DOI: 10.1002/ejoc.200((will be filled in by the editorial staff))

A General Methodology for the Enantioselective Synthesis of 1-Substituted Tetrahydroisoquinoline Alkaloids

Mercedes Amat, *^[a] Viviane Elias,^[a] Núria Llor,^[a] Fabiana Subrizi,^[a] Elies Molins,^[b] and Joan Bosch^[a]

Keywords: Alkaloids / Tetrahydroisoquinolines / Lactams / Phenylglycinol / α-Amidoalkylation

Starting from tricyclic lactam **2**, which is easily accessible by cyclocondensation of δ -oxoester **1** with (*R*)-phenylglycinol, a threestep synthetic route to enantiopure 1-substituted tetrahydroisoquinolines, including 1-alkyl-, 1-aryl-, and 1-benzyl-

- Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona (Spain)
 Fax: (+34) 934-024-539
 E-mail: amat@ub.edu
- [b] Institut de Ciència de Materials de Barcelona (CSIC)

Introduction

The tetrahydroisoquinoline ring system is present in numerous structurally diverse natural products exhibiting a wide range of biological and pharmacological activities.^[1] In particular, simple 1-substituted tetrahydroisoquinolines are of great interest not only as alkaloids themselves but also as useful key intermediates in the synthesis of more complex alkaloids. This has stimulated the development of a number of methodologies aimed at the enantioselective synthesis of 1-substituted tetrahydroisoquinoline derivatives^[2] (Figure 1).

Figure 1. Selected 1-substituted tetrahydroisoquinoline alkaloids.

tetrahydroisoquinoline alkaloids as well as the tricyclic alkaloid (–)-crispine A, has been developed. The key step is a stereoselective α -amidoalkylation reaction using the appropriate Grignard reagent.

In previous work we have demonstrated that phenylglycinolderived oxazolopiperidone lactams are versatile scaffolds that allow the regio- and stereocontrolled introduction of substituents at the different positions of the piperidine ring, thus providing access to enantiopure substituted piperidines bearing virtually any type of substitution pattern, as well as to quinolizidine, indolizidine, decahydroquinoline, and complex piperidine-containing indole alkaloids^[3] (Scheme 1).

Scheme 1. Natural and bioactive products prepared from phenylglycinolderived lactams.

Results and Discussion

To further expand the synthetic potential of phenylglycinolderived oxazolopiperidone lactams, we report here a general methodology for the enantioselective synthesis of 1-substituted tetrahydroisoquinoline alkaloids. The application of our enantiomeric scaffolding strategy^[4] would simply require starting from an appropriate benzo-fused oxazolopiperidone lactam and the subsequent stereocontrolled introduction of the substituent at the 1-position of the tetrahydroisoquinoline ring by an asymmetric α -amidoalkylation reaction.^[5]

Tricyclic lactam **2** was envisaged as the pivotal intermediate of our synthesis. It was prepared in 52% yield by cyclocondensation of aldehyde ester $\mathbf{1}^{[6]}$ with (*R*)-phenylglycinol in refluxing toluene in the presence of a catalytic amount of *p*-TsOH (Scheme 2). The absolute configuration of lactam **2** was unambiguously determined by X-ray crystallographic analysis.^[7] Minor amounts (6%) of the lactam epi-**2**, epimeric at the 2-position of the oxazolidine ring, were also formed.

Scheme 2. Preparation of the key tricyclic lactam 2.

In contrast with related *cis*-oxazolopiperidone lactams,^[8] the minor *cis* lactam epi-**2** did not undergo epimerization under acidic conditions (1.2 N HCl, MeOH, r.t), isoquinolone **3** and trace amounts of dimer **4** being formed instead. This dimer was formed in 49% yield after a prolonged acidic treatment (1.2 N HCl, MeOH, reflux, 66 h) of isoquinolone **3**.

Initial attempts to carry out the α -amidoalkylation reaction with a higher order cyanocuprate [Me₂Cu(CN)Li₂] in the presence of BF₃.Et₂O^[9] resulted in failure, leading exclusively to isoquinolone **3**. However, treatment of lactam **2** with an excess (3 equiv.) of methylmagnesium chloride at 5 °C stereoselectively led to the expected 1-substituted tetrahydroisoquinolone **5a** in 61% yield

Table 1. Enantioselective synthesis of 1-substituted tetrahydroisoquinolines.

(Table 1).^[10] Isoquinolone **3** was formed as a by-product (17%). Higher temperatures resulted in the formation of increasing amounts of **3**, whereas when the reaction was carried out at a lower temperature the starting lactam was recovered to a considerable extent.

The observed retention of the configuration of the reactive methine carbon can be rationalized by considering that the Grignard reagent coordinates with the oxygen atom of the oxazolidine ring and that the subsequent intramolecular delivery of the alkyl group occurs on the same face of the C–O bond of the incipient acyl iminium salt (Figure 2).^[11]

Figure 2. Stereochemical outcome of the α -amidoalkylation reaction.

As in related *cis*-substituted oxazolopiperidones,^[11] the minor *cis* lactam epi-**2** was more reluctant to undergo α -amidoalkylation^[12] than the *trans* isomer **2** and, on treatment with MeMgCl, led to isoquinolone **3** as the major product (50%), 2-methyltetrahydroisoquinoline **5a** being formed in low yield (35%).

Removal of the phenylethanol moiety from lactam **5a** was accomplished in excellent yield with sodium in liquid ammonia to give the *N*-unsubstituted lactam **6a**. A subsequent reduction with borane generated *in situ* from NaBH₄ and iodine completed the enantioselective synthesis of (–)-salsolidine **7a**.^[13] Taking into account previous correlations, this synthesis also constitutes a formal synthesis of the alkaloid (–)-carnegine.^[14]

The above protocol provides general access to 1-alkyl substituted tetrahydroisoquinolines. Thus, reaction of lactam 2 with ethylmagnesium bromide stereoselectively afforded (82% yield) lactam **5b**, which was then debenzylated and converted to (*S*)-1-ethyl-1,2,3,4-tetrahydroisoquinoline **7b** in good overall yield, as in the above methyl series.

	$MeO \xrightarrow{N} -C_6H_5 \xrightarrow{RMgX} MeO \xrightarrow{N} -C_6H_5 \xrightarrow{THF, 5^{\circ}C} MeO \xrightarrow{Na, liq, NH_3} MeO \xrightarrow{NaBH_4-I_2} MeO \xrightarrow{NaBH_4-I_2} MeO \xrightarrow{NH} MeO \xrightarrow{N} MeO $				NH
	2		5a-f OH	6a-f	7a-f ^R
	R	X	Yield of 5 [%]	Yield of 6 [%]	Yield of 7 [%]
a	Me	Cl	61	85	70
b	Et	Br	82	92	60
c	C ₆ H ₅	Cl	67	-	-
d	3,4-(MeO) ₂ C ₆ H ₃	Br	54	77	69
e	3,4,5-(MeO) ₃ C ₆ H ₂	Br	49	87	58
f	(p-MeO)C ₆ H ₄ CH ₂	Cl	63	85	59
g	$C_6H_5CH_2CH_2$	Br	67	79	77
h	CH ₂ =CHCH ₂	Br	42	90	-
i		Br	45	92	-

With the aim of demonstrating the potential of the methodology for the synthesis of 1-aryl-, 1-benzyl-, and 1-phenethyl tetrahydroisoquinoline alkaloids, we applied the above three-step sequence from lactam **2** using a variety of aryl-, benzyl-, and phenethylmagnesium halides. The results are summarized in Table 1 (entries **c-g**). In all cases the α -amidoalkylation reaction took place stereoselectively to give a single 1-substituted tetrahydroisoquinolone derivative (**5c-g**).^[15]

Although the reductive cleavage of the exocyclic benzylic C-N bond of the 2-phenyl derivative 5c with Na/liq. NH₃ occurred with concomitant cleavage of the doubly benzylic endocyclic C-N bond to give 2-benzyl-4,5-dimethoxyphenylacetamide (8), a similar substituted reduction from the methoxyphenyl tetrahydroisoquinolones 5d and 5e satisfactorily led to the respective N-unsusbtituted lactams 6d and 6e in excellent yield. A subsequent reduction of the lactam carbonyl of 6d led to (-)norcryptostyline II (7d), which constitutes a formal synthesis of the alkaloid (+)-cryptostyline II.^[16] Similarly, lactam 6e was converted to (-)-norcryptostyline III (7e), a known precursor of the alkaloid (+)-cryptostyline III.^[17]

The same set of sequential reductions (Na/liq. NH₃ and then NaBH₄–I₂) was used to convert 2-benzyl derivative **5f** to (–)-O,O-dimethylcoclaurine (**7f**).^[18] Taking into account previous transformations, this synthesis also constitutes a formal synthesis of the alkaloids (+)-O-methylarmepavine,^[18a,b] zanoxyline,^[19] and (–)-demethylcoclaurine [(–)-higenamine].^[18e]

Similarly, the usefulness of this methodology in the synthesis of 1-phenethyltetrahydroisoquinolines was demonstrated by the preparation of $7g^{[20]}$ from the α -amidoalkylation product **5**g.

The procedure allows the preparation of tetrahydroisoquinolines and tetrahydroisoquinolones bearing a functionalized C-1 substituent, for instance allyl^[21] or 2-(1,3-dioxan-2-yl)ethyl (Table 1, entries h, i),^[22] which can open access to more complex tetrahydroisoquinoline alkaloids embodying an additional ring. This was exemplified with the synthesis of the pyrrolo[2,1glisoquinoline alkaloid crispine A. The three-carbon fragment required to assemble the pyrrolidine ring was incorporated in the α -amidoalkylation step by reaction of lactam 2 with the Grignard reagent derived from 2-(2-bromoethyl)-1,3-dioxane (Scheme 3) to give 5i. In this synthesis, the lactam carbonyl was reduced prior to debenzylation to give tetrahydroisoquinoline 9 in excellent yield. A subsequent catalytic hydrogenation under acidic conditions brought about the hydrogenolysis of the exocyclic benzylic C-N bond, deprotection of the acetal function, and closure of the pyrrolidine ring by reductive amination, directly leading to crispine $A^{\left[23\right]}$ in 74% yield.

Scheme 3. Enantioselective synthesis of (-)-crispine A.

Conclusions

Tricyclic (R)-phenylglycinol-derived lactam 2 has proven to be a useful scaffold that provides general access to enantiopure 1substituted tetrahydroisoquinoline derivatives, including 1-alkyl-, 1-aryl-, and 1-benzyltetrahydroisoquinoline alkaloids as well as more complex alkaloids bearing the tetrahydroisoquinoline moiety The synthesis (Scheme 4). enantioselective of 1benzyltetrahydroisoquinolines is of particular interest because these derivatives not only play a pivotal role in the biosynthesis of numerous alkaloids with a variety of skeletal types (e.g. aporphines, cularines, protoberberines, and pavines) but have also been used as key synthetic precursors of such alkaloids.^[24]

Scheme 4. Enantiopure 1-substituted tetrahydroisoquinolines prepared from the common scaffold **2**.

