1.15081904.20152.531.09772358.5728.41-75.88		cc-pVTZ	-184.194 99			146.15	-184.309 44			217.96	-71.82
aug-cc-pVDZ -184.076 09 137.69 -184.184 01 205.40 -67.72 aug-cc-pVTZ -184.205 82 147.47 -184.320 75 219.58 -72.12 aug-cc-pVQZ -184.194 99 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ^d cc-pVDZ -184.076 94 131.97 -184.186 31 200.60 -68.63 cc-pVTZ -184.231 63 143.57 -184.347 77 216.44 -72.88 cc-pVQZ -184.279 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.231 63 143.57 -184.39781 201.80 -68.11 aug-cc-pVDZ -184.231 63 144.91 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.212 7 133.68 -184.220 81 201.80 -68.11 aug-cc-pVDZ -184.233 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^c cc-pVDZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVZ -183.997 13 154.18		cc-pVQZ	-184.244 90			150.79	-184.361 57			224.00	-73.21
aug-cc-pVTZ -184.205 82 147.47 -184.320 75 219.58 -72.12 aug-cc-pVQZ -184.249 74 151.61 -184.366 70 225.03 -73.39 CASPT2(10,9) G2° cc-pVTZ -184.194 99 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ^d cc-pVDZ -184.076 94 131.97 -184.186 31 200.60 -68.63 cc-pVTZ -184.231 63 143.57 -184.347 77 216.44 -72.88 cc-pVDZ -184.12 27 133.68 -184.220 81 201.80 -68.11 aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q° cc-pVDZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVDZ -183.905 48 139.42 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 <td></td> <td>aug-cc-pVDZ</td> <td>-184.076 09</td> <td></td> <td></td> <td>137.69</td> <td>-184.18401</td> <td></td> <td></td> <td>205.40</td> <td>-67.72</td>		aug-cc-pVDZ	-184.076 09			137.69	-184.18401			205.40	-67.72
aug-cc-pVQZ -184.249 74 151.61 -184.366 70 225.03 -73.39 CASPT2(10,9) G2° cc-pVTZ -184.194 99 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ^d cc-pVDZ -184.076 94 131.97 -184.186 31 200.60 -68.63 cc-pVTZ -184.231 63 143.57 -184.347 77 216.44 -72.88 cc-pVQZ -184.279 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q° cc-pVDZ -183.985 54 137.21 -183.997 59 207.52 -70.31 aug-cc-pVDZ -183.997 13 154.18 -184.092 20 225.32 -75.99 cc-pVQZ -183.997 13 154.18 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		aug-cc-pVTZ	-184.205 82			147.47	-184.32075			219.58	-72.12
CASPT2(10,9) G2 ^c cc-pVTZ -184.194 99 1.1571 1904.45 146.15 -184.310 22 1.1040 2331.25 218.46 -72.31 CCSD(T) ^d cc-pVDZ -184.076 94 131.97 -184.186 31 200.60 -68.63 cc-pVTZ -184.231 63 143.57 -184.347 77 216.44 -72.88 cc-pVQZ -184.279 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.112 27 133.68 -184.220 81 201.80 -68.11 aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^e cc-pVDZ -183.885 54 137.21 -183.997 59 207.52 -70.31 cc-pVZ -183.997 13 154.18 -184.017 22 229.52 -70.99 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88 <td></td> <td>aug-cc-pVQZ</td> <td>-184.249 74</td> <td></td> <td></td> <td>151.61</td> <td>-184.366 70</td> <td></td> <td></td> <td>225.03</td> <td>-73.39</td>		aug-cc-pVQZ	-184.249 74			151.61	-184.366 70			225.03	-73.39
CCSD(T) ^d cc-pVDZ -184.076 94 131.97 -184.186 31 200.60 -68.63 cc-pVTZ -184.231 63 143.57 -184.347 77 216.44 -72.88 cc-pVQZ -184.279 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.112 27 133.68 -184.220 81 201.80 -68.11 aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^e cc-pVTZ -183.985 54 137.21 -183.997 59 207.52 -70.31 cc-pVZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.905 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 28.41 -75.88	CASPT2(10,9) G2 ^c	cc-pVTZ	-184.194 99	1.1571	1904.45	146.15	-184.310 22	1.1040	2331.25	218.46	-72.31
cc-pVTZ -184.231 63 143.57 -184.347 77 216.44 -72.88 cc-pVQZ -184.279 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.112 27 133.68 -184.220 81 201.80 -68.11 aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^e cc-pVTZ -183.985 54 137.21 -183.997 59 207.52 -70.31 cc-pVZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVQZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.905 48 139.42 -184.017 22 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88	CCSD(T) ^d	cc-pVDZ	-184.076 94			131.97	-184.18631			200.60	-68.63
cc-pVQZ -184.279 26 148.48 -184.39781 222.87 -74.39 aug-cc-pVDZ -184.112 27 133.68 -184.20 81 201.80 -68.11 aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^e cc-pVDZ -183.885 54 137.21 -183.997 59 207.52 -70.31 cc-pVZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVQZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		cc-pVTZ	-184.231 63			143.57	-184.347 77			216.44	-72.88
aug-cc-pVDZ -184.112 27 133.68 -184.220 81 201.80 -68.11 aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^e cc-pVDZ -183.885 54 137.21 -183.997 59 207.52 -70.31 cc-pVTZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVQZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		cc-pVQZ	-184.279 26			148.48	-184.39781			222.87	-74.39
aug-cc-pVTZ -184.243 16 144.91 -184.359 66 218.01 -73.10 MR-CI + Q ^e cc-pVDZ -183.885 54 137.21 -183.997 59 207.52 -70.31 cc-pVTZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVQZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		aug-cc-pVDZ	-184.112 27			133.68	-184.220 81			201.80	-68.11
MR-CI + Qe cc-pVDZ -183.885 54 137.21 -183.997 59 207.52 -70.31 cc-pVTZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVQZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		aug-cc-pVTZ	-184.243 16			144.91	-184.359 66			218.01	-73.10
cc-pVTZ -183.971 09 149.34 -184.092 20 225.32 -75.99 cc-pVQZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88	MR-CI + Q ^e	cc-pVDZ	-183.885 54			137.21	-183.997 59			207.52	-70.31
cc-pVQZ -183.997 13 154.18 -184.121 29 232.08 -77.91 aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88	-	cc-pVTZ	-183.971 09			149.34	-184.092 20			225.32	-75.99
aug-cc-pVDZ -183.905 48 139.42 -184.017 22 209.52 -70.12 aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		cc-pVQZ	-183.997 13			154.18	-184.121 29			232.08	-77.91
aug-cc-pVTZ -183.976 51 149.87 -184.098 08 226.15 -76.28 Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		aug-cc-pVDZ	-183.905 48			139.42	-184.017 22			209.52	-70.12
Experimental ^f 1.1508 1904.20 152.53 1.0977 2358.57 228.41 -75.88		aug-cc-pVTZ	-183.976 51			149.87	-184.098 08			226.15	-76.28
	Experimental ^f			1.1508	1904.20	152.53		1.0977	2358.57	228.41	-75.88

