
MULTIPLIERS FOR ENTIRE FUNCTIONS AND

AN INTERPOLATION PROBLEM OF BEURLING

JOAQUIM ORTEGA-CERDÀ AND KRISTIAN SEIP

Abstract. We characterize the interpolating sequences for the Bernstein space of entire
functions of exponential type, in terms of a Beurling-type density condition and a Carleson-
type separation condition. Our work extends a description previously given by Beurling in
the case that the interpolating sequences are restricted to the real line. An essential role
is played by a multiplier lemma, which permits us to link techniques from Hardy spaces
with entire functions of exponential type. We �nally present a characterization of the
sampling sequences for the Bernstein space, also extending a density theorem of Beurling.

1. Introduction

In classical work on interpolation in Paley-Wiener-type spaces, one constructs functions
with given values at points along the real line. If instead no a priori assumption is made
about the location of the points at which one interpolates, the nature of the subject changes
in an interesting way, and one is led to combine techniques from entire functions and Hardy
spaces in a nontrivial manner, as shown for example in [LS].
In this paper, we solve such an extended version of an interpolation problem studied by

Beurling [B, pp. 351�365], concerning the classical Bernstein space Bτ (τ > 0), i.e., the
set of all entire functions of exponential type at most τ whose restrictions to the real line
belong to L∞(R). We say that a sequence Λ of distinct points in the complex plane is an
interpolating sequence for Bτ if the interpolation problem f(λk) = ak has a solution f ∈ Bτ
whenever the sequence {ak} satis�es the compatibility condition

sup
k
|ak|e−τ | Imλk| < +∞.

This condition is natural because the Phragmén-Lindelöf principle implies

|f(z)| ≤ ‖f‖L∞(R)e
τ | Im z|

for all functions f ∈ Bτ and z ∈ C. (This inequality also shows that Bτ is complete with
respect to the L∞(R)-norm.) Beurling gave a description of those interpolating sequences
Λ which consist only of real numbers. We shall extend this characterization to arbitrary
complex sequences.
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It is convenient to introduce the following distance function:

σ(z, ζ) =
|z − ζ|

1 + |z − ζ̄|
.

We say that Λ is separated if there exists a number δ > 0 such that σ(λj, λk) ≥ δ whenever
j 6= k. Moreover, Λ is said to satisfy the two-sided Carleson condition if for any disk D
centered on the real axis and of radius r(D), we have∑

λk∈D∩Λ

| Imλk| ≤ Cr(D),

with C independent of D. The smallest such constant C will be referred to as the Carleson
constant of Λ.
In addition, we need an extension of Beurling's notion of upper uniform density. Suppose

Λ is a separated sequence and let A be a positive number. Denote by n+
A(r) the maximum

number of points from Λ to be found in a rectangle of the form {z = x + iy : t < x <
t+ r, |y| < A}, where t is any real number. The upper uniform density of Λ is de�ned to
be

D+(Λ) = lim
A→∞

lim
r→∞

n+
A(r)

r
.

Our main theorem is the following.

Theorem 1. A sequence Λ is interpolating for Bτ if and only if it is separated, satis�es

the two-sided Carleson condition, and D+(Λ) < τ/π.

It is plain to extend Theorem 1 to cover the Paley-Wiener spaces Lpτ , 0 < p ≤ 1, in line
with what is done in [F]. Only a partial extension can be made for Paley-Wiener spaces
with 1 < p < ∞, because of the existence of so-called complete interpolating sequences
[LS].
The Carleson condition and the transition A→∞ in the de�nition of D+(Λ), which are

relevant only if the numbers | Imλk| are unbounded, are the new ingredients as compared to
Beurling's theorem. Neither the necessity nor the su�ciency of the conditions in Theorem 1
are straightforward consequences of the latter result, although the proof of the necessity
(see Section 2 below) builds on a basic idea from Beurling's work.
The most di�cult part and the main novelty of this paper is the proof of the su�ciency