Experimental Section

(3*R*,10b*S*)-8,9-Dimethoxy-5-oxo-3-phenyl-2,3,6,10b-tetrahydro-5*H*-oxazolo[2,3-*a*]isoquinoline (2): To a mixture of aldehyde-ester $1^{[6]}$ (993 mg, 4.2 mmol) and (*R*)-phenylglycinol (690 mg, 5.0 mmol) in anhydrous toluene (45 mL) containing 4 Å molecular sieves was added a catalytic amount of *p*-TsOH. The mixture was heated at reflux for 18 h with azeotropic elimination of water produced by a Dean-Stark apparatus. The resulting suspension was concentrated under reduced pressure to give a yellow foam. Flash chromatography (Et₂O to EtOAc) afforded lactam 2 (710 mg, 52%) and the 10b-epimer epi-2 (82 mg, 6%). 2: White solid; m.p. 135- 137° C (Et₂O). $[\alpha]_{D}^{22} = -136.6$ (c = 1.0, CHCl₃). IR (KBr): $v = 1665 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 3.52$ (d, J =19.2 Hz, 1H, H-6), 3.73 (dd, J = 19.2, 2.2 Hz, 1H, H-6), 3.88 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 4.02 (dd, *J* = 9.0, 7.5 Hz, 1H, H-2), 4.58 (dd, J = 9.0, 7.5 Hz, 1H, H-2), 5.38 (t, J = 7.5, 1H, H-3), 6.02 (d, J = 2.2 Hz, 1H, H-10b), 6.66 (s, 1H, H-10), 6.99 (s, 1H, H-7), 7.35 (m, 5H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 36.9$ (C-6), 56.0 (OCH₃), 56.1 (OCH₃), 58.6 (C-3), 72.7 (C-2), 87.8 (C-10b), 107.7 (C-10), 109.8 (C-7), 122.5 (C-6a), 123.1 (C-10a), 126.0 (C-o), 127.7 (C-p), 128.8 (C-m), 139.3 (C-i), 148.4 (C-8), 149.7 (C-9), 166.2 (CO) ppm. HRMS calcd. for C₁₉H₁₉NO₄ [M + H]⁺: 326.1386; found 326.1382. C₁₉H₁₉NO₄ (325.36): calcd. C 70.14, H 5.89, N 4.31; found C 70.27, H 5.87, N 4.08. epi-2: $[\alpha]_{D}^{22}$ $= + 62.5 (c = 1.0, CHCl_3)$. IR (KBr): $v = 1667 \text{ cm}^{-1}$. ¹H NMR (300) MHz, CDCl₃, 25°C): δ = 3.45 (d, J = 18.9 Hz, 1H, H-6), 3.60 (dd, J = 18.9, 2.1 Hz, 1H, H-6), 3.90 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 4.20 (dd, J = 9.0, 0.9 Hz, 1H, H-2), 4.47 (dd, J = 9.0, 6.3 Hz, 1H, H-2), 5.10 (d, J = 6.3 Hz, 1H, H-3), 5.90 (d, J = 2.1 Hz, 1H, H-10b), 6.71 (s, 1H, H-10), 7.10 (s, 1H, H-7), 7.15-7.25 (m, 5H, ArH) ppm. ¹³C NMR (75.6 MHz, CDCl₃, 25°C): δ = 38.1 (C-6), 55.9 (OCH₃), 56.0 (OCH₃), 58.6 (C-3), 74.8 (C-2), 87.3 (C-10b), 106.5 (C-10), 110.1 (C-7), 123.0 (C-6a), 125.0 (C-10a), 125.9 (C-o), 127.4 (C-p), 128.4 (C-m), 140.5 (C-i), 148.0 (C-8), 149.2 (C-9), 165.2 (CO) ppm. HRMS calcd. for $C_{19}H_{19}NO_4 [M + H]^+$: 326.1386; found 326.1382.

Dimer 4: A solution of 1.2 M HCl in MeOH (6 mL) was added to a solution of isoquinolone 3 (96 mg, 0.3 mmol) in MeOH (1 mL). The mixture was heated at reflux for 66 h. The solvent was removed, and the resulting solid was diluted with EtOAc. The solution was washed with saturated aqueous Na₂CO₃. The organic phase was dried and concentrated to give a residue, which was chromatographed (7:3 Et₂O-EtOAc to EtOAc) to afford 4 (47 mg, 49%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 3.48 (s, 6H, 2OCH₃), 3.64 (s, 6H, 2OCH₃), 4.27 (dd, J = 13.0, 2.8 Hz, 2H, 2CH₂OH), 4.43 (d, J = 10.8 Hz, 2H, 2CHCO), 4.44 (dd, J = 13.0, 3.6 Hz, 2H, 2CH₂OH), 4.79 (d, J = 11.2 Hz, 2H, 2CHNCO), 5.68 (s, 2H, 2CH₃OCC*H*), 5.73 (t, *J* = 2.9 Hz, 2H, CHAr), 6.26 (s, 2H, 2CH₃OCCH), 7.08 (d, J = 6.4 Hz, 4H, ArH), 7.14-7.23 (m, 6H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 55.9$ (OCH₃), 56.0 (OCH₃), 56.9 (CHCO), 58.5 (CHNCO), 58.7 (CHAr), 62.1 (CH₂OH), 108.6 (CH₃OCCH), 110.3 (CH₃OCCH), 127.7 (C-p), 128.4 (C-o), 128.7 (CCHCO), 128.9 (C-m), 131.5 (CCHN), 136.4 (C-i), 147.5 (CH₃OC), 147.9 (CH₃OC), 176.0 (CO) ppm. HRMS calcd. for $C_{38}H_{38}N_2O_8[M+H]^+$: 651.2706; found 651.2697.

General Procedure for the α -Amidoalkylation Reaction: The Grignard reagent (3.0 equiv) was added to a cooled (5 °C) solution of oxazolopiperidone 2 (1 equiv) in THF, and the mixture was stirred at this temperature until the disappearance of the starting material was observed by TLC. The reaction was quenched by the addition of water, and the mixture extracted with EtOAc. The combined extracts were dried and concentrated to give the 1-substituted tetrahydroisoquinolones after flash chromatography.

(1S)-2-[(1R)-2-Hydroxy-1-phenylethyl]-6,7-dimethoxy-1-

methyl-3-oxo-1,2,3,4-tetrahydroisoquinoline (5a): Following the above general procedure (reaction time 1.5 h), from lactam **2** (100

mg, 0.31 mmol) and methylmagnesium chloride (3M in THF, 0.31 mL, 0.92 mmol) in THF (12.5 mL) a brown oil was obtained. Flash chromatography (7:3 Et₂O-EtOAc, increasing polarity and 9:1 EtOAc-EtOH) gave 5a (64 mg, 61%) as a yellow oil and isoquinolone **3** (17 mg, 17%) as a yelow-green foam. **5a**: $[\alpha]^{22}_{D} =$ + 23.5 (c = 1.0, CHCl₃). IR (KBr): v = 1629, 3400 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.39 (d, *J* = 7.2 Hz, 3H, CH₃), 3.60 (d, J = 18.9 Hz, 1H, H-4), 3.76 (d, J = 18.9 Hz, 1H, H-4), 3.77 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 4.28 (q, J = 7.2 Hz, 1H, H-1), 4.29 (dd, J = 12.0, 8.4 Hz, 1H, CH₂OH), 4.30 (dd, J = 12.0, 5.2 Hz, 1H, CH₂OH), 5.70 (dd, J = 8.4, 5.2 Hz, 1H, CHAr), 6.38 (s, 1H, H-8), 6.66 (s, 1H, H-5), 7.18-7.30 (m, 5H, ArH) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3, 25^{\circ}\text{C}): \delta = 23.2 \text{ (CH}_3), 37.3 \text{ (C-4)}, 55.6$ (OCH₃), 56.0 (OCH₃), 56.1 (C-1), 60.8 (CHAr), 63.3 (CH₂OH), 107.7 (C-8), 110.3 (C-5), 123.1 (C-4a), 127.6 (C-o), 128.1 (C-p), 128.7 (C-m), 130.5 (C-8a), 136.8 (C-i), 148.3 (C-7), 147.8 (C-6), 171.7 (CO) ppm. HRMS calcd. for $C_{20}H_{23}NO_4$ [M + H]⁺: 342.1699; found 342.1695. $C_{20}H_{23}NO_4$ 1/4 CH_2Cl_2 (362.64): calcd. C 67.07, H 6.53, N 3.86; found C 67.13, H 6.65, N 3.81. 3: IR (KBr): v = 1652, 3269 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 3.82 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.31 (dd, J = 12.4, 7.2Hz, 1H, CH₂OH), 4.42 (dd, J = 12.4, 4.4 Hz, 1H, CH₂OH), 6.12 (s, 1H, H-5), 6.26 (s, 1H, H-8), 6.47 (dd, J = 7.2, 4.4 Hz, 1H, CHAr), 6.59 (s, 1H, H-4), 7.33 (m, 5H, ArH), 7.95 (s, 1H, H-1) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 55.7$ (OCH₃), 55.8 (OCH₃), 60.7 (CHAr), 62.9 (CH₂OH), 100.6 (C-7), 103.6 (C-5), 107.6 (C-4), 114.2 (C-8a), 127.9 (C-m), 128.1 (C-p), 128.9 (C-o), 135.3 (C-1), 137.4 (C-i), 140.6 (C-6), 147.7 (C-7), 155.0 (C-4a), 160.5 (CO) ppm. EM (IQ⁺): m/z (%): 326 (47); 325 (5); 206 (13); 138 (27); 122 (12) 121 (100).

(1S)-1-Ethyl-2-[(1R)-2-hydroxy-1-phenylethyl]-6,7-dimethoxy-

3-oxo-1,2,3,4-tetrahydroisoquinoline (5b): Following the general procedure (reaction time 6 h), from lactam 2 (400 mg, 1.23 mmol) in THF (10 mL) and ethylmagnesium bromide (3M in Et₂O, 1.23 mL, 3.68 mmol) a residue was obtained. Flash chromatography (1:1 Et₂O–EtOAc) gave **5b** (354 mg, 82%) as a yellow oil: $[\alpha]^{22}_{D} =$ + 34.4 (c = 1.0, CHCl₃). IR (KBr): v = 1630, 3388 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 0.72$ (t, J = 7.2 Hz, 3H, CH₃), 1.66-1.77 (m, 1H, CH₂), 1.79-1.89 (m, 1H, CH₂), 3.57 (d, J = 18.0 Hz, 1H, H-4), 3.77 (s, 3H, OCH₃), 3.79 (d, J = 18.0 Hz, 1H, H-4), 3.86 (s, 3H, OCH₃), 4.00 (dd, J = 9.6, 3.2 Hz, 1H, H-1), 4.23 (dd, J =11.6, 8.4 Hz, 1H, CH_2OH), 4.29 (dd, J = 11.6, 5.2 Hz, 1H, CH₂OH), 5.66 (dd, J = 8.4, 5.2 Hz, 1H, CHAr), 6.33 (s, 1H, H-8), 6.67 (s, 1H, H-5), 7.10-7.30 (m, 5H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 10.2$ (CH₃), 29.1 (CH₂), 37.5 (C-4), 55.9 (OCH₃), 56.1 (OCH₃), 61.3 (C-1), 61.5 (CHAr), 63.4 (CH₂OH), 109.3 (C-8), 110.3 (C-5), 123.7 (C-4a), 127.7 (C-o), 127.8 (C-p), 127.8 (C-8a), 129.9 (C-m), 136.8 (C-i), 147.2 (C-7), 148.3 (C-6), 171.9 (CO) ppm. HRMS calcd. for $C_{21}H_{25}NO_4 [M + H]^+$: 356.1862; found 356.1872. C21H25NO4.1/4 CHCl3 (385.28): calcd. C 66.25, H 6.61, N 3.64; found C 66.13, H 6.64, N 3.53.

