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Gran Via 585, Barcelona, Spain
(e-mail: fagella@maia.ub.es)

‡ Universität Dortmund, Fachbereich Mathematik Vogelpothsweg 87,
D-44221 Dortmund, Germany

(e-mail: geyer@math.uni-dortmund.de)

(Received 3 July 2001 and accepted in revised form 17 September 2002)

Abstract. We consider the standard family (or Arnold family) of circle maps given
by fα,β(x) = x + α + β sin(x) (mod 2π), for x, α ∈ [0, 2π), β ∈ (0, 1) and its
complexification Fα,β(z) = zeiα exp[ 1

2β(z− 1
z
)]. If fα,β is analytically linearizable, there

is a Herman ring around the unit circle in the dynamical plane of Fα,β . Given an irrational
rotation number θ , the parameters (α, β) such that fα,β has rotation number θ form a curve
Tθ in the parameter plane. Using quasi-conformal surgery of the simplest type, we show
that if θ is a Brjuno number, the curve Tθ can be parametrized real-analytically by the
modulus of the Herman ring, from β = 0 up to a point (α0, β0) with β0 ≤ 1, for which
the Herman ring collapses. Using a result of Herman and a construction in I. N. Baker
and P. Domı́nguez (Complex Variables 37 (1998), 67–98) we show that for a certain set
of angles θ ∈ B \ H, the point β0 is strictly less than 1 and, moreover, the boundary of
the Herman rings with the corresponding rotation number have two connected components
which are quasi-circles, and do not contain any critical point. For rotation numbers of
constant type, the boundary consists of two quasi-circles, each containing one of the two
critical points of Fα,β .

1. Introduction
The standard family of maps of the circle is a two-parameter family given by

fα,β(x) = x + α + β sin(x) (mod 2π),

for x, α ∈ [0, 2π) and β ∈ (0, 1). These maps are simple perturbations of rigid rotations
and it is well understood how their dynamics vary in terms of the parameters α and β.
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FIGURE 1. Rational Arnold tongues in the parameter space of the standard family up to denominator 5. Irrational
tongues for γ = (

√
5 − 1)/2 and θ = 5√2 − 1.

We define the rotation number of fα,β as

θ(fα,β) = 1

2π
lim
n→∞

f n
α,β(x) − x

n

where x is any point in the unit circle T = R/2πZ. In fact, the limit on the right-hand side
is independent of the point x and measures the asymptotic rate of rotation of fα,β . With our
normalization, the rotation number is rational if and only if f has a periodic orbit.

The level sets Tθ of the rotation number θ in the parameter plane have been successfully
studied. These level sets are called the Arnold tongues (see Figure 1). They are curves
connecting {β = 0} with {β = 1} if the rotation number is irrational and they have an
interior if it is rational. We shall be interested in the irrational case.

Maps of the standard family are real-analytic. As a consequence, if the rotation
number θ of a given map fα,β is irrational, fα,β is topologically conjugate to the rigid
rotation rθ (x) = x + 2πθ (mod 2π); i.e. there exists a homeomorphism ϕ : T → T such
that fα,β = ϕ ◦ rθ ◦ ϕ−1. The regularity of ϕ (in the general case of an analytic circle
diffeomorphism f ) has been studied for a long time. If ϕ is analytic, we say that fα,β
is analytically linearizable. Arnold showed in [Ar] that this is the case if we require the
rotation number ρ(fα,β) = θ to satisfy a certain Diophantine condition and additionally
suppose that fα,β is close to the rigid rotation. This result was later improved by Rüssmann,
Herman and Yoccoz.

The sharpest results are due to Yoccoz [Y]. His Global Conjugacy Theorem states that
if θ ∈ H, then any analytic circle diffeomorphism with rotation number θ is analytically
linearizable. The set H of irrational numbers has full Lebesgue measure and includes all
Diophantine numbers. It is strictly included in the set of Brjuno numbers B. (See [PM]
for precise definitions of these sets.) This result is sharp in the following sense: if θ /∈ H,
there exists an analytic circle diffeomorphism f with rotation number θ , such that f is not
analytically linearizable. Yoccoz’s local conjugacy theorem states that if f has rotation
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number θ ∈ B and is close to the rigid rotation, then it is analytically linearizable. For the
standard family, closeness to the rigid rotation translates into having 0 < β < M(θ), where
M(θ) > 0 is possibly very small. For the standard family, the local conjugacy theorem
is sharp. Indeed, it was shown by Geyer [G] that if fα,β is analytically linearizable, then
θ(fα,β) ∈ B.