of the conditions in Theorem 1. The main idea is to �reduce� the original interpolation to
a problem which is close to Carleson's classical interpolation problem for H∞ [C]. While
Carleson's original duality proof does not apply, two alternative techniques do: We may
solve the problem via Jones' explicit solution of the ∂̄ equation in a half-plane [J], or we
may apply Earl's elementary method [E], which produces solutions in terms of interpolating
Blaschke products; the Blaschke products of Earl's method are not entire functions, but
they can be corrected in a proper way to give entire functions of desired kind. Both
methods are intrinsically interesting, and will be presented below (see Sections 4 and 5).
The essential ingredient both in transforming the problem and in correcting the Blaschke

products obtained by Earls's method is presented in Section 3: It is an elementary lemma
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on multipliers, playing a role similar to that of the famous multiplier theorem of Beurling
and Malliavin [BM, K]. The applications to the interpolation rest on certain very precise
estimates on the multipliers, which can be obtained by elementary means (contrasting the
Beurling-Malliavin construction) due to the fact that our problem is invariant under real
translations. No claim is made about originality; the construction underlying our multiplier
lemma can certainly be found in di�erent forms at many places in the literature.
Finally, to complete the picture, we present in Section 6 the solution of a correspond-

ing sampling problem, which arises from Beurling's study of balayage of Fourier-Stieltjes
transforms [B, pp. 341�350]. Our presentation here is brief, because the solution is to a
large extent a straightforward extension of Beurling's theorem.

2. The necessity of the conditions in Theorem 1

We start by proving the necessity of separation and the Carleson condition. For any real
number a we set

C+
a = {z ∈ C : Im z > a}, C−a = {z ∈ C : Im z < a}.

If Λ is an interpolating sequence for Bτ , then Λ ∩ C+
a is an interpolating sequence for the

space H∞(C+
a ) of bounded analytic functions in C+

a . To see this, consider Λ′ = C+
a ∩Λ. For

any bounded sequence {ck} set ak = cke
−iτλ′k . Clearly supk |ak|e−τ Imλ′k <∞, and therefore

there is a function g ∈ Bτ such that g(λ′k) = ak. The function f = geiτz is bounded in C+
a

and solves f(λ′k) = ck. Likewise, it is clear that Λ ∩ C−a is an interpolating sequence for
H∞(C−a ). Therefore, by Carleson's interpolation theorem [G, p. 287], we may conclude that
the sequence Λ is hyperbolically separated and veri�es the (one-sided) Carleson condition
in any half-plane C+

a or C−a . This statement is equivalent to the separation and two-sided
Carleson condition of Theorem 1.
We turn to the proof of the necessity of the condition D+(Λ) < τ/π. Let SA denote the

strip | Im z| < A. We begin by noting that the two-sided Carleson condition (or even the
separation) implies the following upper bound on the density outside SA: D

+(Λ \ SA) ≤
K/A, with K a positive constant. Our plan is to show that, on the other hand, for wide
strips SA we have

(1) D+(Λ ∩ SA) ≤ τ/π − C(logA)/A

for some positive constant C. The density condition D+(Λ) < τ/π will then follow by
combining the two estimates for a su�ciently large A.
The proof of (1) will be based on two lemmas of Beurling [B, p. 353], as well as the

Carleson condition. Before stating these lemmas, we need to recall that if Λ is inter-
polating, there exists a positive constant K such that f(λk) = ak can be solved with
‖f‖ ≤ K supk |ak|e−τ | Imλk|; this follows from an argument based on the open mapping
theorem. The smallest such constant K is called the interpolation constant of Λ, and we
denote it by K(Λ). Moreover, for every x ∈ R we set ρ(x,Λ) = supφ |φ(x)|, where φ ranges
over all functions φ ∈ Bτ such that φ(λ) = 0, λ ∈ Λ and |φ(x)| ≤ 1, x ∈ R. Beurling's
lemmas, which we state without proofs, are the following.
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Figure 1. The squares

Lemma 1. If x ∈ R \ Λ, then K(Λ ∪ {x}) ≤
(
1 + 2K(Λ)

)
/ρ(x,Λ).

Lemma 2. Given δ, k and τ , there is a constant C = C(δ, k, τ) such that if Λ is an

interpolating sequence for Bτ with interpolating constant K(Λ) ≤ k and if x ∈ R satis�es

dist(x,Λ) ≥ δ, then ρ(x,Λ) ≥ C.