(1*S*)-2-[(1*R*)-2-Hydroxy-1-phenylethyl]-6,7-dimethoxy-3-oxo-1-phenyl-1,2,3,4-tetrahydroisoquinoline (5c): Following the general procedure (reaction time 1 h), from lactam 2 (500 mg, 1.54 mmol) in THF (10 mL) and phenylmagnesium chloride (2M in THF, 2.3 mL, 4.61 mmol) a residue was obtained. Flash chromatography (Et₂O–EtOAc increasing polarity and 9:1 EtOAc–EtOH) gave 5c (415 mg, 67%) as a yellow oil and 3 (125 mg, 25%).

5c: $[\alpha_1]^{22}_{D} = + 16.7$ (c = 1.0, CHCl₃). IR (KBr): v = 1629, 3388 cm^{-1. 1}H NMR (300 MHz, CDCl₃, 25°C): $\delta = 3.66$ (d, J = 19.8 Hz, 1H, H-4), 3.71 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.84 (d, J = 19.8 Hz, 1H, H-4), 3.88-3.91 (m, 2H, CH₂OH), 5.26 (s, 1H, H-1), 5.96 (t, J = 6.6 Hz, 1H, CHAr), 6.41 (s, 1H, H-8), 6.58 (s, 1H, H-5), 7.15-7.30 (m, 10H, ArH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): $\delta = 37.2$ (C-4), 55.8 (OCH₃), 55.9 (OCH₃), 59.9 (C-1), 62.2 (CH₂OH), 62.5 (CHAr), 108.6 (C-8), 110.0 (C-5), 122.3 (C-4a), 126.0 (C-o), 127.4 (C-p), 127.8 (C-p), 128.1 (C-m), 128.3 (C-o), 128.5 (C-8a), 128.8 (C-m), 136.7 (C-i), 143.0 (C-i), 147.8 (C-6), 148.0 (C-7), 171.9 (CO) ppm. HRMS calcd. for C₂₅H₂₅NO₄ [M + H]⁺: 404.1862; found 404.1875.

(1*S*)-1-(3,4-Dimethoxyphenyl)-2-[(1*R*)-2-hydroxy-1-phenylethyl]-6,7-dimethoxy-3-oxo-1,2,3,4-

tetrahydroisoquinoline (5d): Following the general procedure (reaction time 15 min), from lactam 2 (150 mg, 0.46 mmol) in THF (10 mL) and 3,4-dimethoxyphenylmagnesium bromide (0.5 M in THF, 2.8 mL, 1.4 mmol) a residue was obtained. Flash chromatography (1:1 Et₂O-EtOAc, increasing polarity and 9:1 EtOAc-EtOH) gave 5d (115 mg, 54%) as a yellow foam and 3 (50 mg, 33%). **5d**: $[\alpha]_{D}^{22} = +17.1$ (*c* = 1.0, CHCl₃). IR (KBr): v = 1634, 3406 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 3.68$ $(d, J = 20.0 \text{ Hz}, 1\text{H}, \text{H-4}), 3.73 (s, 3\text{H}, \text{OCH}_3), 3.79 (s, 3\text{H}, \text{OCH}_3),$ 3.83 (s, 3H, CH₃O), 3.86 (s, 3H, CH₃O), 3.87 (d, J = 20.0 Hz, 1H, H-4), 3.95 (dd, *J* = 11.6, 8.4 Hz, 1H, CH₂OH), 4.01 (dd, *J* = 11.6, 5.2 Hz, 1H, CH₂OH), 5.18 (s, 1H, H-1), 5.93 (dd, J = 8.4, 5.2 Hz, 1H, CHAr), 6.37 (s, 1H, H-2'), 6.58 (s, 1H, H-5'), 6.72 (s, 1H, H-6'), 6.75 (s, 1H, H-8), 6.76 (s, 1H, H-5), 7.12-7.15 (m, 2H, ArH), 7.26-7.32 (m, 3H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 37.4$ (C-4), 55.8 (OCH₃), 55.9 (OCH₃), 55.9 (OCH₃), 56.0 (OCH₃), 60.4 (C-1), 62.5 (CHAr), 62.6 (CH₂OH), 108.1 (C-8), 109.5 (C-5), 110.1 (C-2'), 111.3 (C-5'), 118.3 (C-6'), 122.4 (C-4a), 127.9 (C-p), 128.4 (C-o), 128.6 (C-8a), 128.6 (C-m), 134.4 (C-1'), 136.2 (C-i), 147.9 (C-6), 148.5 (C-4'), 148.6 (C-7), 149.2 (C-3'), 171.6 (CO) ppm. HRMS calcd. for $C_{27}H_{29}NO_6 [M + H]^+$: 464.2073; found 464.2081. C27H29NO6.1/4 CHCl3 (493.37): calcd. C 66.34, H 5.98, N 2.84; found C 66.65, H 6.33, N 2.49.

(1S)-2-[(1R)-2-Hydroxy-1-phenylethyl)]-6,7-dimethoxy-3-oxo-1-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (5e): Following the general procedure (reaction time 20 min), from lactam 2 (500 mg, 1.54 mmol) in THF (10 mL) and 3,4,5trimethoxyphenylmagnesium bromide (0.5 M in THF, 9.2 mL, 4.61 mmol) a residue was obtained. Flash chromatography (Et₂O-EtOAc, increasing polarity and 9:1 EtOAc-EtOH) gave 5e (370 mg, 49%) as a yellow foam and 3 (135 mg, 27%). 5e: $[\alpha]^{22}_{D} = +$ 13.1 (c = 1.0, CHCl₃). IR (KBr): v = 1684, 2930 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, 25°C): δ = 3.65 (d, *J* = 19.5 Hz, 1H, H-4), 3.75 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.80 (masked d, H-4), 3.81 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 5.17 (s, 1H, H-1), 3.98-4.08 (m, 2H, CH_2OH), 5.89 (dd, J = 8.7, 5.1 Hz, 1H, CHAr), 6.40 (s, 1H, H-2'), 6.46 (s, 2H, H-5, H-8), 6.62 (s, 2H, H-6'), 7.13-7.27 (m, 2H, ArH), 7.29-7.31 (m, 3H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): δ = 37.3 (C-4), 55.8 (OCH₃), 55.9 (OCH₃), 56.0 (OCH₃), 56.1 (OCH₃), 56.2 (OCH₃), 60.8 (C-1), 62.8 (CH₂OH), 63.0 (CHAr), 103.3 (C-2', C-6'), 108.1 (C-8), 110.0 (C-5), 122.7 (C-4a), 128.1 (C-p), 128.4 (C-o), 128.6 (C-8a), 128.6 (C-m), 136.1 (C-1'), 137.0 (C-i), 137.4 (C-4'), 147.9 (C-6), 148.6 (C-7), 153.4 (C-5', C-3'), 172.0 (CO) ppm. HRMS calcd. for

 $C_{28}H_{31}NO_7\left[M+H\right]^+:$ 494.2179; found 494.2183. $C_{28}H_{31}NO_7.1/4$ CHCl_3 (523.40): calcd. C 64.83, H 6.02, N 2.68; found C 64.69, H 6.26, N 2.42.

(1*S*)-[(*R*)-2-Hydroxy-1-phenylethyl]-6,7-dimethoxy-1-(*p*-methoxybenzyl)-3-oxo-1,2,3,4-tetrahydroisoquinoline (5)

(5f): Following the general procedure (reaction time 15 min), from lactam 2 (150 mg, 0.46 mmol) in THF (10 mL) and 4methoxybenzylmagnesium chloride (0.25 M in THF, 5.5 mL, 1.4 mmol) a residue was obtained. Flash chromatography (3:7 hexane-EtOAc, increasing polarity and 9:1 EtOAc-EtOH) gave 5f (129 mg, 63%) as a white foam and **3** (37 mg, 25%). **5f**: $[\alpha]_{D}^{22} = +41.5$ (c = 1.0, CHCl₃). IR (KBr): v = 1630, 3393 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 2.84$ (dd, J = 13.1, 8.5 Hz, 1H, CHCH₂Ar), 3.06 (dd, J = 13.1, 3.4 Hz, 1H, CHCH₂Ar), 3.10 (d, J = 19.4 Hz, 1H, H-4), 3.39 (d, *J* = 19.4 Hz, 1H, H-4), 3.51 (s, 3H, OCH₃C4'), 3.69 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 4.29 (dd, J = 8.5, 3.4 Hz, 1H, H-1), 4.35-4.44 (m, 2H, CH₂OH), 5.80 (s, 1H, H-5 or H-8), 5.85 (t, J = 6.5 Hz, 1H, CHAr), 6.53 (s, 1H, H-5 or H-8), 6.62 (s, 4H, H-2', H-3', H-5', H-6'), 7.25-7.35 (m, 5H, ArH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): $\delta = 37.2$ (C-4), 41.9 (C1*C*H₂), 55.2 (OCH₃), 55.8 (OCH₃), 55.9 (OCH₃), 61.4 (C-1), 61.6 (CHAr), 63.6 (CH₂OH), 109.2 (C-8), 109.7 (C-5), 113.5 (C-2', C-6'), 124.2 (C-4a), 127.2 (C-8a), 127.9 (C-0), 128.0 (C-p), 128.8 (C-m), 131.1 (Cm), 131.1 (C-3', C-5'), 136.9 (C-i), 146.8 (C-6), 148.2 (C-7), 158.5 (C-4'), 172.3 (CO) ppm. HRMS calcd. for $C_{27}H_{29}NO_5 [M + H]^+$: 448.2124; found 448.2130. C27H29NO5.3/4 H2O (461.04): calcd. C 70.34, H 6.67, N 3.04; found C 70.03, H 6.42, N 2.87.

