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ABSTRACT: 34 
 35 

The synthesis and characterization of a mixed carboxylate paddle-wheel copper complex, with formula 36 

[Cu(μ-Pip)(μ-MeCO2)(MeOH)]2 (Pip = piperonylate or 1,3-benzodioxole-5-carboxylate and MeCO2 = 37 

acetate), is here reported. The described compound is a binuclear complex, each pair of similar 38 

carboxylate ligands occupyingmutually trans bridging positions,while the methanol occupies the apical 39 

positions. The dimers are arranged into 2D layers in the bc plane through a network of O-H⋯O 40 

hydrogen bonds established between themethanol and the acetate ligand. Magnetic studies showed a 41 

strong antiferromagnetic Cu⋯Cu interaction (J = −308 cm−1), in agreement with the presence of four μ-42 

κO-κO′ carboxylates bridging the metallic centers in the binuclear complex. 43 

 44 

 45 

 46 

 47 

 48 

 49 

50 



1. INTRODUCTION 51 

 52 

Copper(II) complexes involving carboxylate ligands are particularly interesting due to the versatility of 53 

this ligand that can adopt different coordinationmodes, thus allowing the building of awide range of 54 

structures [1–5]. The paddle-wheel structure is a very frequent architecture found for binuclear 55 

complexes. Until now, and only considering copper compounds, more than 1300 crystal structures that 56 

contain [Cu2L4] (L = carboxylate) core have been reported [6,7]. In these compounds, carboxylate 57 

ligands occupy the equatorial copper coordination positions, in a syn-syn coordinationmode, 58 

establishing four bridges between themetal centers. Otherwise, the axial positions could be occupied by 59 

a variety of donor molecules. This structure is frequently found in different materials, from discrete 60 

complexes to 1D coordination polymers and in metal organic frameworks. In the vast majority of those 61 

compounds, all carboxylate ligands have the same nature, however, only eight mixed carboxylate 62 

[Cu(L)(L′)(X)]2 have been described [6,8–15], six of them having two acetate anion ligands [9–12, 14, 63 

15]. In a pair of these few examples, the presence of bulky carboxylate ligands could favors the 64 

formation of mixed carboxylates dimers [12,14]. 65 

We are interested in the synthesis of [Cu(Pip)2(X)]2 (Pip = piperonylate, X = solvent) compounds, with 66 

the objective of replacing X for bulky amine derivatives, thus, aiming to build up novel supramolecular 67 

systems with potential applications in catalysis and gas storage/separation. During this investigation, 68 

crystals of [Cu(μ-Pip)(μ-MeCO2)(MeOH)]2 were unexpectedly obtained while using MeOH as solvent 69 

and 1Cu:1Pip molar ratio, a new mixed carboxylate paddlewheel copper complex. Full characterization 70 

of this new compound is here presented, intending to understand the factors that favor the formation of 71 

mixed carboxylate paddle-wheel complexes. In the present case, there is not steric hindrance for the 72 

formation of homoleptic piperonylate, and in fact we have isolated a [Cu(μ-Pip)2(BzPy)]2 paddle wheel 73 

complex [16]. However, reported works discuss the effect of solvent's polarity in the formation of either 74 

the homoleptic or heteroleptic compounds [9]. A heteroleptic compound containing vanillinate and 75 

acetate ligands [Cu2(μ-C8H7O4)(μ-MeCO2)(MeOH)]2 is obtained when working in MeOH, whereas 76 

homoleptic compound [Cu2(C8H7O4)4(H2O)2] is obtained when working in H2O (C8H8O4 = vanillic 77 

acid). In the present work, the designed synthetic method produces bulk quantities of [Cu(μ-Pip)(μ-78 

MeCO2)(MeOH)]2 complex, [17] whose structure is shown in Fig. 1. The obtained product is a green 79 

crystalline powder. The elemental analysis of this sample gives satisfactory C and H values. Moreover, 80 

powder X-ray diffraction shows that the structure of the bulk powder matches the one of the single-81 

crystal, with only a small displacement of the peaks due to the different characterization temperature 82 

applied in the powder (room temperature) and monocrystal (100 K) measurements (Fig. 2). 83 