Lemmas 1 and 2 imply that given an interpolating sequence Λ, we can add a �nite number
of real points to the sequence and still have an interpolating sequence. In addition, the
new interpolation constant has an upper bound which is independent of the position of the
new points, as long as there is a lower bound on the separating distance of the extended
sequence.
Let Q be a positive integer such that Q exceeds the Carleson constant of Λ. For every

x ∈ R we may add Q + 1 real points to the sequence Λ which are at most at distance 1
from x, and such that Λ plus the new Q + 1 points constitute an interpolating sequence.
By keeping a lower bound on the separating distance, we get an upper bound on the
interpolation constant, which is independent of x, and we note that trivially the Carleson
constant remains bounded by Q. Lemma 2 shows that if the distance from x to Λ exceeds
1, we may build a function f ∈ Bτ such that f(x) = 1 and f(λ) = 0 if λ ∈ Λ or λ is one
of the Q + 1 extra points added, with ‖f‖ ≤ M and M independent of x. If the distance
from x to Λ is smaller than 1, we remove the point from Λ closest to x and add instead
Q+ 2 points to Λ in the same way, at the cost of a controlled increase of the interpolation
constant, after which an f with the same properties can be produced. Jensen's formula
applied to f yields in either case∫ A

1

nΛ(x, s)

s
ds+ (Q+ 1) logA ≤ 1

2π

∫ 2π

0

log |f(x+ Aeiθ)| dθ ≤ 2τA

π
+ C,

where nΛ(x, s) is the number of points from Λ in a disk of center x and radius s, and C is
independent of x and A. To make the computation in what follows easier, we replace this
disk by a square as shown in Figure 1. We denote by mΛ(x, s) the number of points from
Λ in this square of side-length

√
2s, and use the trivial inequality mΛ(x, s) ≤ nΛ(x, s) to

obtain ∫ A

1

mΛ(x, s)

s
ds+ (Q+ 1) logA ≤ 2τA

π
+ C.
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We now convolve both sides of the inequality with the normalized characteristic function
(2R + 2A)−1χ[−R−A,R+A](x), R > A, so that we get

1

2R + 2A

∫ R+A

−R−A

∫ A

1

mΛ(x− t, s)
s

ds dt ≤ 2τA

π
− (Q+ 1) logA+ C.

Changing the order of integration on the left-hand side, we obtain the estimate

1

2R + 2A

∫
SA(x,R)

∫ A

1

2

(
1− | Im z|

s

)+

ds dµΛ(z) ≤ 2τA

π
− (Q+ 1) logA+ C,

where SA(x,R) = {z : |Re z−x| < R, | Im z| < A} and µΛ is the counting measure of the
sequence Λ. Therefore,

1

2R + 2A

∫
SA(x,R)

(2A− 2(logA+ 1)| Im z|) dµΛ(z)

≤ 2τA

π
− (Q+ 1) logA+ C +

2

2R + 2A

∫
S1(x,R)

dµΛ(z)

The last term on the right-hand side is uniformly bounded because Λ is separated. Since
Λ satis�es the Carleson condition with constant Q, we get

2A

2R + 2A

∫
SA(x,R)

dµΛ(z) ≤ 2τA

π
− logA+ C ′,

which yields the desired estimate (1) for D+(Λ ∩ SA).

3. A lemma on multipliers

The following notation will be used repeatedly below: We write f . g if there is a
constant K such that f ≤ Kg, and f ' g if both f . g and g . f .