(1S)-2-[(1R)-2-Hydroxy-1-phenylethyl]-6,7-dimethoxy-3-oxo-1phenethyl-1,2,3,4-tetrahydroisoquinoline (5g): Following the general procedure (reaction time 40 min), from lactam 2 (400 mg, 1.23 mmol) in THF (10 mL) and phenethylmagnesium chloride (1 M in THF, 3.69 mL, 3.69 mmol) a residue was obtained. Flash chromatography (8:2 Et₂O-EtOAc, increasing polarity and 9:1 EtOAc-EtOH) gave 5g (353 mg, 67%) as a white foam and 3 (68 mg, 17%). **5g**: $[\alpha]_{D}^{22} = +72.9$ (*c* = 1.0, CHCl₃). IR (KBr): v = 1632, 3399 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 1.92-2.07$ (m, 1H, CH₂), 2.10-2.18 (m, 1H, CH₂), 2.25-2.36 (m, 1H, CH₂Ar), 2.50-2.57 (m, 1H, CH₂Ar), 3.59 (d, J = 18.8 Hz, 1H, H-4), 3.78 (s, 3H, OCH₃), 3.81 (d, J = 18.8 Hz, 1H, H-4), 3.87 (s, 3H, OCH₃), 4.10 (dd, J = 9.2, 2.8 Hz, 1H, H-1), 4.18-4.23 (m, 2H, CH₂OH), 5.59 (dd, J = 7.6, 6.0 Hz, 1H, CHAr), 6.34 (s, 1H, H-8), 6.69 (s, 1H, H-5), 7.01 (d, J = 13.2 Hz, 2H, C-2', C-6'), 7.15 (m, 1H, H-4'), 7.20 (br s, 2H, C-3', C-5'), 7.24-7.26 (m, 5H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 31.5$ (CH₂Ar), 37.6 (C-4), 37.7 (CH₂), 56.0 (OCH₃), 56.1 (OCH₃), 59.4 (C-1), 61.7 (CHAr), 63.3 (CH₂OH), 109.1 (C-8), 110.5 (C-5), 123.9 (C-4a), 126.1 (C-4'), 127.8 (C-p), 127.8 (C-m), 128.1 (C-o), 128.3 (C-8a), 128.5 (C-2', C-6'), 128.6 (C-3', C-5'), 136.7 (C-i), 140.6 (C-1'), 147.3 (C-6), 148.4 (C-7), 171.9 (CO) ppm. HRMS calcd. for C₂₇H₂₉NO₄ [M + H_{1}^{+} : 432.2175; found 432.2180. $C_{27}H_{29}NO_{4}.3/4$ $H_{2}O$ (445.04): calcd. C 72.87, H 6.91, N 3.15; found C 72.95, H 6.87, N 2.95.

(1*S*)-1-Allyl-2-[(1*R*)-2-hydroxy-1-phenylethyl]-6,7-dimethoxy-3oxo-1,2,3,4-tetrahydroisoquinoline (5h): Following the general procedure (reaction time 2 h), from lactam 2 (200 mg, 0.6 mmol) in THF (10 mL) and allylmagnesium bromide (1 M in Et₂O, 1.85 mL, 1.85 mmol) a yellow oil was obtained. Flash chromatography (95:5 *tert*-butyl methyl ether–EtOAc) gave 5h (92 mg, 42%) as a white

1-(2-allyl-2-hydroxy-4-pentenyl)-2-[1-(2-hydroxy-1Roil and phenylethylamino)-3-butenyl]-4,5-dimethoxybenzene (10) (103 mg, 39%). **5h**: $[\alpha]_{D}^{22} = +16.8$ (*c* = 1.0, CHCl₃). IR (KBr): v = 1637, 3386 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, 25°C): δ = 2.18-2.33 (m, 1H, $CH_2CH=$), 2.39-2.60 (m, 1H, $CH_2CH=$), 3.54 (d, J = 19.5 Hz, 1H, H-4), 3.79 (d, J = 19.5 Hz, 1H, H-4), 3.76 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 4.26 (m, 1H, H-1), 4.28 (dd, J = 11.4, 7.8 Hz, 1H, CH₂OH), 4.30 (dd, J = 11.4, 5.7 Hz, 1H, CH₂OH), 4.90 (dd, J = 10.5, 1.8 Hz, 1H, CH_2 =), 4.99 (td, J = 6.0, 1.8 Hz, 1H, CH_2 =), 5.51 (m, 1H, CH=), 5.68 (dd, J = 7.8, 5.7 Hz, 1H, H-1), 6.31 (s, 1H, H-8), 6.65 (s, 1H, H-5), 7.22-7.38 (m, 5H, ArH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): δ = 37.6 (C-4), 40.8 (*C*H₂CH=), 55.8 (OCH₃), 56.0 (OCH₃), 60.1 (C-1), 61.3 (CHAr), 63.2 (CH₂OH), 109.0 (C-8), 110.0 (C-5), 118.9 (CH₂=), 123.6 (C-4a), 127.6 (C-*p*), 127.7 (C-*o*), 128.4 (C-m), 128.6 (C-8a), 133.0 (CH=), 136.8 (C-i), 147.1 (C-7), 148.2 (C-6), 171.8 (CO) ppm. HRMS calcd. for C₂₂H₂₅NO₄ [M + H_{1}^{+} : 368.1862; found 368.1873. $C_{22}H_{25}NO_{4}.1/2H_{2}O$ (411.5): calcd. C 70.05, H 7.10, N 3.40; found C 66.69, H 6.70, N 3.55. 10: IR (KBr): v = 1638, 3073, 3324 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 2.10-2.19$ (m, 4H, 2CH₂CHCH₂), 2.38-2.53 (m, 2H, $CHCH_2CHCH_2$), 2.56 (d, J = 14.8 Hz, 1H, CH_2Ar), 2.66 (d, J =14.8 Hz, 1H, CH₂Ar), 3.57 (dd, J = 10.8, 8.0 Hz, 1H, CH₂OH), $3.67 (dd, J = 10.8, 4.4 Hz, 1H, CH_2OH), 3.85 (s, 3H, OCH_3), 3.86$ (dd, J = 8.0, 4.4 Hz, 1H, CHAr), 3.89 (s, 3H, OCH₃), 4.05 (t, J =6.4 Hz, 1H, CHCH₂CHCH₂), 4.98-5.09 (m, 2H, CHCH₂CHCH₂), 5.10-5.15 (m, 4H, 2CH₂CHCH₂), 5.64-5.72 (m, 1H, CHCH2CHCH2), 5.74-5.84 (m, 2H, 2CH2CHCH2), 6.65 (s, 1H, CH₃OCCH), 6.85 (s, 1H, CH₃OCCH), 7.26-7.28 (m, 5H, ArH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): δ = 40.3 (CHCH₂CHCH₂), 40.4 (CH₂Ar), 43.7 (CH₂CHCH₂), 44.0 (CH₂CHCH₂), 55.1 (CHCH₂CHCH₂), 55.6 (OCH₃), 55.7 (OCH₃), 61.5 (CHAr), 66.3 (CH₂OH), 73.3 (COH), 110.1 (C-3), 114.8 (C-6), 117.3 (CHCH2CHCH2), 118.5 (CH2CHCH2), 118.6 (CH2CHCH2), 127.0 (C-2), 127,3 (C-m), 127.4 (C-p), 128.4 (C-o), 133.8 (CH₂CHCH₂), 133.9 (CH₂CHCH₂), 135.0 (C-1), 135.2 (CHCH2CHCH2), 140.9 (C-i), 146.9 (C-4), 147.5 (C-5) ppm. HRMS calcd. for $C_{28}H_{37}NO_4[M + H]^+$: 452.2801; found 452.2784. C₂₈H₃₇NO₄.1/2H₂O (460.61): calcd. C 73.01, H 8.32, N 3.04; found C 73.24, H 8.13, N 2.75.

(1*S*)-1-[2-(1,3-Dioxan-2-yl)ethyl]-2-[(1*R*)-2-hydroxy-1-phenylethyl]-6,7-dimethoxy-3-oxo-1,2,3,4-

tetrahydroisoquinoline (5i): Following the general procedure (reaction time 2.5h), from lactam 2 (400 mg, 1.23 mmol) in THF (20 mL) and 2-(1,3-dioxan-2-yl)ethylmagnesium bromide (0.5 M in THF, 7.4 mL, 3.69 mmol) a yellow solid was obtained. Flash chromatography (1:1 Et₂O-EtOAc, increasing polarity and 9:1 EtOAc-EtOH) gave 5i (246 mg, 45%) as a yellow foam and 3 (121 mg, 30%). **5i:** $[\alpha]^{22}_{D} = +38.5$ (*c* = 1.0, CHCl₃). IR (KBr): v = 1632, 3399 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 1.31$ (dt, J =13.6, 1.2 Hz, 2H, H-1'), 1.41-1.46 (m, 2H, OCH₂CH₂), 1.72-1.81 (m, 1H, H-2'), 1.92-2.06 (m, 1H, H-2'), 3.56 (d, J = 19.0 Hz, 1H, H-4), 3.68 (ddd, J = 15.2, 12.0, 3.6 Hz, 2H, CH₂CH₂O), 3.75 (s, 3H, OCH_3), 3.79 (d, J = 19.0 Hz, 1H, H-4), 3.85 (s, 3H, OCH_3), 4.03 (m, 2H, CH₂CH₂O), 4.40 (t, J = 4.8 Hz, 1H, CHO₂), 4.15 (dd, J =10.0, 3.2 Hz, 1H, H-1), 4.23-4.32 (m, 2H, CH₂OH), 5.76 (dd, J = 8.0, 5.6 Hz, 1H, CHAr), 6.34 (s, 1H, H-8), 6.65 (s, 1H, H-5), 7.16 (d, J = 1.6 Hz, 1H, ArH), 7.18 (d, J = 2.0 Hz, 1H, ArH), 7.25-7.30 (m, 3H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): δ = 25.6 (C-1'), 30.3 (C-2'), 31.1 (CH₂CH₂O), 37.6 (C-4), 55.9 (OCH₃),

56.0 (OCH₃), 58.9 (C-1), 60.3 (CHAr), 63.1 (CH₂OH), 66.7 (2CH₂CH₂O), 101.6 (CHO₂), 109.4 (C-8), 110.4 (C-5), 123.8 (C-4a), 127.7 (C-*p*), 127.8 (C-*o*), 128.1 (C-8a), 128.5 (C-*m*), 136.8 (C-*i*), 147.2 (C-6), 148.3 (C-7), 171.9 (CO) ppm. HRMS calcd. for $C_{25}H_{31}NO_6$ [M + H]⁺: 442.2223; found 442.2219.

General Procedure for Na/liq. NH₃ Reaction: Into a threenecked round-bottomed equipped with a coldfinger condenser charged with dry ice-acetone was condensed NH₃ at -78 °C. The temperature was raised to -33 °C, and a solution of lactam 5 in THF was added. Then, sodium metal was added in small portions until the blue color persisted. After the mixture was stirred at -33°C for 1 min, the reaction was quenched by the addition of solid NH₄Cl until the blue color disappeared. The mixture was stirred at rt for 4h, poured into water, and extracted with Et₂O. The combined organic extracts were dried and concentrated to give a residue, which was chromatographed.