^aCASPT2, energies at the CASSCF optimal geometries with the same basis set and active space.

^bReaction excergicity for $N(^4S) + NO \rightarrow O(^3P) + N_2$.

^cCASPT2 G2 energies and harmonic vibrational frequencies obtained with the optimal geometries at the same level by using the VIBROT module of the MOLCAS 4.1 program (Ref. 25). Masses of the most abundant isotopes were used: 14 N and 16 O.

^dCoupled cluster energies with perturbative contribution at triple excitations (Ref. 32) using initial restricted open shell Hartree–Fock MOs. Energies were calculated at the optimal CASSCF(10,9) geometries.

^eMultireference configuration interaction energies including the Davidson correction for quadruple excitations (Ref. 31). The N and O 2*s* electrons were not correlated. Energies were calculated at the optimum CASSCF(10,9) geometries.

^fThe lowest spin-orbit states [i.e., NO($X^2\Pi_{1/2}$) and O(${}^{3}P_2$)] were used for the experimental data (Ref. 34).

TABLE II. Ab initio properties of the ${}^{3}A''$ transition state (TS1) for the reaction channel (1).^a

Method	Basis set	E/a.u.	$R_{e(\rm NN)}/{\rm \AA}$	$R_{e(\mathrm{NO})}/\mathrm{\AA}$	$<$ NNO/ $^{\circ}$	$\omega_i/\mathrm{cm}^{-1}$ b	$\Delta E/\mathrm{kcal} \mathrm{mol}^{-1}$ c
CASSCF(16,12)	cc-pVDZ	-183.753 29	1.7896	1.1719	108.9	417.56 1854.43 241.48 <i>i</i>	6.59 (7.10)
	cc-pVTZ	-183.798 23	1.8880	1.1606	109.0	419.70 1794.58 272.17 <i>i</i>	5.51 (5.97)
	cc-pVQZ	-183.811 23	1.9103	1.1598	109.2	421.21 1743.24 281.19 <i>i</i>	5.32 (5.70)
	aug-cc-pVDZ	-183.764 59	1.8933	1.1676	108.8	418.23 1823.23 262.23 <i>i</i>	5.44 (5.94)
	aug-cc-pVTZ	$-183.800\ 61$	1.9219	1.1588	109.1	403.38 1803.22 268.29 <i>i</i>	5.11 (5.56)
CASPT2(16,12) G2	cc-pVDZ	-184.05536					-1.76
	cc-pVTZ	-184.24033					-4.74
	cc-pVQZ	-184.268 32					-5.38
	aug-cc-pVDZ	-184.091 03					-3.83
	aug-cc-pVTZ	-184.25832					-6.60
CASSCF(10,9)	cc-pVDZ	-183.74072	1.7287	1.1743	108.76	499.15 1735.87 310.29i	8.83 (9.27)
	cc-pVTZ	-183.786 39	1.8262	1.1610	108.90	455.13 1782.64 285.74 <i>i</i>	7.39 (7.86)
	cc-pVQZ	-183.799 15	1.8455	1.1577	109.01	450.83 1792.68 285.95i	7.12 (7.60)
	aug-cc-pVDZ	-183.752 69	1.8368	1.1677	108.68	452.19 1785.80 295.12i	7.31 (7.78)
	aug-cc-pVTZ	-183.78898	1.8603	1.1585	109.03	443.29 1792.73 280.12i	6.82 (7.30)
CASPT2(10,9) std	cc-pVDZ	$-184.052\ 00$					0.07
	cc-pVTZ	-184.20935					-2.87
	cc-pVQZ	-184.261 93					-4.09
	aug-cc-pVDZ	-184.08872					-2.01
	aug-cc-pVTZ	$-184.223\ 18$					-4.22
CASPT2(10,9) G2	cc-pVDZ	-184.04727					-1.90
	cc-pVTZ	-184.20277					-4.88
	cc-pVQZ	-184.25465					-6.12
	aug-cc-pVDZ	$-184.082\ 15$					-3.80
	aug-cc-pVTZ	$-184.215\ 61$					-6.14
CCSD(T) ^d	cc-pVDZ	-184.07449					1.54
	cc-pVTZ	-184.23475					-1.96
	aug-cc-pVDZ	-184.113 23					-0.60
	aug-cc-pVTZ	-184.24823					-3.18
MR-CI+Q ^e	cc-pVDZ	-183.886 57					-0.64
	cc-pVTZ	-183.975 53					-2.79
	aug-cc-pVDZ	-183.908 61					-1.97
	aug-cc-pVTZ	-183.982 14					-3.62
CASSCF(10,9) ^f	Duijneveldt		1.8193	1.1626	108.5	396 1720 250 <i>i</i>	5.0(5.4)
	[11s6p3d4f/5s3p2d1f]						
MR-CCI+Q ^f	Duijneveldt	_	2.1707	1.1494	108.9	385 1785 210 <i>i</i>	0.5(1.0)
	[11s6p3d4f/5s3p2d1f]						