Hence, from the point of view of analytic linearizability, there are three different types
of irrational curves in the parameter space of the standard family:
(1) if θ ∈ H, all maps in Tθ are analytically linearizable;
(2) if θ ∈ B \ H and (α, β) ∈ Tθ then there exists M(θ) ∈ (0, 1] such that fα,β is

analytically linearizable for 0 < β < M(θ);
(3) if θ /∈ B, no map in Tθ is analytically linearizable.

Observe that in the second case, nothing is said about those maps in Tθ with β > M(θ).
In this paper, we aim to study irrational curves of type 1 and 2. More precisely, given an
irrational curve Tθ such that θ ∈ B, we shall investigate the set of parameters (α, β) ∈ Tθ

such that fα,β is analytically linearizable. In the case θ ∈ H, this set is the whole curve Tθ
but if θ ∈ B \ H, it might, a priori, be a disconnected set.

We are also interested in the regularity of the curves Tθ . It follows from results in
Arnold [Ar] and Herman [Her1] that Tθ is real-analytic if θ satisfies some Diophantine
condition. Using different techniques, Risler [R] proved that if θ ∈ B then Tθ is real-
analytic for 0 < β < N(θ) with some constant N(θ) > 0. These results apply to more
general families of analytic circle diffeomorphisms.

We shall use a complex analytic approach in order to investigate these questions.
Observe that the standard family can be extended to the complex plane where it takes
the form Fα,β(z) = eiαz exp( 1

2β(z − 1
z
)). This is a family of holomorphic self-

maps of C∗, with 0 and ∞ as essential singularities. Maps of this type are studied in
[Ke1, Ko1, Ko2, B, BD, Mak] among others. The dynamics of Fα,β and the complex
parameter space of the standard family are investigated in [F1] and [F2]. Note that Fα,β
is symmetric with respect to the unit circle T which is invariant; i.e. τ ◦ Fα,β = Fα,β ◦ τ
where τ (z) = 1/z. (Note: we use T both for R/2πZ and for {|z| = 1} ⊂ C. The meaning
should always be clear from the context.)

The dynamical plane of a holomorphic map F consists of two totally invariant compo-
nents: the Fatou set F(F ), where the dynamics is stable and the Julia set J (F ) = C\F(F )

where chaotic dynamics occurs. The possible connected components of the Fatou set are
completely classified for maps with a finite number of singular values (singularities of F−1

which may be critical points or asymptotic values) (see [MSS, EL, GK, B, Ke1, Ko2]).
Among these components we find Herman rings. An invariant Herman ring U of F is
a maximal invariant domain conformally equivalent to a round annulus AR = {z ∈ C |
1/R < |z| < R} for some R > 1, on which the dynamics is holomorphically conjugate
to an irrational rigid rotation Rθ (z) = e2πiθ z on AR; i.e. f|U = ϕ ◦ Rθ ◦ ϕ−1 where
θ ∈ R \ Q and ϕ : AR → U is conformal. The number R is unique and the modulus of U
is mod(AR) = π−1 logR.

From this point of view, the question of fα,β being analytically linearizable is equivalent
to asking whether Fα,β has an invariant Herman ring around the unit circle (see Figure 2),
since any analytic conjugacy ϕ of T can be extended to a conformal conjugacy on a
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FIGURE 2. Numerical plot of the dynamical plane of Fα,β , for α = 1.9 and β = 0.5. Points in white are in the
Fatou set. The orbits of the two critical points and the orbit of 1 (the unit circle) have been plotted.

neighbourhood of T, i.e. an annulus. In this case, the Fatou set of Fα,β consists exclusively
of the Herman ring and its pre-images (see [F2] and [G]). If fα,β has irrational rotation
number but is not analytically linearizable, it was shown in [G] that the Julia set of Fα,β
must be the whole plane.

We know that if θ ∈ B \H, maps in Tθ with β small enough have a Herman ring. As we
increase β on the curve Tθ , does this ring collapse at some point before arriving at β = 1?
Or, in an extreme case, does the ring appear and disappear intermittently? We shall see
that the latter situation never occurs.