ATR-FTIR spectrum of this compound shows significant shifts in the ν(C_O) and ν(C\\O) stretching 84 

with respect to the spectra of free ligands, hence confirming the coordination of the Cu(II) to the 85 

carboxylate groups of the Pip and MeCO2 ligands. Additionally, the coordination mode of the 86 

carboxylate groups can be inferred from the difference between the asymmetry and symmetric 87 



vibrations of the COO– groups (Δ = νCOOasym − νCOOsym) [18,19]. The values of the compound 88 

show a bidentate bridging mode for the carboxylate ligands [20–23]. Another characteristic band, 89 

appearing at 3279 cm−1 and assignable to ν(O\\H) vibration, is in agreement with the presence of 90 

MeOH in the complex. The shape and position of this band suggest that the hydroxyl group participates 91 

in a hydrogen bond interaction [22,23]. 92 

The structure was determined by single crystal X-ray diffraction [24]. X-ray studies confirmed that the 93 

compound [Cu(μ-Pip)(μ-MeCO2)(MeOH)]2 has a paddle-wheel binuclear Cu(II) structure, with four 94 

bridging carboxylate ligands in a syn-syn coordination mode (Fig. 1). Each Cu metal atom was 95 

coordinated to five oxygen atoms, four from different carboxylate groups (two of Pip ligands and two of 96 

acetate groups) at the equatorial positions and another oxygen atom fromMeOHmolecule at the apical 97 

position completing the square pyramidal coordination geometry (τ = 0) [25]. The Cu-Ocarbox bond 98 

distances range from 1.9546(17) to 1.9774(18), and the angles O-Cu-O(eq) between 88.45 and 90.72°, 99 

while the Cu-OMeOH bond length is larger than previous with a value of 2.1388(17) Å. The metal 100 

atoms are displaced in the axial direction towards the methanol molecules from the oxygen plane, as 101 

indicated by the Ocarbox-Cu-OMeOH angles, with values in the range from 90.07(7) to 100.29(7)°. The 102 

intramolecular Cu⋯Cu distance is 2.5930(6) Å, which is very similar to values previously reported in 103 

the literature (2.58–2.76 Å) [26–28]. Selected distances and angles are provided in Table 1. 104 

The most important intermolecular interaction present in the compound is the hydrogen bond between 105 

methanol's hydroxyl and one of the oxygens from the acetate ligand (O7-H7O⋯O5, 1.900 Å; O7⋯O5, 106 

2.725 Å; O7-H70-O5, 166.95°). The propagation of these hydrogen bonds defines a two-dimensional 107 

supramolecular network, parallel to the bc plane (Fig. 3, up). The strength of this interaction involves 108 

the approximation of adjacent atoms, and, hence, the formation of O-H7⋯C9 and O-H7···C10 109 

interactions. Furthermore, in these layers weaker CH⋯ O (O1⋯H10B 2.515 Å; O6⋯H10A, 2.555 Å) 110 

interactions can also be found. The dioxole groups protrude perpendicularly to the layer plane, and 111 

alternatively in opposite directions (Fig. 3, down). The layers are stacked in such a manner that dioxole 112 

groups are interleaved, being able to establish C-H⋯O interactions that connect the 2D layers yielding a 113 

3D supramolecular network. Hydrogen atoms of the CH2 coming from the dioxole group (H6A) interact 114 

with acetate's oxygen (O6⋯H6A, 2.506 Å). The same hydrogen atom establishes a weak interaction 115 

with carboxylate oxygen from piperonylate group (O2⋯H6A, 2.655 Å). 116 

Supramolecular networks, with tunable self-organized units, have attracted much attention during the 117 

past years [29–31]. This interest comes from the possibility of fabricate materials with desirable 118 

properties, just by controlling the intermolecular interactions between molecular building units. 119 

Therefore, researchers are focusing on designing new functional complexes with well-defined structures 120 

to accomplish a desired function. In particular, hydrogen bonds play an important role in the formation 121 

of crystal structures [32–34]. The extended 2D supramolecular network of [Cu(μ-Pip)(μ-122 