^aCASPT2 energies at the CASSCF optimal geometries with the same basis set.

^bHarmonic vibrational frequencies: ω_1 (NNO bend., a'), ω_2 (NO str., a') and ω_3 (NN str., a'), respectively. Masses of the most abundant isotopes were used: ¹⁴N and ¹⁶O.

^cEnergy barrier respect to $N(^{4}S)$ + NO. The value corrected with the difference of zero point energies is shown in parentheses.

^dCoupled cluster energies with perturbative contribution at triple excitations (Ref. 32) using initial restricted open shell Hartree–Fock MOs. Energies were calculated at the optimal CASSCF(10,9) geometries.

^eMultireference configuration interaction energies including the Davidson correction for quadruple excitations (Ref. 31) using 9 CSFs as reference wavefunction. The N and O 2*s* electrons were not correlated. Energies were calculated at the optimal CASSCF(10,9) geometries.

^fPrevious *ab initio* results from Ref. 15, where the N and O 2s electrons were not correlated in the MR-CCI calculations.

(Refs. 24, 38, 39), N(²D)+NO (Ref. 40) or N(²D)+O₂ (Refs. 41–44) reactions. Three stationary points were obtained at the CASPT2 level: TS2, MIN1, and TS2' (Fig. 1). The MEP presents only a C_{2v} -symmetry transition state at CASSCF level with a very high-energy barrier (65.70 kcal/ mol). The inclusion of the dynamical correlation energy decreased this barrier to 41.13 kcal/mol and led to a C_s -symmetry transition state (Table III). The TS2 optimal geometry at the CASPT2 level was derived by means of a local fit of 90 points with a final root-mean-square deviation (RMSD) of 0.11 kcal/mol. 240 points were used for the MIN1 characterization with a RMSD of 0.24 kcal/mol. In spite of MIN1 is a very shallow minimum on the lowest ³A" NNO PES, this kind of C_{2v} -minimum is similar to the ones observed in the lowest ${}^{1}A'$ NNO PES (Ref. 40) and in the lowest ${}^{2}A'$ and ${}^{4}A'$ NOO PESs.³⁹ A similar structure as that for the peroxy isomer of NO₂, with a shallow minimum over reactants or products, reported in early theoretical studies,^{45,46} has been later confirmed in more accurate *ab initio* studies,⁴⁷ not only for the ground ${}^{2}A'$ PES but also for the first excited ${}^{4}A'$ PES.^{24,39} Although more *ab initio* calculations could be made to characterize even better this minimum and both transitions states, we believe that the main conclusion that reaction channel (2) will be only important on the ${}^{3}A''$ PES for collision energies over 41 kcal/mol can be reliably established, in agreement with experimental data, which show only a small contribution of this reaction channel even at high collision energies.^{22,23}

FIG. 1. Energetics of the minimum energy paths for both $N({}^{4}S) + N'O$ reaction channels computed on the lowest ${}^{3}A''$ potential energy surface at the CASPT2(10, 9) G2/cc-pVTZ level. The solid line corresponds to the minimum energy pathway for the N abstraction and the dashed lines for the O abstraction. The energies are given in kcal/mol relative to reactants. Energies with the inclusion of zero point energy contributions are given between parentheses.