Our main result in this paper is the following theorem.

THEOREM A. Let (α, β) ∈ Tθ be such that Fα,β has a Herman ring U around T

(of rotation number θ ). Let R ∈ (1,∞) be such that mod(U) = π−1 logR. Then there
exists a real-analytic map

γ : (0,∞) −→ Tθ

t �→ (α(t), β(t))

such that:
(1) for each t ∈ (0,∞), the map Fα(t),β(t) has a Herman ring Ut of modulusπ−1t logR;
(2) the map t �→ β(t) is strictly decreasing;
(3) limt→∞ β(t) = 0;
(4) limt→0 β(t) = β0 ≤ 1; and
(5) for any (α, β) ∈ Tθ such that β ≥ β0, the map Fα,β has no Herman ring.
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From this theorem we conclude that the irrational tongues Tθ are analytically
parametrized by the modulus of the Herman ring up to a certain point (α0, β0) where the
ring collapses. To our knowledge, this does not follow from the general regularity results
mentioned earlier. After the point β0, the ring never appears again. If θ ∈ H, then it
follows from Yoccoz’ global linearization theorem that β0 = 1. The obvious question at
this point is whether the case β0 < 1 ever occurs and if so, for which rotation numbers θ .

Using a result in [Her2], combined with a construction in [BD] and some ideas
from [G], we give a positive answer to this question and additionally obtain information
about the geometry of the Herman rings. (This surgical construction is independently
carried out in [Hen].) The precise statement is as follows.

THEOREM B. For any β0 ∈ (0, 1), there exists α0 ∈ (0, 2π) such that (α0, β0) ∈ Tθ for
some θ ∈ B \H and Fα0,β0 has no Herman ring. Furthermore, if (α, β) ∈ Tθ and β < β0,
the boundary of the Herman ring U of Fα,β consists of two quasi-circles not containing
the critical points of Fα,β .

The geometric properties of Herman rings and the regularity properties of their
boundaries are of independent interest. The following result shows that ‘nice’ rotation
numbers induce nice boundaries.

THEOREM C. Let θ be an irrational number of constant type and let (α, β) ∈ Tθ . Let U
be the Herman ring of Fα,β . Then ∂U consists of two quasi-circles, each one containing a
critical point of Fα,β .

Results similar to Theorems A and C have been proved independently by Henriksen
[Hen] for a family of Blaschke fractions.

There are still many open questions and directions for further research. Recently,
Petersen and Zakeri used ‘trans-quasi-conformal surgery’ to prove that for almost all
rotation numbers the Siegel discs of the quadratic family are Jordan domains containing
the critical point in the boundary [PZ]. If one could transfer their techniques to the Arnold
family, Theorem C could be considerably strengthened. Whether it is possible to have a
Herman ring whose closure contains 0 and ∞ is still an open question about the geometry
of Herman rings. Another interesting open question is whether the Arnold family is a
‘prototype’ for the global linearization theorem, i.e. whether β0 < 1 for all rotation
numbers θ ∈ B \ H. There is, as yet, no explicit prototype family which is known to
have this property.

2. Quasi-conformal surgery and conformal structures
The main tool in all proofs is quasi-conformal surgery, so we shortly recall the relevant
definitions and tools. The standard references for quasi-conformal mappings are [Ah]
and [LV].

By an almost complex structure σ of maximal dilatation K on some open set U , we
mean a measurable field of ellipses in the tangent space of U , centered at 0 and defined
up to multiplication with a non-zero real constant, with the ratio of major and minor axes
bounded by K . Equivalently, one can think of σ as represented by a measurable function
µ : U → C with |µ(z)| ≤ (K−1)/(K+1) < 1 almost everywhere. The precise relation is
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that argµ(z) is twice the angle between the major axis of the ellipse and the imaginary axis,
and |µ(z)| = (K(z) − 1)/(K(z)+ 1) where K(z) is the ratio of the major and minor axes
of the ellipse at z. Two such structures are equivalent if they coincide almost everywhere
in U .

A homeomorphism f : U → V is K-quasi-conformal if it has locally integrable weak
derivatives and satisfies

|fz| ≤ K − 1

K + 1
|fz| almost everywhere.