Lemma 3. Suppose U is a subharmonic function of the form

U(z) =

∫ ∞
−∞

[
log |1− z/t|+

(
1− χ[−1,1](t)

)
Re z/t

]
m(t) dt+ C,

m(t) ' 1 and C is any real constant. Then there exists an entire function F with a

separated and real zero set Γ = {γk} 63 0 such that

(2) |F (z)|e−U(z) ' dist(z,Γ)

when | Im z| ≤ 1, and otherwise

(3) | logF (z)− U(z)− iV (z)| ≤ π‖1/m‖∞
| Im z|

for a suitably de�ned analytic branch of logF in respectively C±0 , where V is a harmonic

conjugate of U in C \ R such that V (z) = −V (z̄) for all z ∈ C \ R.
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Proof. Partition the real line into a sequence of disjoint intervals Ij = [xj, xj+1), j ∈ Z,
with x0 = 0, such that ∫

Ij

m(t)dt = 1

for all j, and choose γj ∈ Ij so that

γj =

∫
Ij

tm(t)dt.

The condition m(x) ' 1 ensures that |Ij| ' 1 and that Γ = {γj} is a separated sequence.
Let δγj denote a point mass at the point γj, and set ν =

∑
j δγj , and dµ(t) = dν(t)−m(t)dt.

We choose F such that

log |F (z)| = U(z) +
∑
j

∫ xj+1

xj

log |1− z/t| dµ(t),

where the last sum is convergent, as will become clear shortly. Set h(x) =
∫ x

0
dµ(t) and

H(x) =
∫ x

0
h(t) dt. Observe that

h(xj) = H(xj) = 0

for all j, by the construction of the sequence Γ, and consequently both h andH are bounded
functions, or more precisely, ‖h‖∞ ≤ 1 and ‖H‖∞ ≤ maxj |Ij| ≤ ‖1/m‖∞. Integrating
twice by parts, we get

(4)

∫ xj+1

xj

log |1− z/t| dµ(t) = Re

∫ xj+1

xj

H(t)

(z − t)2
dt−

∫ xj+1

xj

H(t)

t2
dt,

which immediately implies (2). We claim that (4) also implies (3). To see this, note
that because F is an entire function with real zeros satisfying log |F (z)| = log |F (z̄)|, we
may de�ne Im logF in respectively C±0 in such a way that Im logF (z) = − Im logF (z̄) for
z ∈ C \ R. Therefore, since V (z) = −V (z̄) (such a V exists because U(z) = U(z̄)), logF
may be de�ned such that

logF (z)− U(z)− iV (z) =

∫ ∞
−∞

H(t)

(z − t)2
dt−

∫ ∞
−∞

H(t)

t2
dt.

This identity implies (3). �

We make now a �rst step towards solving the interpolation problem by using the mul-
tiplier lemma to construct a function vanishing on the sequence Λ = {λk = ξk + iηk} and
enjoying appropriate estimates. For a given A > 0, set

δA(x) =
1

π

∑
|ηk|≥A

|ηk|
(x− ξk)2 + ηk2

.

By the separation of Λ, it is clear that ‖δA‖∞ → 0 when A → ∞. Set 4ε = τ − πD+(Λ).
We �x A big enough such that ‖δA‖∞ < ε/π.
We may assume for convenience that ηk 6= 0 for all k because Λ may be shifted vertically:

Λ is interpolating if and only if Λ + ia is interpolating, and the density and separation
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conditions of Theorem 1 are also stable under vertical shifts. The Carleson condition
implies

∑
| Imλk/λ

2
k| <∞, and we may therefore de�ne

FΛ(z) =
∏
λk∈Λ

(1− z/λk)ezRe(1/λk).

We denote by B± the two Blaschke products of the sequences Λ ∩ C±0 in the upper and
lower half-planes C±0 . Put

wA(x) =
1

π

∑
|ηk|<A

|ηk|
(x− ξk)2 + η2

k

,

and observe that 2π
(
wA(x) + δA(x)

)
dx is the Riesz measure of the subharmonic function

Φ(z) de�ned as log |FΛ/B
±| in the respective half-planes C±0 .

Set

wA,R(x) =
1

R

∫ R

−R
wA(x+ t)dt,

δA,R(x) =
1

R

∫ R

−R
δA(x+ t)dt

for R > 0, and 4ε = τ − πD+(Λ), and recall that ε > 0 by assumption. By the de�nition
of D+(Λ), it is clear that for each A > 0 we can �nd an R > 0 so that wA,R(x) ≤
(τ − 3ε)/π for all x, and moreover δA,R(x) ≤ ε/π because of our choice of A. Now put
m = τ − ε− πwA − πδA, mR = τ − ε− πwA,R − πδA,R and

UmR
(z) =

∫ ∞
−∞

[
log |1− z/t|+

(
1− χ[−1,1](t)

)
Re z/t

]
mR(t) dt,

and analogously

Um(z) =

∫ ∞
−∞

[
log |1− z/t|+

(
1− χ[−1,1](t)

)
Re z/t

]
m(t) dt.