C. Characterization of the lowest ${}^{3}A'$ potential energy surface

Table IV summarizes the properties of the transition state (TS1) found on the ${}^{3}A'$ PES for reaction channel (1). It has a similar geometry as TS1 on the ${}^{3}A'$ PES. However, in the case of the ${}^{3}A'$ PES, this TS is obtained at both the CASSCF and the CASPT2 levels. The present CASSCF properties are close to previously published CASSCF data¹⁵ (Table IV). The full-valence active space CASSCF calculations enlarge 0.1 Å the NN distance. Moreover, the optimization of the geometry at the CASPT2(10,9) level increases significantly (about 0.2 Å) the NN distance with respect to the CASSCF(10,9) calculations. Because of this, the CASPT2 energies derived using the optimal CASSCF geometries are not accurate enough to evaluate the energy barrier associated to TS1. Although the dynamical correlation reduces considerably the energy barrier, the inclusion of the CASPT2 geometry optimization taking into account a grid of 216 points (with a RMSD=0.063 kcal/mol for the local fit) tend to compensate partially with a small increase of the energy barrier.

A detailed study of the energy barrier of TS1 has been made by increasing the quality of the basis set at the optimal CASPT2(10,9) G2 geometry. The basis set dependence is usually well described by a simple exponential-like function⁴⁸ of the form,

$$\Delta E_n^{\neq} = \Delta E_{\infty}^{\neq} + B e^{-Cn}, \qquad (3)$$

where n is the cardinal number of the standard correlationconsistent cc-pVnZ basis set (2, 3, 4, and 5 for DZ, TZ, QZ,and 5Z, respectively) and ΔE_{∞}^{\neq} corresponds to the estimated complete basis set (CBS) limit as $n \rightarrow \infty$. The estimated CASPT2(10,9) CBS limit for this energy barrier was equal to 6.74 kcal/mol (B=22.06 kcal/mol, C=0.8702, and $r^2 = 0.99995$). This energy barrier is much lower than the previous MR-CCI+Q value¹⁵ (14.4 kcal/mol). This difference is essentially not originated by the ab initio method and basis set but by the N and O 2s electron correlation contribution than is much more important in the ${}^{3}A'$ PES than in the barrierless ${}^{3}A''$ PES. This point has been checked by comparing the present MR-CI+Q calculations with the MR-CCI+Q ones,¹⁵ keeping also the atomic 2s electrons frozen. The MR-CI+Q calculations were made at the CASSCF(10,9) optimal geometries using the following 9 reference CSFs, where the electronic occupation of the 6a' and 3a" MOs are indicated: (221100 211), (201120 211), (211110 112), (111111 211), (121101 112), (021102 211), (101121 112), (211110 211), and (201120 112) with a total weight of 0.9982. This originated the following number of CSFs depending on the basis set: 319740 (cc-pVDZ), 2230734 (ccpVTZ), 8669349 (cc-pVQZ), 1181526 (aug-cc-pVDZ), and 5864184 (aug-cc-pVTZ) to be compared with the previous MR-CCI calculations¹⁵ with approximately 1 000 000 of CSFs. Similar energy barriers were found in both cases (Table IV). If CASPT2 optimal geometries were used instead of the CASSCF ones a closer agreement could be expected.

CASPT2 calculations correlated also the N and O 2*s* electrons. Thus, for example, the CASPT2(10,9) G2 energy for cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets at the cor-

TABLE III. Ab initio properties of the ${}^{3}A''$ stationary points for the exchange reaction channel (N+ON') with the (10,9) active space and the cc-pVTZ basis set.

Stationary point	Method	E/a.u.	$R_{e(\mathrm{NO})}/\mathrm{\AA}$	$R_{e(\mathrm{ON}')}/\mathrm{\AA}$	<NON'/°	$\omega_i/\mathrm{cm}^{-1}$ a	$\Delta E/\mathrm{kcal}\ \mathrm{mol}^{-1}\ \mathrm{b}$
TS2	CASSCF	-183.693 47	1.3292	1.3292	102.07	300.07 1300.85 385.25 <i>i</i>	65.70 (65.26)
	CASPT2 G2 ^c	-184.129 44	1.4597	1.2294	100.59	424.92 1372.63 249.50 <i>i</i>	41.13 (40.98)
MIN1	CASSCF						not present
	CASPT2 G2	-184.136 09	1.3238	1.3238	104.84	672.25 1276.23 225.61	36.96 (37.35)

^aHarmonic vibrational frequencies: (a) $C_s: \omega_1$ (NON' bend., a'), ω_2 (ON' str., a'), ω_3 (NO str., a'), respectively, and (b) $C_{2v}: \omega_1$ (NON' bend., a_1), ω_2 (sym. str., a_1), ω_3 (asym. str., b_2), respectively (YZ taken as the molecular plane). Masses of the most abundant isotopes were used: ¹⁴N and ¹⁶O. ^bEnergy respect to N(⁴S)+ON'. The value corrected with the difference of zero point energies is shown in parentheses.