A map f is K-quasi-regular if it is the local composition g◦h of a holomorphic map g and
a K-quasi-conformal map h. The pull-back of an almost complex structure σ defined on
V by a non-constant quasi-regular map f : U → V is defined as the ellipse field f ∗σ
obtained by pulling back the ellipses by the tangent map at every point where f is
differentiable with a non-zero derivative. (We also say that we transport σ by f .) In terms
of µ, this is

f ∗µ := fz + (µ ◦ f )fz
fz + (µ ◦ f )fz

.

Note that pulling back by holomorphic functions does not increase the maximal dilatation.
The standard complex structure corresponding to µ0 ≡ 0 is a field of circles.
By integration of an almost complex structure we mean the construction of a quasi-
conformal map f on U with f ∗σ0 = σ (respectively µ = fz/fz), almost everywhere.

The well-known measurable Riemann mapping theorem developed by Morrey, Ahlfors
(see [Ah]), Bers and Bojarski states that every almost complex structure is integrable.
Furthermore, if σt is an analytic family of conformal structures on C, the integrating quasi-
conformal maps ϕt , normalized by fixing 0 and 1, depend analytically on t .

3. Proof of Theorem A
Throughout this section, we fix θ ∈ B. Let (α, β) ∈ Tθ be such that Fα,β has a Herman
ring U around T of rotation number θ . We know that this ring must be invariant and the
only doubly-connected component of the Fatou set [B]. Since Fα,β and τ commute, it
follows that U is symmetric with respect to T. Let R ∈ (1,∞) be such that mod(U) =
π−1 logR.

The proof follows ideas from [Man] and the main tool is quasi-conformal surgery of
the simplest type, i.e. a change in the complex structure.

For each t ∈ (0,∞) we shall put a new invariant almost complex structure σt on U ,
and transport it to the whole complex plane by Fα,β . After integrating σt we will obtain
a new map Gt which is quasi-conformally conjugate to Fα,β and whose Herman ring Ũt

has modulus π−1t logR and rotation number θ (see Figure 3). We finally show that the
map Gt (or an affine conjugate of it) is a member of the standard family Fα(t),β(t) and study
the properties of the map t �→ (α(t), β(t)).

We now proceed to make these ideas precise. Let ϕ : AR −→ U be the unique
conformal map such that ϕ−1(1) ∈ R+ which maps the exterior boundary component
of AR onto the exterior boundary component of U . Then ϕ conjugates Fα,β on U to the
rigid rotation Rθ on AR , i.e.

ϕ ◦ Rθ = Fα,β ◦ ϕ.
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FIGURE 3. Commutative diagram summarizing the proof of Theorem A.
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LEMMA 3.1. ϕ is symmetric with respect to T, i.e. ϕ ◦ τ = τ ◦ ϕ. Hence T is ϕ-invariant
and ϕ(1) = 1.

Proof. Define ϕ̃ := τ ◦ ϕ ◦ τ . Both AR and U are symmetric with respect to T, so this is
again a conformal map from AR to U , satisfying ϕ̃−1(1) = τ (ϕ−1(1)) ∈ τ (R+) = R+.
Furthermore, it maps the exterior boundary component of AR onto the exterior boundary
component of U . Since a conformal map of an annulus with this normalization is unique,
we obtain ϕ = ϕ̃. ✷

For t ∈ (0,∞), let φt : ARt −→ AR be the quasi-conformal homeomorphism
φt(z) = z|z|t−1−1. This map commutes with Rθ and satisfies φt(1) = 1. Clearly, T is
invariant under φt and τ ◦ φt = φt ◦ τ .

Let σ0 be the standard complex structure. We define a new complex structure σt in C∗
as follows:

σt =


((ϕφt )

−1)∗(σ0) on U,

(Fn
α,β)

∗(σt ) on F−n
α,β(U) for all n ≥ 1,

σ0 on C∗ \⋃F−n
α,β(U).

We observe that σt has a bounded distortion for any t ∈ R+ and it is invariant by Fα,β

since ϕ ◦ φt conjugates Fα,β to Rθ .
We proceed to integrate this complex structure. By the Measurable Riemann Mapping

Theorem, there exists a unique quasi-conformal homeomorphism ht : C −→ C fixing 0
and 1 and such that (ht )∗(σ0) = σt .