MeCO2)(MeOH)]2 shows a great number of H-bond interactions. This strong network explains its 123 

insolubility in methanol and in other tested solvents such as H2O, EtOH and DMF. Consequently, 124 



during the substitution of acetate ligands for piperonylate ligands, the formation of that strong networks 125 

of H-bond causes the precipitation of the compound. This fact may prevent the formation of the 126 

homoleptic compound, resulting in an easy isolation of this new mixed carboxylate structure. The mixed 127 

carboxylate [Cu(μ-PhCO2)(μ-MeCO2)(CH3OH)]2 shows a similar 2D supramolecular hydrogen bond 128 

network [10].Methanol also plays a key role in the hydrogen bonding supramolecular 2D network of 129 

[Cu(μ-C8H7O4)(μ-MeCO2)(CH3OH)]2 (C8H7O4 = vanillic acid), in this case interacting with the 130 

phenol groups [9]. 131 

In Fig. 4, the thermal variation of the χpT is presented for the [Cu(μ-Pip)(μ-MeCO2)(MeOH)]2 132 

compound. The bridging carboxylate groups are very efficient in transmitting super-exchange 133 

interactions between paramagnetic centers [31,35,36]. The magnetic susceptibility of this compound 134 

shows a rounded maximum near room temperature which decreases by lowering the temperature, 135 

reaching a minimum at ca. 50 K and a divergence at lower temperatures. This behavior suggests the 136 

presence of a strong antiferromagnetic Cu⋯Cu interaction, as expected fromthe structure of this 137 

compound. The divergence at lowtemperature indicates the presence of a paramagnetic contribution 138 

from a small percentage of impurities (ρ). The magnetic behavior of the compound can be modeled by 139 

the classical Bleaney and Bowers S = ½ dimer model [37]. In order to reproduce the divergence at low 140 

temperature, we have included a paramagnetic contribution (ρ) with the same g value as the Cu(II) ions 141 

in the dimer. The model reproduces very satisfactorily the magnetic properties, in the whole temperature 142 

range, including the divergence at low temperatures with the parameters (g=2.12; J(cm−1)=−308; 143 

ρ(%)=1.13;H=−JSiSi+1). These values also agree with the reported values for many other similar Cu(II) 144 

paddle-wheel dimers, including the original acetate complex (J = −284 cm−1) [38]. 145 

 146 

.147 



2. CONCLUSIONS 148 

 149 

In summary, a binuclear complex based in the piperonylate and acetate ligands, with formula [Cu(μ-150 

Pip)(μ-MeCO2)(MeOH)]2, was prepared and characterized. The compound reported here constitute one 151 

of the very rare examples ofmixed carboxylate paddle-wheel copper dimers (8/1300). The dimeric 152 

complex shows a strong intradimer antiferromagnetic Cu⋯Cu interaction, in agreement with previous 153 

observation in similar dimeric complexes. 154 
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Legends to figures 247 

 248 

Figure 1. ORTEP drawing of [Cu(μ-Pip)(μ-MeCO2)(MeOH)]2, showing all non-hydrogen atoms and 249 

the atom numbering scheme; 50% probability amplitude displacement ellipsoids are shown. 250 

 251 

Figure 2. Comparison of the powder XRD pattern of bulk [Cu(μ-Pip)(μ-MeCO2)(MeOH)]2 (down, 252 

black line) and the pattern simulated from de crystal structure refinement (up, red line). Small 253 

displacement of the peaks was due to the different temperature characterization of the powder (room 254 

temperature) and the monocrystal (100 K). 255 

 256 

Figure 3. Supramolecular 2D network generated by the propagation of the hydrogen bond (green line) 257 

between the hydrogen fromthemethanol (O···H7) and an oxygen atomof the acetate ligand (O5). Only 258 

the hydrogen atoms involved in this intermolecular interaction are displayed for clarity. Up, projection 259 

down the a axis; down, projections down the b axis, left and the c axis, right. 260 

 261 

Figure 4. Thermal variation ofχmT for complex [Cu(μ-Pip)(μ-MeCO2)(MeOH)]2. Solid red line 262 

is the best fit to the S = 1/2 dimer model (see text). 263 
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Table 1 Selected bond lengths (Å) and bond angles (°) values for the [Cu(μ-Pip)(μ-MeCO2) (MeOH)]2 286 

complex. The estimated standard deviations (e.s.d.s.) are shown in parentheses. 287 
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