"There are two equivalent transition states (TS2 and TS2') exchanging both NO distances.

TABL	E IV.	Ab	initio	properties	of	the ·	$^{\circ}A'$	transition	state	(TS1)) for	the	reaction	channel	(1).'
------	-------	----	--------	------------	----	-------	--------------	------------	-------	-------	-------	-----	----------	---------	----	-----

Method	Basis set	<i>E</i> /a.u.	$R_{e(\rm NN)}/{\rm \AA}$	$R_{e(\rm NO)}/{\rm \AA}$	<nno th="" °<=""><th>ω_i/ cm^{-1 b}</th><th>$\Delta E/k$cal mol^{-1 c}</th></nno>	ω_i / cm ^{-1 b}	$\Delta E/k$ cal mol ^{-1 c}
CASSCF(16,12)	cc-pVDZ	-183.728 96	1.8101	1.1732	117.41	377.08 1796.53 761.62 <i>i</i>	21.91 (22.28)
	cc-pVTZ	-183.77322	1.8252	1.1663	117.43	380.02 1733.24 771.01 <i>i</i>	21.26 (21.57)
	cc-pVQZ	-183.785 65	1.8267	1.1638	117.55	378.89 1735.62 769.37 <i>i</i>	21.19 (21.50)
	aug-cc-pVDZ	-183.739 07	1.8230	1.1734	117.42	379.10 1784.13 752.23 <i>i</i>	21.50 (21.88)
	aug-cc-pVTZ	-183.775 31	1.8283	1.1653	117.55	380.24 1732.65 773.86 <i>i</i>	20.98 (21.30)
CASPT2(16,12) G2	cc-pVDZ	-184.05228					2.03
	cc-pVTZ	-184.224 89					4.94
	cc-pVQZ	-184.32698					3.63
	aug-cc-pVDZ	$-184.075\ 31$					5.65
	aug-cc-pVTZ	-184.24375					2.54
CASSCF(10,9)	cc-pVDZ	-183.70648	1.7315	1.1779	115.73	433.17 1660.97 873.27 <i>i</i>	30.31 (30.55)
	cc-pVTZ	-183.751 44	1.7438	1.1703	115.87	425.58 1660.95 858.10i	29.32 (29.58)
	cc-pVQZ	-183.763 96	1.7454	1.1677	115.89	425.33 1665.18 855.94 <i>i</i>	29.20 (29.46)
	aug-cc-pVDZ	-183.717 22	1.7433	1.1777	115.73	420.99 1655.18 854.00i	29.57 (29.81)
	aug-cc-pVTZ	-183.75370	1.7463	1.1692	115.93	423.62 1656.70 849.19 <i>i</i>	28.96 (29.22)
CASPT2(10,9) std	cc-pVDZ	-184.037 18					9.37
	cc-pVTZ	-184.196 68					5.08
	cc-pVQZ	-184.249 97					3.41
	aug-cc-pVDZ	-184.075 14					6.51
	aug-cc-pVTZ	-184.212 04					2.77
CASPT2(10,9) G2	cc-pVDZ	-184.035 07					5.76
	cc-pVTZ	-184.192 89					1.32
	cc-pVQZ	-184.245 51					-0.38
	aug-cc-pVDZ	-184.071 28					3.02
	aug-cc-pVTZ	-184.206 49					-0.42
CASPT2(10,9) G2	cc-pVTZ	-184.181 68	1.9680	1.1578	116.04	251.89 1820.48 450.23 <i>i</i>	8.38 (8.59)
CASPT2(10,9) std.	cc-pVTZ	-184.196 48	1.9367	1.1621	116.08	290.28 1920.23 434.78i	5.20 (5.64)
CCSD(T) ^d	cc-pVDZ	-184.051 94					15.67
	cc-pVTZ	-184.213 02					11.68
	aug-cc-pVDZ	-184.092 04					12.70
MR-CI + Q ^e	cc-pVDZ	-183.859 40					16.40
	cc-pVTZ	-183.950 20					13.11
	cc-pVQZ	-183.97673					12.80
	aug-cc-pVDZ	-183.883 86					13.56
	aug-cc-pVTZ	-183.957 86					11.70
CASSCF(10,9) ^f	Duijneveldt $[11s6p3d4f/5s3p2d1f]$		1.7590	1.1906	116.5	383 1586 727 <i>i</i>	25.3 (25.5)
MR-CCI+Q ^f	Duijneveldt $[11s6p3d4f/5s3p2d1f]$		1.8913	1.1695	116.5	383 1678 569 <i>i</i>	14.4 (14.71)

^aCASPT2 energies at the CASSCF optimal geometries with the same basis set.