We define Gt := ht ◦ Fα,β ◦ h−1
t . By construction, Gt : C∗ → C∗ is holomorphic and

is conjugate to Fα,β .
Moreover, the map ψt := ht ◦ ϕ ◦ φt : ARt −→ ht (U) is conformal, and it conjugates

Gt on ht (U) to the rigid rotation Rθ on ARt . Hence, Ũt := ht (U) is a Herman ring of
rotation number θ for the map Gt . Clearly, mod(Ũt ) = π−1 logRt = π−1t logR.

LEMMA 3.2. The map Gt is symmetric with respect to T.

Proof. By construction, σt is symmetric with respect to T, hence necessarily the integrating
map is, too. It follows (similarly as in Lemma 3.1) that Gt is also symmetric with respect
to T. ✷

We now want to show that the map Gt (or an affine conjugate of it) is a member of
the standard family. This will follow from the next proposition which we state in a more
general form.

PROPOSITION 3.1. Let G : C∗ → C∗ be a holomorphic map with essential singularities
at 0 and ∞. Suppose that G is symmetric with respect to the unit circle (i.e. Gτ = τG).
Assume, moreover, that G has exactly two simple critical points none of which is on T.
Then,

G(z) = zeiα exp

(
B

(
z − B

Bz

))
where α ∈ (0, 2π) and B ∈ C∗.
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Proof. The map G is a holomorphic map of C∗ of finite type, hence

G(z) = znA exp(P (z) − Q(1/z)),

where P and Q are polynomials with no constant term, of degrees dp, dq ≥ 1 [Ke2].
Since G is a homeomorphism of T and n is the winding number of the image curve of T,
we must have n = 1.

First we impose that G has only two critical points. The derivative is

G′(z) = AeP(z)−Q(1/z)
(

1 + zP ′(z) + Q′(1/z)
z

)
.

Hence, the critical points are the solutions of the following equation:

z2P ′(z) + z + Q′(1/z) = 0. (1)

Now, we know that

Q′(1/z) = Q̃(z)

zdq−1
,

where Q̃ is a polynomial of degree dq − 1 with a non-zero constant term. Hence equation
(1) can be written as

zdq+1P ′(z) + zdq + Q̃(z) = 0.

Since there are only two critical points, this equation must have degree two. Since dq ≥ 1,
we have that dq = 1 and P ′(z) must be a constant. Therefore, dp = 1 and

G(z) = zA exp

(
B

(
z − C

z

))
,

for some A,B,C ∈ C∗.
Writing the symmetry with respect to T explicitly, we obtain

|A|2 exp

(
1

z
(z2(B − BC) + B − BC)

)
≡ 1.

This implies |A| = 1 and B − BC = 0, thus

G(z) = zeiα exp

(
B

(
z − B

Bz

))
for some α ∈ R/2πZ, and some B ∈ C∗. ✷

We return to the proof of Theorem A. It follows from Proposition 3.1 that the map Gt

is of the form

Gt(z) = zeiα(t) exp

(
B(t)

(
z − B(t)

B(t)z

))
where α(t) ∈ R/2πZ and B(t) ∈ C∗.

Observe that, if B(t) ∈ R, the map Gt is a member of the standard family. But, with
the conditions we have imposed, this is not necessarily true. The critical points of Gt are
symmetric with respect to T but they are not necessarily on the negative real line. The next
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step is to compose Gt with a rigid rotation that moves the critical points to the negative
real line or, equivalently, that makes B(t) real.

Let

ρt (w) := |B(t)|
B(t)

w

and define

F̃t (w) := ρ−1
t ◦ Gt ◦ ρt (w) = weiα(t) exp

(
|B(t)|

(
w − 1

w

))
.

This map is an element of the Arnold family with β(t) := 2|B(t)|.
The map F̃t = Fα(t),β(t) has Ut = ρ−1

t (ht (U)) as a Herman ring with rotation number
θ and modulus π−1t logR. This proves the existence of the map γ and the first statement
of Theorem A. We proceed now with the proof of statements (2)–(5).

PROPOSITION 3.2. The map t �−→ (α(t), β(t)) is real-analytic.

Proof. We will first show that t �−→ B(t) is real-analytic, where B(t) is as before (i.e. the
complex parameter of Gt ). The real-analyticity of β(t) = 2|B(t)| is an easy consequence
because B(t) �= 0. Let c̃(t) denote the critical point of Gt inside the unit disc; i.e. one of
the solutions of

B(t)z2 + z + B(t) = 0.