(1S)-6,7-Dimethoxy-1-methyl-3-oxo-1,2,3,4-

tetrahydroisoquinoline (6a): Operating as described in the general procedure, from **5a** (200 mg, 0.59 mmol) in THF (7 mL) and NH₃ (50 mL) a clear marron residue was obtained. Flash chromatography (9:1 EtOAc-EtOH) afforded **6a** (110 mg, 85%) as a white solid. $[\alpha]^{22}_{D} = + 10.0 (c = 1.0, CHCl_3)$. IR (KBr): v = 1668, 3217 cm^{-1.} ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 1.51$ (d, J = 6.4 Hz, 3H, CH₃), 3.48 (d, J = 20.0 Hz, 1H, H-4), 3.60 (d, J = 20.0 Hz, 1H, H-4), 3.87 (s, 6H, 2OCH₃), 4.60 (m, 1H, H-1), 6.60 (s, 1H, H-8), 6.61 (s, 1H, H-5), 6.90 (br s, 1H, NH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 24.4$ (CH₃), 35.4 (C-4), 51.3 (C-1), 56.0 (OCH₃), 56.1 (OCH₃), 108.2 (C-8), 110.4 (C-5), 122.8 (C-4a), 127.8 (C-8a), 148.0 (C-6), 148.4 (C-7), 171.5 (CO) ppm. HRMS calcd. for C₁₂H₁₅NO₃ [M + H]⁺: 222.1124; found 222.1122. C₁₂H₁₅NO₃ (221.25): calcd. C 65.14, H 6.83, N 6.33; found C 64.89, H 6.76, N 6.16.

(1S)-1-Ethyl-6,7-dimethoxy-3-oxo-1,2,3,4-

tetrahydroisoquinoline (6b): Operating as described in the general procedure, from 5b (230 mg, 0.65 mmol) in THF (4 mL) and NH₃ (30 mL) a residue was obtained. Flash chromatography (EtOAc) afforded 6b (140 mg, 92%) as a white oil. $[\alpha]^{22}_{D} = + 21.7$ (*c* = 0.57, CHCl₃). IR (KBr): v = 1654, 2972 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 0.92 (t, *J* = 8.0 Hz, 3H, CH₃), 1.81 (m, 2H, CH₂), 3.46 (d, *J* = 20.0 Hz, 1H, H-4), 3.62 (d, *J* = 20.0 Hz, 1H, H-4), 3.87 (s, 6H, 2OCH₃), 4.44 (m, 1H, H-1), 6.60 (s, 1H, H-8), 6.62 (s, 1H, H-5), 7.70 (br s, 1H, NH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): δ = 9.1 (CH₃), 31.7 (CH₂), 35.2 (C-4), 55.9 (OCH₃), 56.0 (OCH₃), 57.2 (C-1), 108.8 (C-8), 110.3 (C-5), 123.2 (C-4a), 126.2 (C-8a), 147.8 (C-7), 148.4 (C-6), 171.9 (CO) ppm. HRMS calcd. for C₁₃H₁₇NO₃ [M + H]⁺: 236.1286; found 236.1280.

(1S)-1-[3,4-(Dimethoxyphenyl)]-6,7-dimethoxy-3-oxo-1,2,3,4-

tetrahydroisoquinoline (6d): Operating as described in the general procedure, from **5d** (215 mg, 0.46 mmol) in THF (3 mL) and NH₃ (35 mL) a residue was obtained. Flash chromatography (2:8 to 1:9 hexane–EtOAc) afforded **6d** 121 mg, 77%) as a yellow foam. IR (KBr): v = 1647, 2920 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 3.52$ (d, J = 24.0 Hz, 1H, H-4), 3.66 (d, J = 24.0 Hz, 1H, H-4), 3.71 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 5.54 (s, 1H, H-1), 6.37 (s, 1H, H-2'), 6.65 (s, 1H, H-5'), 6.72 (s, 1H, H-6'), 6.83 (s, 1H, H-8), 6.84 (s, 1H, H-5),

7.05 (br s, 1H, NH) ppm. 13 C NMR (100.6 MHz, CDCl₃, 25°C): δ = 35.5 (C-4), 55.6 (OCH₃), 55.7 (OCH₃), 55.8 (OCH₃), 59.6 (C-1), 109.5 (C-8), 110.0 (C-5), 110.1 (C-2'), 110.9 (C-5'), 119.7 (C-6'), 123.0 (C-4a), 126.1 (C-8a), 134.2 (C-1'), 147.7 (C-6), 148.5 (C-4'), 148.8 (C-7), 149.3 (C-3'), 170.8 (CO) ppm. HRMS calcd. for C₁₉H₂₁NO₅ [M + H]⁺: 344.1498; found 344.1491.

(1*S*)-6,7-Dimethoxy-3-oxo-1-[3,4,5-(trimethoxyphenyl)]-1,2,3,4-

tetrahydroisoquinoline (6e): Operating as described in the general procedure, from 5e (150 mg, 0.30 mmol) in THF (2 mL) and NH₃ (30 mL) a residue was obtained. Flash chromatography (EtOAc) afforded 6e (98 mg, 87%) as a yellow foam. IR (KBr): v = 1663, 2926 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, 25°C): $\delta = 3.56$ (d, J = 18.0 Hz, 1H, H-4), 3.71 (d, J = 18.0 Hz, 1H, H-4), 3.72 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 5.25 (s, 1H, H-1), 6.41 (s, 2H, H-2', H-6'), 6.66 (s, 1H, H-8), 6.73 (s, 1H, H-5), 7.25 (br s, 1H, NH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): $\delta = 38.8$ (C-4), 55.8 (OCH₃), 55.9 (OCH₃), 56.0 (OCH₃), 56.1 (OCH₃), 60.0 (C-1), 60.1 (OCH₃), 104.3 (C-8), 105.4 (C-2', C-6'), 113.9 (C-5), 125.4 (C-4a), 131.2 (C-4'), 131.3 (C-8a), 133.4 (C-1'), 147.7 (C-6), 148.1 (C-7), 153.1 (C-3', C-5'), 173.7 (CO) ppm. HRMS calcd. for C₂₀H₂₃NO₆ [M + H]⁺: 374.1603; found 374.1592.

(1S)-6,7-Dimethoxy-1-(p-methoxybenzyl)-3-oxo-1,2,3,4-

tetrahydroisoquinoline (6f): Operating as described in the general procedure, from 5f (95 mg, 0.21 mmol) in THF (2 mL) and NH₃ (30 mL) a residue was obtained. Flash chromatography (EtOAc to 95:5 EtOAc-EtOH) afforded 6f (58 mg, 85%) as a yellow foam. $[\alpha]^{22}_{D} = -61.2$ (c = 0.5, CHCl₃). IR (KBr): v = 1630, 2934 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 2.87$ (d, J = 20.0 Hz, 1H, H-4), 2.91 (dd, J = 13.5, 6.0 Hz, 1H, CH₂), 3.03 (dd, J = 13.5, 4.0 Hz, 1H, CH₂), 3.23 (d, J = 20.0 Hz, 1H, H-4), 3.77 (s, 1H, OCH₃), 3.83 (s, 1H, OCH₃), 3.86 (s, 1H, OCH₃), 4.68 (m, 1H, H-1), 6.49 (s, 1H, H-8), 6.55 (s, 1H, H-5), 6.76 (d, J = 8.2 Hz, 2H, H-2'), 6.86 (d, J = 8.2 Hz, 2H, H-3'), 6.95 (br s, 1H, NH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): δ = 35.0 (C-4), 44.5 (CH₂), 55.2 (OCH₃), 55.9 (C-1), 56.0 (OCH₃), 57.3 (OCH₃), 108.9 (C-8), 110.1 (C-5), 113.8 (C-3'), 123.9 (C-4a), 125.2 (C-2'), 127.8 (C-8a), 131.8 (C-1'), 147.7 (C-6), 148.4 (C-7), 158.5 (C-4'), 172.3 (CO) ppm. HRMS calcd. for $C_{19}H_{21}NO_4[M + H]^+$: 328.1549; found 328.1532.

(1S)-6,7-Dimethoxy-3-oxo-1-phenethyl-1,2,3,4-

tetrahydroisoquinoline (6g): Operating as described in the general procedure, from 5g (100 mg, 0.23 mmol) in THF (2 mL) and NH₃ (25 mL) a residue was obtained. Flash chromatography (EtOAc) afforded 6g (56 mg, 79%) as a white foam. $[\alpha]^{22}{}_{\rm D}$ = +16.0 (*c* = 1.0, CHCl₃). IR (KBr): v = 1674 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 2.03-2.09 (m, 2H, CH₂), 2.62-2.70 (m, 2H, CH₂Ar), 3.48 (d, *J* = 20.0 Hz, 1H, H-4), 3.64 (d, *J* = 20.0 Hz, 1H, H-4), 3.86 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.60 (m, 1H, H-1), 6.60 (s, 2H, H-5, H-8), 7.14-7.19 (m, 3H, ArH), 7.25-7.28 (m, 2H, ArH), 7.43 (m, 1H, NH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): δ = 31.2 (CH₂Ar), 35.4 (C-4), 40.5 (CH₂), 55.7 (C-1), 56.0 (OCH₃), 56.1 (OCH₃), 108.7 (C-8), 110.5 (C-5), 123.2 (C-4a), 126.1 (C-8a), 126.3 (C-4'), 128.3 (C-3'), 128.5 (C-2'), 140.9 (C-1'), 147.9 (C-6), 148.5 (C-7), 171.7 (CO) ppm. HRMS calcd. for C₁₉H₂₁NO₃ [M + H]⁺: 312.1599; found 312.1598.

(1S)-1-Allyl-6,7-dimethoxy-3-oxo-1,2,3,4-

tetrahydroisoquinoline (6h): Operating as described in the general procedure, from **5h** (80 mg, 0.22 mmol) in THF (2 mL) and NH₃ (25 mL) a residue was obtained. Flash chromatography (EtOAc) afforded **6h** (48.3 mg, 90%) as a yellow foam. $[\alpha]^{22}_{D} = -10.5$ (c = 0.6, CHCl₃). IR (KBr): v = 1667, 2918 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 2.45$ (ddd, J = 14.0, 7.2, 7.2 Hz, 1H, CH₂), 2.57-2.61 (m, 1H, CH₂), 3.47 (d, J = 20.0 Hz, 1H, H-4), 3.60 (d, J = 20.0 Hz, 1H, H-4), 3.88 (s, 6H, 2OCH₃), 4.52 (m, 1H, H-1), 5.12-5.17 (m, 2H, =CH₂), 5.69-5.79 (m, 1H, CH=), 6.60 (s, 1H, H-8), 6.65 (s, 1H, H-5), 6.80 (br s, 1H, NH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 35.4$ (C-4), 43.2 (CH₂), 55.5 (C-1), 55.9 (OCH₃), 56.0 (OCH₃), 108.6 (C-8), 110.4 (C-5), 119.9 (=CH₂), 123.3 (C-4a), 125.6 (C-8a), 132.7 (CH=), 147.9 (C-6), 148.5 (C-7), 171.2 (CO) ppm. HRMS calcd. for C₁₄H₁₇NO₃ [M + H]⁺: 248.1288; found 248.1278.