^bHarmonic vibration frequencies: ω_1 (NNO bend., a'), ω_2 (NO str., a'), and ω_3 (NN str., a'), respectively. Masses of the most abundant isotopes were used: ¹⁴N and ¹⁶O.

^cEnergy barrier with respect to $N(^{4}S)$ + NO. The value corrected with the difference of zero point energies is shown in parentheses.

^dCoupled cluster energies with perturbative contribution at triple excitations (Ref. 32) using initial restricted open shell Hartree–Fock MOs. Energies were calculated at the optimal CASSCF(10,9) geometries.

^eMultireference configuration interaction energies including Davidson correction for quadruple excitations (Ref. 31) using 9 CSFs as a reference wavefunction. The N and O 2*s* electron were not correlated. Energies were calculated at the optimal CASSCF(10,9) geometries.

^fPrevious *ab initio* results from Ref. 15, where the N and O 2s electrons were not correlated in the MR-CCI calculations.

responding CASSCF optimal geometry (5.76, 1.32, and -0.38 kcal /mol, respectively; see Table IV) become much more larger when 2*s* electron correlation is neglected (i.e., 19.45, 14.34, and 13.17 kcal/mol, respectively), leading to values close to the MR-CCI+Q ones. Therefore, seems to be clear that the N and O 2*s* electrons need to be correlated to produce reliable energies in the ${}^{3}A'$ PES.

In a similar way as for the lowest ${}^{3}A''$ PES, we have studied the reaction channel (2) by using the CASSCF(10,9) and the CASPT2 (10,9) G2 methods and the cc-pVTZ basis set. Figure 2 gives the MEP found for this PES, considering reactions channels (1) and (2). Three stationary points were also obtained for the second reaction channel at the CASPT2 level, which were very analogous to those of the ${}^{3}A''$ PES.

FIG. 2. Energetics of the minimum energy paths for both $N({}^{4}S) + N'O$ reaction channels computed on the lowest ${}^{3}A'$ potential energy surface at the CASPT2(10, 9) G2/cc-pVTZ level. The solid line corresponds to the minimum energy pathway for the N abstraction and the dashed lines for the O abstraction. The energies are given in kcal/mol relative to reactants. Energies with the inclusion of zero point energy contributions are given between parentheses.

Table V summarizes the properties of these stationary points. The CASSCF and CASPT2 methods agree with each other showing a C_s -symmetry transition state (TS2). The highenergy barrier (57.11 kcal/mol) at the CASSCF(10,9) level becomes smaller when the CASPT2(10,9) G2 method is considered (30.77 kcal/mol). There was also found a C_{2v} -minimum (MIN1) between both equivalent transition states (i.e., TS2 and TS2'). The CASPT2 TS2 optimal geometry was obtained by means of a local fit of 756 points with a final RMSD of 0.0002 kcal/mol. 660 points were used for the MIN1 characterization with a RMSD of 0.0016 kcal/mol. One important conclusion that can be derived from these results is that for collision energies over 30 kcal/mol the second reaction channel will be open through the ${}^{3}A'$ PES, becoming even more accessible than through the ${}^{3}A''$ PES. Our recent quasiclassical trajectory study using the lowest ¹A' PES (Ref. 40) on the N(²D) + NO(X²\Pi) reactions gives a rate constant branching ratio [i.e., $k_2/(k_1+k_2)$ but with N(²D) instead of N(⁴S)] of 3.02% for the equivalent O-abstraction reaction channel at 1500 K, although this PES presents a MEP with the stable NNO($X^{1}\Sigma^{+}$) minimum (ground state of the NNO molecule) and without almost an effective energy barrier (there are several MEPs for this reaction⁴⁰). Thus, experimental studies should be required to corroborate the real contribution of this O-abstraction reaction channel (i.e., N-exchange reaction channel) to the total reactivity at high collision energies (or temperatures) for atomic nitrogen in its lowest electronic states (i.e., ⁴S, ²D, and ²P).

IV. CONCLUSIONS AND REMARKS

This work presents a theoretical study of the two $N({}^{4}S) + NO(X {}^{2}\Pi)$ abstraction reaction channels on the lowest ${}^{3}A''$ and ${}^{3}A'$ potential energy surfaces. *Ab initio* CASSCF, CASPT2, CCSD, and MR-CI methods with standard correlation-consistent (cc-pV*n*Z and aug-cc-pV*n*Z, *n*=D, T, Q, 5) Dunning's basis sets were used. Moreover, the complete basis set limit extrapolated result was also reported for the energy barrier of reaction channel (1) on the ${}^{3}A'$ PES.