This equation must be equal to

A(t) (z − c̃(t))

(
z − c̃(t)

|̃c(t)|2
)

= 0

for some constant A(t) that makes the coefficient of z equal to 1. After some easy
calculations, one can write it as

−|̃c(t)|2
c̃(t)(1 + |̃c(t)|2)z

2 + z − c̃

(1 + |̃c(t)|2) = 0

and hence

B(t) = −|̃c(t)|2
c̃(t)(1 + |̃c(t)|2) .

Now, if we let c denote the critical point of Fα,β inside the unit disc and since the maps
Fα,β and Gt are conjugate, we have that, for all t ,

c̃(t) = ht (c).

Hence,

B(t) = −|ht (c)|2
ht (c)(1 + |ht (c)|2) .

By the Measurable Riemann Mapping Theorem with dependence on parameters, we know
that the map t �→ ht (c) is real-analytic. Hence t �→ B(t) is also real-analytic in the domain
of definition.

The real-analyticity of t �→ α(t) follows from a similar argument. If we let v = Fα,β(c)

be the critical value of Fα,β inside the unit disc, then ṽ(t) = Gt(c̃(t)) = ht (v) is the critical
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value of Gt in the unit disc. It moves real-analytically with t , again by the Measurable
Riemann Mapping Theorem. Furthermore,

eiα(t) = ṽ(t)c̃(t)−1 exp

(
−B(t)

(
c̃(t) − B(t)

B(t)c̃(t)

))
.

This shows that the left-hand side and thus α(t) moves real-analytically, too. ✷

LEMMA 3.3. The map t �−→ β(t) is injective.

Proof. Suppose β(t1) = β(t2). Since both Fα(t1),β(t1) and Fα(t2),β(t2) have a Herman ring
of rotation number θ , we have that both pairs of parameters belong to the irrational curve
Tθ .

But it is well known that the irrational curves Tθ are graphs in the α–β plane, i.e. there
are no two different points in any irrational curve with the same parameter β (see, e.g.,
[MS, Lemma 4.1, Ch. I]). Hence α(t1) = α(t2). As the Herman rings of Fα(t1),β(t1) and
Fα(t2),β(t2) have modulus π−1t1 logR and π−1t2 logR, respectively, we get t1 = t2. ✷

The following lemma ensures that all maps in the curve Tθ with parameter β less than
the original one have a Herman ring.

LEMMA 3.4. As t tends to ∞, the parameter β(t) tends to 0.

For the proof we shall need the following theorem on conformal mapping of large
annuli.

THEOREM 3.1. [Man, Mc] Let Rn be a sequence of positive numbers that tends to ∞ as
n tends to ∞. Let ψn : ARn → C∗ be a sequence of univalent maps with ψn(1) = 1 and
with the image of ψn separating 0 and ∞. Then, ψn converges to the identity on compact
sets of C∗.

Proof of Lemma 3.4. Consider the sequence of maps

ψt := ht ◦ ϕ ◦ φt : At −→ ht (U),

which are all normalized by ψt (1) = 1, by construction. By Theorem 3.1, this sequence
converges uniformly to the identity on compact sets. Hence, for any M > 0 and any ε > 0,
we can find t0 such that for all t > t0,

|ψt (z) − z| < ε for all z ∈ AM .

This means that, for any M > 0, and for t large enough, the Herman ring Ũ(t) = ht (U)

contains the round annulus AM . Hence, the Herman ring Ut = ρ−1
t (Ũ (t)) also contains

AM for t large enough. Therefore,
1

M
< c(t) < 0

where c(t) = ρ−1
t (ht (c)) is the critical point of Fα(t),β(t) inside the unit disc. Now, as t

tends to infinity, we can make 1/M tend to 0 and hence c(t) tends to 0.
By a computation similar to that of B(t) one can see that

β(t) = 2c(t)

−1 − c(t)2
,

and therefore β(t) tends to 0 as t tends to infinity. ✷
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It follows from this fact and from the injectivity of β(t) (see Lemma 3.3) that β(t)
is strictly decreasing with t . It remains only to see what happens when t tends to 0.
Since no Herman ring may exist for any β ≥ 1 (because at this point Fα,β ceases to
be a homeomorphism), and β(t) is a continuous function, we must have

lim
t→0

β(t) = β0 ≤ 1.