(1S)-1-[2-(1,3-Dioxan-2-yl)ethyl]-6,7-dimethoxy-3-oxo-1,2,3,4-

tetrahydroisoquinoline (6i): Operating as described in the general procedure, from 5i (114 mg, 0.26 mmol) in THF (2 mL) and NH₃ (30 mL) a residue was obtained. Flash chromatography (9:1 EtOAc–EtOH) afforded **6i** (78.5 mg, 92%) as a white solid. $[\alpha]^{22}_{D}$ = + 2.3 (c = 0.53, CHCl₃). IR (KBr): v = 1674, 3217 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 1.33$ (dm, J = 13.2 Hz, 2H, H-2'), 1.61-1.84 (m, 2H, H-1'), 1.87-1.94 (m, 1H, CH₂CH₂O), 1.91-2.11 (m, 1H, CH₂CH₂O), 3.56 (d, J = 19.5 Hz, 1H, H-4), 3.60 (d, J = 19.5 Hz, 1H, H-4), 3.74 (td, J = 11.6, 0.8 Hz, 2H, CH₂CH₂O), 3.86 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.09 (ddd, J = 11.6, 4.8, 1.2 Hz, 2H, CH₂CH₂O), 4.48-4.52 (br m, 1H, H-1), 4.56 (t, J = 4.8 Hz, 1H, CHO₂), 6.59 (s, 1H, H-8), 6.65 (s, 1H, H-5), 7.18 (s.a., 1H, NH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 25.7$ (CH₂CH₂O), 30.5 (C-1'), 33.0 (C-2'), 35.3 (C-4), 55.6 (C-1), 55.9 (OCH₃), 56.0 (OCH₃), 66.8 (CH₂O), 101.6 (CHO₂), 108.8 (C-8), 110.4 (C-5), 123.1 (C-4a), 126.6 (C-8a), 147.8 (C-6), 148.3 (C-7), 171.4 (CO) ppm. HRMS calcd. for $C_{17}H_{23}NO_5 [M + H]^+$: 322.1655; found 322.1650.

2-Benzyl-4,5-dimethoxyphenylacetamide (8): Operating as described in the general procedure, from 5c (100 mg, 1.17 mmol) in THF (2 mL) and NH₃ (30 mL) a residue was obtained. Flash chromatography (EtOAc) afforded **8** (20 mg, 28%). IR (KBr): v = 1629, 2933 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 3.44$ (s, 2H, *C*H₂CO), 3.81 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.93 (s, 2H, CH₂Ar), 5.20 (s, 1H, NH₂), 5.90 (s, 1H, NH₂), 6.70 (s, 1H, H-3), 6.75 (s, 1H, H-6), 7.10-7.25 (m, 5H, ArH) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 38.8$ (CH₂Ar), 40.2 (CH₂CO), 55.9 (OCH₃), 56.0 (OCH₃), 113.8 (C-3), 114.2 (C-6), 125.5 (C-1), 126.3 (C-*p*), 128.5 (C-*m*), 128.6 (C-*o*), 131.6 (C-2), 140.3 (C-*i*), 147.8 (C-4), 148.3 (C-5), 173.9 (CO) ppm. HRMS calcd. for C₁₇H₁₉NO₃ [M + H]⁺: 286.1443; found 286.1437.

General Procedure for the NaBH₄–I₂ Reduction Reactions: A solution of iodine (1 equiv) in THF was slowly added to a cooled (0 °C) suspension of NaBH₄ (2.5 equiv) in anhydrous THF, and the mixture was stirred at this temperature for 30 min. Then, a solution of lactam **6** (1 equiv) in THF was added to the solution (0 °C). The resulting mixture was refluxed for 16 h and cooled to 0°C. MeOH (4 mL) was slowy added, and the stirring was continued at room temperature for 30 min. The solvent was evaporated, and the resulting solid was digested with 2N NaOH (30 min). The resulting

suspension was extracted with CH₂Cl₂, the combined organic extracts were dried and concentrated, and the residue was chromatographed.

(-)-Salsolidine (7a): Following the above general procedure, from lactam 6a (100 mg, 0.45 mmol) in THF (5 mL), NaBH₄ (42.6 mg, 1.13 mmol) in THF (5 mL), and I₂ (114 mg, 0.45 mmol) in THF (4 mL), tetrahydroisoquinoline 7a (65 mg, 70%) was obtained as an oil after flash chromatography (9:1 EtOAc–EtOH). $[\alpha]^{22}{}_{\rm D} = -58.5$ (c = 0.50, EtOH) {lit:.^[Ib] $[\alpha]^{24}{}_{\rm D} -62.5$ (c = 0.1, EtOH)}. IR (KBr): v = 3217 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, 25°C): $\delta = 1.43$ (d, J = 6.5 Hz, 3H, CH₃), 1.78 (br s, 1H, NH), 2.60-2.68 (dt, J = 16.0, 4.8 Hz, 1H, H-4), 2.74-2.84 (ddd, J = 16.0, 8.4, 5.4 Hz, 1H, H-4), 2.99 (ddd, J = 13.0, 8.4, 4.8 Hz, 1H, H-3), 3.24 (ddd, J = 13.0, 4.8 Hz, 1H, H-3), 3.87 (s, 6H, 2OCH₃), 4.04 (q, J = 6.5 Hz, 1H, H-1), 6.57 (s, 1H, H-8), 6.62 (s, 1H, H-5) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 22.8$ (CH₃), 29.5 (C-4), 41.8 (C-3), 51.2 (C-1), 55.8 (OCH₃), 55.9 (OCH₃), 109.0 (C-8), 111.7 (C-5), 126.8 (C-4a), 132.5 (C-8a), 147.2 (C-7), 147.3 (C-6) ppm.

(1S)-1-Ethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

(7b): Following the above general procedure, from lactam 6b (91 mg, 0.39 mmol) in THF (10 mL), NaBH₄ (36 mg, 1.1 mmol) in THF (4 mL), and I_2 (99 mg, 0.39 mmol) in THF (4 mL), tetrahydroisoquinoline 7b (52 mg, 60%) was obtained as an oil after flash chromatography using a cartridge containing amine functionalized silica (7:3 hexane–EtOAc to EtOAc). $[\alpha]_{D}^{22} = -$ 47.4 (c = 0.3, CH₂Cl₂) {lit.:^[25] [α]²²_D -51.9 (c 2.1, CH₂Cl₂)}. IR (KBr): $v = 2930 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 1.02$ $(t, J = 7.6 \text{ Hz}, 3\text{H}, \text{CH}_3), 1.67-1.78 \text{ (m, 1H, CH}_2), 1.90 \text{ (dddd, } J =$ 14.4, 7.2, 7.2, 3.2 Hz, 1H, CH₂), 2.40 (s, 1H, NH), 2.67 (dt, J =16.2, 5.2 Hz, 1H, H-3), 2.77 (dt, J = 16.2, 6.0 Hz, 1H, H-3), 2.98 (ddd, J = 12.4, 7.6, 4.8 Hz, 1H, H-4), 3.24 (dt, J = 12.4, 5.2 Hz, 1H, H-4), 3.85 (s, 6H, 2OCH₃), 3.85 (m, 1H, H-1), 6.57 (s, 1H, H-8), 6.62 (s, 1H, H-5) ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): δ = 10.9 (CH₃), 29.0 (CH₂), 29.4 (C-4), 41.1 (C-3), 55.8 (OCH₃), 56.0 (OCH₃), 56.7 (C-1), 109.2 (C-8), 111.7 (C-5), 127.1 (C-4a), 131.0 (C-8a), 147.2 (C-7), 147.3 (C-6) ppm. HRMS calcd. for C₁₃H₁₉NO₂ $[M + H]^+$: 222.1494; found 222.1488.

(-)-Norcryptostyline II (7d): Following the above general procedure, from lactam 6d (90 mg, 0.26 mmol) in THF (3 mL), NaBH₄ (24.8 mg, 0.66 mmol) in THF (4 mL), and I₂ (66.5 mg, 0.26 mmol) in THF (3 mL), tetrahydroisoquinoline 7d (58 mg, 69%) was obtained as a yelow oil after flash chromatography using a cartridge containing amine functionalized silica (1:1 hexane-EtOAc). $[\alpha]_{D}^{22} = -33.8$ (c = 0.36, CHCl₃) {lit.: $[\alpha]_{D}^{18} = -37$ (c 0.26, CHCl₃). IR (KBr): v = 2923 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 2.75 (dt, *J* = 15.2, 4.4 Hz, 1H, H-4), 2.96 (ddd, J = 15.2, 4.8, 4.8 Hz, 1H, H-4), 3.06 (ddd, J = 13.2, 8.8, 4.8 Hz, 1H, H-3), 3.24 (ddd, J = 13.2, 4.8 Hz, 1H, H-3), 3.65 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.87 (s, 6H, OCH₃), 5.00 (s, 1H, H-1), 6.27 (s, 1H, H-8), 6.62 (s, 1H, H-5), 6.79 (s, 1H, H-2'), 6.80 (s, 1H, H-6'), 6.82 (s, 1H, H-5') ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): δ = 29.1 (C-4), 42.1 (C-3), 55.8 (OCH₃), 55.9 (OCH₃), 56.0 (OCH₃), 61.3 (C-1), 110.7 (C-2'), 110.9 (C-5'), 111.4 (C-8), 111.8 (C-5), 121.3 (C-6'), 127.4 (C-4a), 129.8 (C-8a), 136.9 (C-i), 147.0 (C-6), 147.7 (C-4'), 148.4 (C-7), 149.0 (C-3') ppm. HRMS calcd. for $C_{19}H_{23}NO_4 [M + H]^+$: 330.1705; found 330.1691.