The ground ${}^{3}A''$ PES does not have an energy barrier along the MEP for the most important reaction channel (1), and shows a very high-energy barrier (TS2) for reaction channel (2). The ${}^{3}A'$ PES presents an energy barrier (TS1) of 6.74 kcal/mol for reaction channel (1), a value that is much lower than the previously published results (i.e., 14.4 kcal/ mol at MR-CCI+Q/[11s6p3d4f/5s3p2d1f] (Ref. 15). The present analysis of the influence of the N and O2s electron correlation in the MR-CI and CASPT2 results shows that it is very important to correlate the 2s electrons, in both type of calculations (CASPT2 and MR-CI). This produces lower energy barriers, also in agreement with our recent theoretical studies on the analogous N(${}^{4}S$)+O₂ reaction.²⁴ This point was not taken into account in previous *ab initio* studies.

The ${}^{3}A'$ PES shows also a high-energy barrier (30.77 kcal/mol) for reaction channel (2) but smaller than the one found in the ${}^{3}A''$ PES (41.13 kcal/mol). Although the reaction channel (1) will be only accessible through the ${}^{3}A''$ PES at room temperature, the second PES will become also relevant at higher temperatures. Moreover, reaction channel (2) will be only open at high temperatures (e.g., collision energies over 30 kcal/mol). Experimental studies would be of interest to confirm the real contribution of this O-abstraction

TABLE V. Ab initio properties of the ${}^{3}A'$ stationary points for the exchange reaction channel (N+ON') with the (10,9) active space and the cc-pVTZ basis set.

Stationary point	Method	E/a.u.	$R_{e(\mathrm{NO})}/\mathrm{\AA}$	$R_{e(\mathrm{ON'})}/\mathrm{\AA}$	$<$ NON $^{\prime}/^{\circ}$	ω_i / cm ^{-1 a}	$\Delta E/\mathrm{kcal} \ \mathrm{mol}^{-1} \ \mathrm{b}$
TS2 ^c	CASSCF	-183.70715	1.6042	1.2180	120.07	478.05 1184.43 1114.35 <i>i</i>	57.11 (56.76)
	CASPT2 G2	-184.14595	1.7104	1.1836	123.12	419.81 1448.40 958.02 <i>i</i>	30.77 (30.72)
MIN1	CASSCF	-183.723 41	1.3160	1.3160	120.34	536.10 1038.57 962.56	43.81 (44.71)
	CASPT2 G2	$-184.168\ 07$	1.3001	1.3001	124.20	522.92 1066.31 1021.27	16.89 (17.90)

^aHarmonic vibrational frequencies: (a) $C_s: \omega_1$ (NON' bend., a'), ω_2 (ON' str., a'), ω_3 (NO str., a'), respectively, and (b) $C_{2v}: \omega_1$ (NON' bend., a_1), ω_2 (sym. str., a_1), ω_3 (asym. str., b_2), respectively (YZ taken as the molecular plane). Masses of the most abundant isotopes were used: ¹⁴N and ¹⁶O. ^bEnergy respect to N(⁴S) + ON'. The value corrected with the difference of zero point energies is shown in parentheses. ^cThere are two equivalent transition states (TS2 and TS2') exchanging both NO distances. The present results significantly improve previous high quality *ab initio* studies and, in particular, provide a much lower energy barrier for the ${}^{3}A'$ PES, which will produce larger values of the thermal rate constants at high temperatures. On the other hand, two analytical PESs (${}^{3}A''$ and ${}^{3}A'$) based on several grids of *ab initio* points are currently in progress in our group and will be used in kinetics and dynamics studies on this reaction.

ACKNOWLEDGMENTS

This work has been supported by the "Dirección General de Enseñanza Superior (Programa Sectorial de Promoción General del Conocimiento)" of the Spanish Ministry of Education and Culture (DGES Projects Ref. PB98-1209-C02-01, BQU2002-04269-C02-02, and BQU2002-03351). Financial support from the European Union (INTAS Project Ref. 99-00701) and the "Generalitat" (Autonomous Government) of Catalonia (Project No. 2001SGR 00041) is also acknowledged. P. G. thanks the "Universitat de Barcelona" for a predoctoral research grant. The authors are grateful to the "Center de Computació i Comunicacions de Catalunya (C⁴-CESCA/CEPBA)" for providing a part of the computer time.

- ¹M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data Suppl. **14**, 1 (1985).
- ²D. E. Siskind and D. W. Rusch, J. Geophys. Res. 97, 3209 (1992).
- ³P. O. Wennberg, J. G. Anderson, and D. K. Weisenstein, J. Geophys. Res. **99**, 18839 (1994).
- ⁴P. Warneck, in *Chemistry of the Natural Atmosphere* (Academic, San Diego, 1998), Chap. 3.
- ⁵G. Marston, Chem. Soc. Rev. **25**, 33 (1996).
- ⁶T. Kurotaki, AIAA paper No. 2000-2366, 2000.
- ⁷D. L. Baulch, C. J. Cobos, R. A. Cox *et al.*, J. Phys. Chem. Ref. Data **23**, 847 (1994).
- ⁸W. B. DeMore, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, in *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*, in Evaluation 12, JPL Publ. 97-4 (Jet Propulsion Laboratory, Pasadena, California, 1997).
- ⁹J. L. Fox, J. Geophys. Res. **99**, 6273 (1994).
- ¹⁰J. L. Fox, J. Geophys. Res. **101**, 7987 (1996).
- ¹¹G. Black, R. L. Sharpless, and T. G. Slanger, J. Chem. Phys. 58, 4792 (1973).
- ¹²J. E. Morgan and H. I. Schiff, Can. J. Chem. 41, 903 (1963).
- ¹³J. E. Morgan, L. F. Phillips, and H. I. Schiff, Discuss. Faraday Soc. 33, 118 (1962).