The final point is as follows.

LEMMA 3.5. If β0 < 1, and (α′, β ′) ∈ Tθ are such that β ′ ≥ β0, then Fα′,β ′ has no
Herman ring.

Proof. If there exists β ′ ≥ β0 and F = Fα′,β ′ ∈ Tθ with a Herman ring, then the previous
procedure applied to F shows that there is a non-zero lower bound on the modulus of the
Herman ring of Fα(t),β(t) for any t , contradicting the fact that these moduli tend to zero as
t tends to zero. ✷

This concludes the proof of Theorem A.

4. Proof of Theorem B
An essential ingredient is the following unpublished result of Michel Herman on general
families of circle diffeomorphisms.

THEOREM 4.1. [Her2] Let f be an orientation-preserving C∞-diffeomorphism of
R/2πZ such that no iterate of f + α lifts to the identity map, for any α ∈ R. Then,
there exists α ∈ R such that:
(1) f + α has an irrational rotation number θ ;
(2) f + α = ϕ ◦ rθ ◦ ϕ−1 where ϕ is a quasi-symmetric map of T and ϕ(1) = 1; and
(3) ϕ is not C2.

For any β0 ∈ (0, 1) let α0 be given by Theorem 4.1, taking f = f0,β0 . Then fα0,β0 is a
diffeomorphism of the circle which is quasi-symmetrically conjugate to the rigid rotation
rθ but not C2 conjugate. In particular, Fα0,β0 has no Herman ring.

In what follows we will construct a one-parameter curve of maps of the standard family
Fα(s),β(s) for s ∈ (1,∞), each of them having a Herman ring Us of rotation number θ and
modulus π−1 log s. Observe that, by Theorem A, s �→ (α(s), β(s)) is a reparametrization
of Tθ up to β0 and hence it covers all maps in Tθ with a Herman ring. The boundaries of the
rings Us we construct will be quasi-circles not containing the critical points of Fα(s),β(s).

The idea of the construction is as follows.
We start in the dynamical plane of Fα0,β0 . We make some space around T in order to

glue a round annulus As there. Then we define a new self-map of C∗, Hs , which equals the
rigid rotation Rθ inside As and equals Fα0,β0 (after a change of scale) outside this annulus.
This map is not holomorphic. We construct an Hs-invariant almost complex structure σs

on C∗ to obtain, after applying the measurable Riemann mapping theorem, a holomorphic
map Gs with the desired dynamical properties.

We now proceed to make this construction precise. From now on, let F = Fα0,β0 to
simplify the notation.
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Fix any s ∈ (1,∞) and consider the round annulus As = {1/s < |z| < s}.
Let ϕ : T → T be the quasi-symmetric map that conjugates fα0,β0 to the rigid rotation
rθ .

Define

H(1)
s (z) =

{
sF (z/s) for |z| ≥ s

s−1F(sz) for |z| ≤ s−1

and observe the symmetry τ ◦H(1)
s = H

(1)
s ◦ τ . Note that the previous dynamics of F on T

now occur under H(1)
s on each of the components of the boundary of As which we denote

by C1/s (inner) and Cs (outer). More precisely, it follows that ϕ(zs) (respectively ϕ(z/s))

conjugates quasi-symmetrically H(1)
s on C1/s (respectively Cs ) to Rθ on T.

In order to extend the mapping on the boundary to a mapping on the whole annulus we
need the following standard extension lemma.

LEMMA 4.1. For s > 1, let C(i) and C(o) denote respectively the inner and outer
boundary of the round annulus As = {1/s < |z| < s}. Let ϕ(i) : C(i) → C(i)

and ϕ(o) : C(o) → C(o) be two quasi-symmetric maps symmetric with respect to T,
i.e. satisfying τ ◦ ϕ(i) = ϕ(o) ◦ τ . Then there exists a quasi-conformal map ϕ : As → As

such that:
(1) ϕ|

C(i)
= ϕ(i) and ϕ|

C(o)
= ϕ(o); and

(2) ϕ is symmetric with respect to T i.e. τ ◦ ϕ = ϕ ◦ τ .