Then ∣∣Φ(z) + UmR
(z)− (τ − ε)| Im z|

∣∣ . 1.

Indeed, observe �rst that |Um − UmR
| . 1, due to the relation between wA + δA and

wA,R + δA,R. Moreover, h(z) = Φ(z) + Um(z) − (τ − ε)| Im z| =Constant, because h is a
harmonic function such that h(z) . |z|1+ε for all ε > 0, h(z) = h(z̄), and h is bounded on
the real axis.
We apply Lemma 3 to U = UmR

and de�ne G(z) = F (z)FΛ(z). It follows that

(5) |G(z)| ' e(τ−ε)| Im z||B±(z)|

in the respective half-planes C±0 , if the distance from z to Γ is bounded from below.
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We would like to keep a positive distance between Λ and Γ, and this can be achieved by
a small perturbation of Γ. So if necessary, set

F̃ (z) = F (z)
∏
γk∈Γ

1− z/(γk + iδk)

1− z/γk
,

where the δk are chosen so that there is a positive distance between Λ and {γk + iδk} and
|δk| ≤ 1 for all k. Then it follows from (5), the separation of Λ, and the fact that B± are
interpolating Blaschke products, that the function HΛ(z) = F̃ (z)FΛ(z) satis�es

|HΛ(z)| ' e(τ−ε)| Im z|σ(z,Γ), |H ′Λ(λk)| ' e(τ−ε)| Imλk|/(1 + | Imλk|);
here the second estimate is a consequence of the �rst.

4. Solution of the interpolation problem I:

Via Jones' solution of the ∂̄ equation in a half-plane

We present now our �rst solution of the interpolation problem. It will be obtained via
an explicit solution of the ∂̄ equation in a half-plane due to Jones.
We say that a measure µ ∈ M(C) is a two-sided Carleson measure whenever there is a

constant K such that |µ|(D) ≤ Kr(D), where D is any disk of radius r(D) with its center
in the real axis. The smallest such constant K is called the Carleson constant of µ.

Lemma 4. Let µ ∈ M(C) be a compactly supported measure such that e−ε| Im z|dµ(z) is a

two-sided Carleson measure. Then there is a solution u to ∂̄u = µ such that

lim sup
z→∞

|u(z)|e−ε| Im z| <∞ and |u(x)| ≤ C

(
1 +

∫
|z−x|<1

d|µ|(z)

|x− z|

)
for any x ∈ R, where C depends only on ε and on the Carleson constant of µ. In particular,

it does not depend on the support of µ.

Proof. We split the measure µ into two measures µ1 + µ2, where the support of µ1 is
contained in the strip | Im z| ≤ 10, and the support of µ2 is contained in | Im z| ≥ 10. We
solve the problems ∂̄u1 = µ1 and ∂̄u2 = µ2 separately. For the measure µ1 we take as
solution

u1(z) =
1

π

∫
C

sin ε(z − ζ)

ε(z − ζ)2
dµ1(ζ).

Because the support of µ1 is contained in | Im z| ≤ 10, it is plain that u1 has the properties:

lim sup
z→∞

|u1(z)|e−ε| Im z| <∞ and |u1(x)| ≤ C

(
1 +

∫
|z−x|<1

d|µ|(z)

|x− z|

)
.