- ¹⁴ M. Gilibert, A. Aguilar, M. González, F. Mota, and R. Sayós, J. Chem. Phys. **97**, 5542 (1992).
- ¹⁵S. P. Walch and R. L. Jaffe, J. Chem. Phys. 86, 6946 (1987); AIP Document No. PAPSJCPSA-86-6946-10.
- ¹⁶ M. Gilibert, A. Aguilar, M. González, and R. Sayós, J. Chem. Phys. **99**, 1719 (1993).
- ¹⁷A. Aguilar, M. Gilibert, X. Giménez, M. González, and R. Sayós, J. Chem. Phys. **103**, 4496 (1995).
- ¹⁸ R. Sayós, A. Aguilar, M. Gilibert, and M. González, J. Chem. Soc., Faraday Trans. **89**, 3223 (1993).
- ¹⁹J. W. Duff and R. D. Sharma, Geophys. Res. Lett. **32**, 2777 (1996).
- ²⁰J. W. Duff and R. D. Sharma, Chem. Phys. Lett. **265**, 404 (1997).
- ²¹D. Bose and G. V. Candler, J. Chem. Phys. 104, 2825 (1996).
- ²²J. Dubrin, C. Mackay, and R. Wolfgang, J. Chem. Phys. 44, 2208 (1966).
- ²³R. Iwata, A. Ferrieri, and A. P. Wolf, J. Phys. Chem. **90**, 6722 (1986).
- ²⁴R. Sayós, C. Oliva, and M. González, J. Chem. Phys. 115, 1287 (2001).
- ²⁵ MOLCAS 4.1, K. Andersson, M. R. A. Blomberg, M. P. Fülscher *et al.* (Lund University, Sweden, 1998).
- ²⁶B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980).
- ²⁷ B. O. Roos, in Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry-II, edited by K.P. Lawley (Wiley, Chichester, 1987), Vol. LXIX, p. 399.
- ²⁸K. Andersson, Theor. Chim. Acta **91**, 31 (1995).
- ²⁹E02 and E04 subroutines from the NAG Fortran Library Mark 15. The Numerical Algorithms Group Ltd., Oxford, UK.
- ³⁰W. C. Ermler, H. C. Hsieh, and L. B. Harding, Comput. Phys. Commun. 51, 257 (1988).
- ³¹E. R. Davidson and D. W. Silver, Chem. Phys. Lett. 53, 403 (1977).
- ³²J. D. Watts, J. Gauss, and R. J. Barlett, J. Chem. Phys. 98, 8718 (1983).
- ³³T. H. Dunning, Jr., J. Chem. Phys. **90**, 1007 (1989).
- ³⁴ K. P. Huber and G. Herzberg, *Molecular Spectra and Molecular Structure*. Vol. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
- ³⁵J. Almlöf and P. R. Taylor, J. Chem. Phys. 86, 4070 (1987).
- ³⁶K. A. Peterson, R. A. Kendall, and T. H. Dunning, Jr., J. Chem. Phys. 99, 9790 (1993).
- ³⁷K. A. Peterson, A. K. Wilson, D. E. Woon, and T. H. Dunning, Jr., Theor. Chem. Acc. **97**, 251 (1997).
- ³⁸R. Sayós, C. Oliva, and M. González, J. Chem. Phys. 117, 670 (2002).
- ³⁹M. González, C. Oliva, and R. Sayós, J. Chem. Phys. **117**, 680 (2002).
- ⁴⁰M. González, R. Valero, and R. Sayós, J. Chem. Phys. **113**, 10983 (2000).
- ⁴¹M. González, I. Miquel, and R. Sayós, Chem. Phys. Lett. 335, 339 (2001).
- ⁴²M. González, I. Miquel, and R. Sayós, J. Chem. Phys. 115, 2530 (2001).
- ⁴³M. González, I. Miquel, and R. Sayós, J. Chem. Phys. 115, 8838 (2001).
- ⁴⁴ M. González, I. Miquel, and R. Sayós, Chem. Phys. Lett. 360, 521 (2002).
- ⁴⁵ H. F. Schaefer III, C. F. Bender, and J. H. Richardson, J. Phys. Chem. **80**, 2035 (1976).
- ⁴⁶C. Meredith, R. D. Davy, G. E. Quelch, and H. F. Schaefer III, J. Chem. Phys. **94**, 1317 (1991).
- ⁴⁷S. P. Walch, J. Chem. Phys. **102**, 4189 (1995).
- ⁴⁸ K. A. Anderson and T. H. Dunning, Jr., J. Phys. Chem. A **101**, 6280 (1997).