One proves this lemma by first extending the maps by Beurling–Ahlfors or Douady–
Earle extension to some small neighbourhood of the boundary curves, so we have a
situation where the boundary maps are real-analytic, though the moduli of the annuli might
be different. One proceeds by applying the extension lemmas from, e.g., [G] or [Kr].
The main idea there is to lift everything by universal coverings to parallel strips, where one
just uses linear interpolation. The whole construction can be made in a symmetric way, so
the resulting map will be symmetric with respect to the unit circle.

We now apply Lemma 4.1 and obtain a quasi-conformal map ϕs : As → As , symmetric
with respect to T and satisfying

ϕs(z) =
{
s ϕ(z/s) for z ∈ Cs

s−1ϕ(z s) for z ∈ C1/s,

which is the map we shall use to glue the rigid rotation into As . Indeed, we finally define
the new map Hs to be

Hs =
{
H

(1)
s on C \ As

ϕ−1
s ◦ Rθ ◦ ϕs on As .

It is easy to check that the two parts match on the boundaries of As and thus Hs is a
continuous map of C∗. Inside As it is quasi-conformal, outside it is analytic, so Hs is
quasi-regular in C∗. Moreover, Hs is symmetric with respect to T and has exactly two
critical points bounded away from As , since the critical points of F were bounded away
from T.
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We now have a map with the desired dynamics. We proceed to construct an invariant
almost complex structure with bounded dilatation ratio, to obtain a holomorphic map
conjugate to Hs . We start by setting the standard complex structure σ0 on As , transported
to As by the quasi-conformal map ϕs . We then transport this structure to the whole plane
using the map Hs . More precisely, define

σs =


(ϕs)

∗σ0 on As

(Hn
s )

∗σs on H−n
s (As) for all n ≥ 1

σ0 on C∗ \⋃∞
n=1 H

−n
s (As).

By construction, σs is invariant under Hs and has a bounded distortion, since ϕs is quasi-
conformal and Hs is holomorphic outside As . Moreover, σs is symmetric with respect
to T.

Applying the measurable Riemann mapping theorem we obtain a unique quasi-
conformal homeomorphism hs : C → C which fixes 0 and 1 and integrates σs . Hence,
the map Gs := hs ◦ Hs ◦ h−1

s is a holomorphic map of C∗ with essential singularities at 0
and ∞. It is easy to check that Gs has a Herman ring which is exactly hs(As). Indeed, Gs

is conformally conjugate to the rigid rotation on this annulus. The conformal conjugacy is
given by ϕs ◦h−1

s . Moreover, if the rotation domain of Gs extended beyond hs(As) then we
could follow the construction backwards and use symmetry to conclude that the original
map F would have a Herman ring around the unit circle, contradicting the fact that ϕ is not
real-analytic.

By construction, Gs is symmetric with respect to the unit circle. Moreover, it is clear
that Gs has only two critical points which are not on the unit circle and, in fact, they
are bounded away from the boundary of the Herman ring, since the critical points of the
original map F were bounded away from the unit circle. Hence, Gs satisfies all hypotheses
in Proposition 3.1. It follows that the map can be written as

Gs(z) = zeiα(s) exp

(
B(s)

(
z − B(s)

B(s)z

))
where α(s) ∈ R/2πZ and B(s) ∈ C∗. As in the proof of Theorem A, we conjugate Gs by
the rotation

ρs(w) = |B(s)|
B(s)

w

and obtain the new map ρ−1
s ◦ Gs ◦ ρs = Fα(s),β(s) which is a member of the standard

family conjugate to Gs . The set Us = ρ−1
s (hs(As)) is a Herman ring of rotation number

θ and modulus π−1 log s, as required.

5. Proof of Theorem C
This theorem follows essentially from the results of [G], combined with Theorem A.
Here is a sketch of the proof. We know from [G] that the map Eθ(z) = e2πiθ zez has
a Siegel disc which is a quasidisc with a critical point on the boundary, because θ is of
constant type. We now choose some invariant curve γ inside the Siegel disc and paste the
dynamics of Eθ outside γ with the dynamics of itself, conjugated by reflection with respect
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to γ , inside γ . The resulting map is an element of the Arnold family with rotation number
θ which has a Herman ring bounded by two quasi-circles containing the critical points.
(This construction is detailed in the aforementioned paper.) Now by Theorem A any two
elements of the Arnold family which have a Herman ring of the same rotation number
are quasi-conformally conjugate. The properties of being a quasi-circle and containing a
critical point are invariant under quasi-conformal conjugation, so Theorem C is proved.
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