(-)-Norcryptostyline III (7e): Following the above general procedure, from lactam 6e (92 mg, 0.25 mmol) in THF (3 mL), NaBH₄ (23.3 mg, 0.62 mmol) in THF (4 mL), and I₂ (70.8 mg, 0.25 mmol) in THF (3 mL), tetrahydroisoquinoline 7e (52 mg, 58%) was obtained as a yelow oil after flash chromatography using a cartridge containing amine functionalized silica (7:3 Et₂O-EtOAc). $[\alpha]_{D}^{22} = -45.7 \ (c = 0.11, \text{ CHCl}_{3}) \ \{\text{lit.:}^{[16a]} \ [\alpha]_{D} \ -37.0 \ (\text{CHCl}_{3})\}.$ IR (KBr): $v = 2919 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃, 25°C): $\delta =$ 2.74 (dt, J = 15.6, 4.5, 3.9 Hz, 1H, H-4), 2.90-3.00 (m, 1H, H-4), 3.07 (ddd, J = 11.7, 7.8, 3.9 Hz, 1H, H-3), 3.26 (dt, J = 11.7, 5.1)4.5 Hz, 1H, H-3), 3.68 (s, 3H, OCH₃), 3.81 (s, 6H, 2CH₃O), 3.85 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 5.01 (s, 1H, H-1), 6.26 (s, 1H, H-8), 6.47 (s, 2H, H-2', H-6'), 6.63 (s, 1H, H-5) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): δ = 27.9 (C-4), 41.5 (C-3), 55.8 (OCH₃), 56.0 (OCH₃), 56.2 (OCH₃), 60.8 (OCH₃), 61.2 (C-1), 106.4 (C-2', C-6'), 110.8 (C-8), 111.3 (C-5), 126.7 (C-4a), 129.8 (C-8a), 137.7 (C-1'), 147.4 (C-6), 148.2 (C-7), 153.2 (C-3', C-4', C-5') ppm. HRMS calcd. for $C_{20}H_{25}NO_5[M + H]^+$: 360.1809; found 360.1809.

(-)-O,O-Dimethylcoclaurine (7f): Following the above general procedure, from lactam 6f (200 mg, 0.6 mmol) in THF (3 mL), $NaBH_4$ (58 mg, 1.5 mmol) in THF (4 mL), and I_2 (152 mg, 0.8 mmol) in THF (3 mL), tetrahydroisoquinoline 7f (111 mg, 59%) was obtained as a yelow oil after flash chromatography using a cartridge containing amine functionalized silica (8:2 to 1:1 hexane-EtOAc). $[\alpha]_{D}^{22} = -11.8$ (c = 0.5, CHCl₃) {lit.: $[\alpha]_{D}^{22} = -19.9$ (c 1, CHCl₃)}. IR (KBr): $v = 2932 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃, 25° C): $\delta = 2.64-2.79$ (m, 1H, H-3), 2.73 (ddd, J = 11.6, 6.0, 6.0 Hz, 1H, H-4), 2.86 (dd, J = 14.0, 9.5 Hz, 1H, CH₂Ar), 2.91 (ddd, J =12.0, 6.0, 5.6 Hz, 1H, H-3), 3.15 (dd, J = 14.0, 4.5 Hz, 1H, CH₂Ar), $3.20 \text{ (ddd, } J = 11.6, 11.6, 5.6 \text{ Hz}, 1\text{H}, \text{H-4}\text{)}, 3.80 \text{ (s, 1H, OCH}_3\text{)},$ 3.82 (s, 1H, OCH₃), 3.86 (s, 1H, OCH₃), 4.11 (dd, J = 9.5, 4.5 Hz, 1H, H-1), 6.59 (s, 1H, H-8), 6.63 (s, 1H, H-5), 6.86 (d, J = 8.5 Hz, 2H, H-3'), 7.16 (d, J = 8.5 Hz, 2H, H-5') ppm. ¹³C NMR (100.6 MHz, CDCl₃, 25°C): $\delta = 29.5$ (C-4), 40.7 (CH₂Ar), 41.5 (C-3), 55.3 (OCH₃), 55.8 (OCH₃), 55.9 (OCH₃), 56.9 (C-1), 109.4 (C-8), 111.8 (C-5), 114.0 (C-3'), 127.3 (C-4a), 130.3 (C-2'), 130.5 (C-1'), 131.0 (C-8a), 147.0 (C-7), 147.4 (C-6), 158.3 (C-4') ppm. HRMS calcd. for $C_{19}H_{23}NO_3[M + H]^+$: 314.1756; found 314.1743.

(1S)-6,7-Dimethoxy-1-phenylethyl-1,2,3,4-

tetrahydroisoquinoline (7g): Following the above general procedure, from lactam 6g (250 mg, 0.8 mmol) in THF (3 mL), NaBH₄ (76 mg, 2.0 mmol) in THF (4 mL), and I₂ (203 mg, 0.8 mmol) in THF (3 mL), tetrahydroisoquinoline 7g (183 mg, 77%) was obtained as a colourless oil after flash chromatography (SiO₂ previously washed with 8:2 Et₃N-EtOAc; 8:2 to 1:1 Et₂O-EtOAc as eluent). $[\alpha]_{D}^{22} = -23.4$ (*c* = 0.25, CHCl₃). IR (KBr): v = 2955 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 2.04-2.17 (m, 2H, CH₂), 2.66-2.89 (m, 4H, CH₂Ar, H-4), 3.02 (ddd, J = 12.0, 7.2, 5.6 Hz, 1H, H-3), 3.27 (ddd, J = 12.0, 5.6, 5.6 Hz, 1H, H-3), 3.82 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.00 (dd, J = 8.0, 2.8 Hz, 1H, H-1), 6.57 (s, 2H, H-5, H-8), 7.17-7.31 (m, 5H, ArH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): $\delta = 29.1$ (CH₂Ar), 32.4 (C-4), 38.1 (CH₂), 40.9 (C-3), 55.1 (C-1), 55.8 (OCH₃), 56.0 (OCH₃), 109.2 (C-8), 111.8 (C-5), 125.9 (C-4'), 127.0 (C-4a), 128.4 (C-2', C-3'), 128.5 (C-8a), 142.2 (C-4'), 147.3 (C-6), 147.4 (C-7) ppm. HRMS calcd. for $C_{19}H_{23}NO_2 [M + H]^+$: 298.1807; found 298.1802.

(1S)-1-[2-(1,3-Dioxan-2-yl)ethyl]-6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline (9): LiAlH₄ (96 mg, 2.54 mmol) was slowly added to a suspension of AlCl₃ (113 mg, 0.85 mmol) in THF (6 mL) at -78 °C and the mixture was stirred for 2 h. Then, a solution of tetrahydroisoquinolone 5i (170 mg, 0.39 mmol) in anhydrous THF (6 mL) was slowly added. The stirring was continued at -78 °C for 20 h, and the reaction was quenched with water. The aqueous layer was extracted with CH2Cl2, and the combined organic extracts were dried and concentrated to give a residue, which was chromatographed (Et₂O to 1:1 Et₂O-EtOAc) to afford tetrahydroisoquinoline 9 (144 mg, 87%). $[\alpha]_{D}^{22} = -37.1$ (c = 1.03, CHCl₃). IR (KBr): v = 3399 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 1.26-1.31$ (m, 1H, C1CH₂), 1.49-1.52 (m, 1H, OCH₂CH₂), 1.53-1.62 (m, 1H, CH₂CHO₂), 1.76-1.82 (m, 1H, CH2CHO2), 1.83-1.93 (m, 1H, OCH2CH2), 1.97-2.09 (m, 1H, C1CH₂), 2.27 (s, 1H, OH), 2.43 (dd, J = 17.0, 5.0 Hz, 1H, H-4), 2.97 (ddd, J = 17.0, 12.0, 6.0 Hz, 1H, H-4), 3.20 (dd, J = 13.5, 6.0 Hz, 1H, H-3), 3.31 (dd, J = 13.5, 5.0 Hz, 1H, H-3), 3.37 (dd, J = 9.6, 4.4 Hz, 1H, H-1), 3.64-3.67 (m, 2H, 2OCH2CH2), 3.68-3.73 (m, 1H, CHAr), 3.75 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.81-3.86 (m, 2H, 2OCH₂CH₂), 3.95 (dd, J = 10.8, 6.0 Hz, 1H, CH₂OH), 4.05 (dd, J = 10.8, 4.8 Hz, 1H, CH₂OH,), 4.40 (t, J = 4.8 Hz, 1H, CHO₂), 6.28 (s, 1H, H-8), 6.55 (s, 1H, H-5), 7.28-7.29 (m, 5H, ArH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): $\delta = 22.5$ (CH₂CH₂O), 25.6 (C-4), 30.7 (C-1'), 32.1 (C-2'), 39.0 (C-3), 55.6 (OCH₃), 55.7 (OCH₃), 57.6 (C-1), 64.0 (CH₂OH), 64.5 (CHAr), 66.6 (OCH₂CH₂), 102.1 (CHO₂), 110.5 (C-8), 111.3 (C-5), 125.4 (C-4a), 127.4 (C-p), 128.2 (C-o), 128.6 (C-m), 130.3 (C-8a), 140.9 (C-i), 146.9 (C-6), 147.1 (C-7) ppm. HRMS calcd. for $C_{25}H_{33}NO_5$ [M + H]⁺: 428.2437; found 428.2424.

(S)-(-)-Crispine A: A solution of tetrahydroisoquinoline 9 (110 mg, 0.26 mmol) in EtOH (12 mL) and 1.0 M aqueous HCl (0.5 mL) containing 10% Pd-C (15 mg) was hydrogenated with vigorous stirring at room temperature and atmospheric pressure for 3 days. The catalyst was removed by filtration, the solvent was concentrated under vacuum, and the resulting oil was chromatographed using a cartridge containing amine functionalized silica (1:1 hexane-EtOAc) to give crispine A (45 mg, 74%). $[\alpha]^{22}$ = -100.1 (c = 0.32, CHCl₃) {lit.:^[26] [α]²²_D -96 (c 0.25, CHCl₃)}. IR (KBr): $v = 2922 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta =$ 1.69-1.78 (m, 1H, H-1), 1.82-1.99 (m, 2H, H-2), 2.30-2.38 (m, 1H, H-1), 2.63 (ddd, J = 17.0, 8.0, 8.0 Hz, 1H, H-6), 2.69 (m, 1H, H-5), 2.74 (m, 1H, H-3), 3.00 (ddd, J = 12.4, 9.6, 5.6 Hz, 1H, H-3), 3.07 (ddd, J = 17.0, 8.0, 4.0 Hz, 1H, H-6), 3.18 (dddd, J = 17.2, 11.2)6.4, 2.8 Hz, 1H, H-5), 3.49 (m, 1H, H-10b), 3.85 (s, 6H, OCH₃), 6.57 (s, 1H, H-10), 6.61 (s, 1H, H-7) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25°C): δ = 22.3 (C-2), 27.9 (C-6), 30.6 (C-3), 48.2 (C-3), 53.1 (C-5), 55.9 (OCH₃), 56.0 (OCH₃), 62.8 (C-10b), 108.8 (C-10), 111.3 (C-7), 126.1 (C-6a), 130.5 (C-10a), 147.3 (C-8), 147.4 (C-9) ppm. HRMS calcd. for $C_{14}H_{19}NO_2 [M + H]^+$: 234.1494; found 234.1486.

Acknowledgments

Financial support from the Ministry of Science and Innovation, Spain (Project CTQ2009-07021/BQU), and the AGAUR, Generalitat de Catalunya (Grant 2009-SGR-111) is gratefully acknowledged.

1985; b) Handbook of Natural Products Data, Vol. 3 (Ed.: Atta-ur-Rahman), Elsevier, Amsterdam, **1994**. c) D. Jack, R. Williams, *Chem. Rev.* **2002**, 1669–1730; d) P. M. Dewick in *Medicinal Natural Products*, Wiley, Chichester, **2002**, pp. 315–346; e) K. W. Bentley, *Nat. Prod. Rep.* **2006**, *23*, 444–463 and previous reviews in this series.

- [2] For reviews, see: a) E. Anakabe, D. Badía, L. Carrillo, E. Reyes, J. L. Vicario, "Chiral β-Aminoalcohols and Derivatives in the Asymmetric Synthesis of Tetrahydroisoquinolines" in *Targets in Heterocyclic Systems*, (Eds.: O. A. Attanasi, D. Spinelli), Italian Society of Chemistry, **2002**, Vol. 6, pp. 270–311; b) J. L. Vicario, D. Badía, L. Carrillo, J. Etxebarria, *Curr. Org. Chem.* **2003**, *7*, 1775–1792; c) M. Chrzanowska, M. D. Rozwadowska, *Chem. Rev.* **2004**, *104*, 3341–3370; d) E. L. Larghi, M. Amongero, A. B. J. Bracca, T. S. Kaufman, *Arkivoc* **2005** (xii), 98–153; e) Z. Czarnocki, A. Siwicka, J. Szawkato, *Curr. Org. Chem.* **2005**, *2*, 301–331.
- For reviews on the use of aminoalcohol-derived oxazolopiperidone [3] lactams: a) A. I. Meyers, G. P. Brengel, Chem. Commun. 1997, 1-8; b) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000, 56, 9843-9873. c) C. Escolano, M. Amat, J. Bosch, Chem. Eur. J. 2006, 12, 8198-8207; d) S. N. Gaskell, L. J. Duffy, S. M. Allin, Nat. Prod. Commun. 2008, 3, 1825-1838. For more recent work, see: e) M. Amat, O. Bassas, N. Llor, M. Cantó, M. Pérez, E. Molins, J. Bosch, Chem. Eur. J. 2006, 12, 7872-7881; f) M. Amat, M. M. M. Santos, O. Bassas, N. Llor, C. Escolano, A. Gómez-Esqué, E. Molins, S. M. Allin, V. McKee, J. Bosch, J. Org. Chem. 2007, 72, 5193-5201; g) M. Amat, R. Griera, R. Fabregat, J. Bosch, Angew. Chem. Int. Ed. 2008, 47. 3348-3351; h) M. Amat, A. Gómez-Esqué, C. Escolano, M. M. M. Santos, E. Molins, J. Bosch, J. Org. Chem. 2009, 74, 1205-1211; i) M. Amat, N. Llor, B. Checa, E. Molins, J. Bosch, J. Org. Chem. 2010, 75, 178-189; j) M. Amat, M. Pérez, S. Proto, T. Gatti, J. Bosch, Chem. Eur. J. 2010, 16, doi: 10.1002/chem.201000421.
- [4] T. C. Coombs, M. D. Lee, IV, H. Wong, M. Armstrong, B. Cheng, W. Chen, A. F. Moretto, L. S. Liebeskind J. Org. Chem. 2008, 73, 882–888.
- [5] For related approaches from oxazolotetrahydroisoquinolines, see: a)
 M. Yamato, K. Hashigaki, N. Qais, S. Ishikawa, *Tetrahedron* 1990, 46, 5909–5920; b)
 K. Hashigaki, K. Kan, N. Qais, Y. Takeuchi, M. Yamato, *Chem. Pharm. Bull.* 1991, 39, 1126–1131; c)
 A.-C. Carbonnelle, V. Gott, G. Roussi, *Heterocycles* 1993, 36, 1763–1769; d)
 K. Umetsu, N. Asao, *Tetrahedron Lett.* 2008, 49, 2722–2725.
- [6] J. M. Gardiner, M. R. Bryce, P. A. Bates, M. B. Hursthouse, J. Org. Chem. 1990, 55, 1261–1266.
- [7] CCDC-770769 (for 2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [8] a) M. Amat, J. Bosch, J. Hidalgo, M. Cantó, M. Pérez, N. Llor, E. Molins, C. Miravitlles, M. Orozco, J. Luque, *J. Org. Chem.* 2000, 65, 3074–3084; b) M. Amat, C. Escolano, A. Gómez-Esqué, O. Lozano, N. Llor, R. Griera, E. Molins, J. Bosch, *Tetrahedron: Asymmetry* 2006, 1581–1588; c) M. Amat, M. Pérez, A. T. Minaglia, D. Passarella, J. Bosch, *Tetrahedron: Asymmetry* 2008, 19, 2406–2410.
- [9] M. Amat, N. Llor, J. Hidalgo, C. Escolano, J. Bosch, J. Org. Chem. 2003, 68, 1919–1928.
- [10] The use of MeMgBr resulted in a lower yield (42%) of the α -amidoalkylation product **5a**.
- [11] For related α-amidoalkylation reactions from oxazolopiperidone lactams, see: M. Amat, C. Escolano, N. Llor, M. Huguet, M. Pérez, J. Bosch, *Tetrahedron: Asymmetry* **2003**, *14*, 1679-1683. See also ref. [8b].
- [12] This behaviour can be explained in terms of stereoelectronic effect: P.–Q. Huang, *Synlett* **2006**, 1133–1149.
- [13] For a review, see: a) T. S. Kaufman, *Tetrahedron: Asymmetry* 2004, 15, 1203–1237. For more recent work, see: b) T. Kanemitsu, Y. Yamashita, K. Nagata, T. Itoh, *Synlett* 2006, 1595–1597; c) F. Werner, N. Blank, T. Opatz, *Eur. J. Org. Chem.* 2007, 3911–3915; d) C. Li, J. Xiao, *J. Am. Chem. Soc.* 2008, 130, 13208–13209.
- [14] For a review, see: A. B. J. Bracca, T. S. Kaufman, *Tetrahedron* 2004, 60, 10575–10610.

a) The Chemistry and Biology of Isoquinoline Alkaloids, (Ed.: J. D. Phillipson, M. F. Roberts, M. H. Zenk), Springer-Verlag, Berlín,

- [15] The α -amidoalkylation failed when using *p*-methoxyphenylzinc iodide, lactam **2** being recovered along with variable amounts of isoquinolone **3**.
- [16] For previous enantioselective syntheses, see: a) A. Brossi, S. Teitel, *Helv. Chim. Acta* **1971**, *54*, 1564–1571; b) M. J. Munchhof, A. I. Meyers, *J. Org. Chem.* **1995**, *60*, 7086–7087; c) H. Suzuki, S. Aoyagi, C. Kibayashi, *Tetrahedron Lett.* **1995**, *36*, 6709–6712; see also refs. [5a,d].
- [17] For previous enantioselective syntheses, see: a) G. Gosmann, D. Guillaume, H.-P. Husson, *Tetrahedron Lett.* **1996**, *37*, 4369–4372; b) V. Samano, J. A. Ray, J. B. Thompson, R. A. Mook, Jr., D. K. Jung, C. S. Koble, M. T. Martin, E. C. Bigham, C. S. Regitz, P. L. Feldman, E. E. Boros, *Org. Lett.* **1999**, *1*, 1993–1996; see also ref. [16a].
- [18] For previous enantioselective syntheses, see: a) N. Yamazaki, H. Suzuki, S. Aoyagi, C. Kibayashi, *Tetrahedron Lett.* **1996**, *37*, 6161–6164; b) R. Pedrosa, C. Andrés, J. M. Iglesias, *J. Org. Chem.* **2001**, *66*, 243–250; c) P. Allef, H. Kunz, *Heterocycles* **2007**, *74*, 421–436; d) M. K. Pyo, D.-H. Lee, D.-H. Kim, J.-H. Lee, J.-C. Moon, K. C. Chang, H. S. Yun-Choi, *Bioorg. Med. Chem. Lett.* **2008**, *18*, 4110–4114.; see also ref. [13c].
- [19] S. V. Kini, M. M. V. Ramana, *Tetrahedron Lett.* 2004, 45, 4171– 4173.
- [20] For the enantioselective synthesis of the enantiomer, see: K. Th. Wanner, I. Praschak, *Heterocycles* 1989, 29, 29–33.
- [21] In this series, the polyallylated compound 1-(2-allyl-2-hydroxy-4-pentenyl)-2-[1-(2-hydroxy-1*R*-phenylethylamino)-3-butenyl]-4,5-dimethoxybenzene (**10**) was isolated as a by-product (39%).
- [22] Treatment of lactam 2 with allyltrimethylsilane in the presence of TiCl₄ or with 2-(1,3-dioxolan-2-yl)ethylzinc iodide led to isoquinolone 3, the starting lactam being partly recovered in the latter case.
- [23] For previous enantioselective syntheses, see: a) T. R. Wu, M. Chong, J. Am. Chem. Soc. 2006, 128, 9646–9647; b) J. Szawkato, S. J. Czarnocki, A. Zawadzka, K. Wojtasiewicz, A. Leniewski, J. K. Maurin, Z. Czarnocki, J. Drabowicz, Tetrahedron: Asymmetry 2007, 18, 406–413; c) S. M. Allin, S. N. Gaskell, J. M. R. Towler, P. C. B. Page, B. Saha, M. J. McKenzie, W. P. Martin, J. Org. Chem. 2007, 72, 8972–8975; d) T. Kanemitsu, Y. Yamashita, K. Nagata, T. Itoh, Heterocycles 2007, 74, 199–203; e) G.-H. Hou, J.-H. Xie, P.-C. Yan, Q.-L. Zhou, J. Am. Chem. Soc. 2009, 131, 1366–1367.
- [24] a) T. Kametani in *The Total Synthesis of Natural Products*, Vol 3 (Ed.: J. ApSimon), Wiley, New York, **1977**, pp.1–272; b) M. J. Munchhof, A. I. Meyers, *J. Org. Chem.* **1996**, *61*, 4607–4610. See also refs. [1a,1d].
- [25] R. P. Polniaszek, C. R. Kaufman, J. Am. Chem. Soc. 1989, 111, 4859–4863.
- [26] I. W. Southon, J. Buckingham, *Dictionary of Alkaloids*, Chapman and Hall, London, **1989**, p 261.

Received: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

Tricyclic (*R*)-phenylglycinol-derived lactam **2** has proven to be a versatile scaffold that provides general access to enantiopure 1-substituted tetrahydroisoquinoline derivatives as well as more complex alkaloids, e.g. (–)crispine A, bearing the tetrahydroisoquionoline moiety. M. Amat,^{*} V. Elias, N. Llor, F. Subrizi, E. Molins, J. Bosch Page No. – Page No.

A General Methodology for the Enantioselective Synthesis of 1-Substituted Tetrahydroisoquinoline Alkaloids

Keywords: Alkaloids / Tetrahydroisoquinolines / Lactams / Phenylglycinol / α-Amidoalkylation

((Key Topic))