The problem lies then in solving ∂̄u2 = µ2 with the right estimates.
By hypothesis, dσ = eiεzdµ2 is a Carleson measure in the upper half plane C+

0 . Thus
there is a bounded solution v1 to ∂̄v1 = eiεzdµ2 in C+

0 . This solution can be given explicitly
(see [J]) as

v1(z) =
2i

π

∫
C+

Im ζ

(z − ζ̄)(z − ζ)
exp

(∫
0≤Imw≤Im ζ

(
i

ζ − w̄
− i

z − w̄

)
d|σ|(w)

)
dσ(ζ).
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It has the following properties: It decays as |z|−2 when |z| → ∞, and it is bounded in
a strip of width 2 along the real axis with a bound K depending only on the Carleson
constant of eiεzdµ2. Analogously, there is a solution v2 to the equation ∂̄v2 = e−iεzdµ2

in the lower half-plane with similar estimates. We take as an approximate solution to
∂̄u2 = µ2 the function u2 = φ(z)eiεzv2(z) in the lower half-plane and u2 = φ(z)e−iεzv1(z)
in the upper half-plane, where φ is a cut-o� function which equals 0 in a strip of width one
along the real axis and 1 outside a strip of width 2 along the real axis.
The function u2 has the right growth, but it does not satisfy ∂̄u2 = µ2 because of the

cut-o� function. This can be remedied by correcting u2 with the help of a new function u3

satisfying ∂̄u3 = ∂̄u2 − µ2: Since |∂̄u2| is bounded by a constant times the characteristic
function of two strips which lie along the real axis (containing the support of ∇φ), we
choose

u3(z) =
1

π

∫
1<| Im ζ|<2

sin ε(z − ζ)

ε(z − ζ)2
∂̄u2(ζ) dm(ζ).

We conclude that the function u = u1 + u2 − u3 satis�es the equation ∂̄u = µ and has the
desired growth properties. �

We will now solve the problem f(λ′k) = ak for all �nite subsequences Λ′ ⊂ Λ in such a
way that the bounds on f are independent of the number of points from Λ′. Then by using
a normal family argument, we will obtain a solution to the original interpolation problem
for the in�nite sequence Λ.
We use an extension argument which goes as follows (see [A]): We take the function HΛ

constructed in the previous section and solve the equation

∂̄u =
∑
λk∈Λ′

ak
H ′Λ(λk)

δλk ;

then f = HΛu is a holomorphic function such that f(λk) = ak for all λk ∈ Λ′. Thus what
we need is to �nd a solution u with the restriction |u(x)| ≤ M/ dist(x,Λ′) for x ∈ R and
lim sup|z|→∞ |u(z)|e−ε| Im z| < ∞. This function u is obtained from Lemma 4, because the
measure µ =

∑
λk∈Λ′

ak
H′

Λ(λk)
δλk satis�es the hypothesis of that lemma.

5. Solution of the interpolation problem II:

Via Earl's interpolating Blaschke products

We turn now to the second solution of the interpolation problem. It is divided into two
main steps. We begin by picking a big A > 0 as before, and solve f(λk) = ak with λk ∈ SA
in a standard way, using essentially Lagrange interpolation. Then we solve the problem
g(λk) = ak − f(λk) for λk 6∈ SA and g(λk) = 0 for λk ∈ SA, using Earl's elementary proof
of Carleson's theorem. In both steps, the multiplier lemma plays an essential role.
Set Λ(A) = Λ∩SA. We build the function HΛ(A) in the same way as we constructed HΛ

above. It has the following properties:

|HΛ(A)(z)| ' e(τ−ε)| Im z|σ
(
z,Λ(A)

)
, |H ′Λ(A)(λk)| ' e(τ−ε)| Imλk|/(1 + | Imλk|)

for all z and λk ∈ Λ(A).
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The problem f(λk) = ak for λk ∈ SA is solved by means of the Lagrange-type formula

f(z) =
∑

λk∈Λ(A)

ak
H ′Λ(A)(λk)

HΛ(A)(z)

z − λk
sin ε(z − λk)
ε(z − λk)

.

We next seek to solve the problem h(λk) = bk, λk ∈ Λ \ Λ(A), with h ∈ Bε, where

bk =
(
ak − f(λk)

)
/HΛ(A)(λk).

Then g = f + hHΛ(A) will be a solution of the given interpolation problem.
We set bk,0 = bk, and begin by solving ϕ+

0 (λk) = bk,0e
iελk in H∞ of the upper half-plane

by means of Earl's elementary method. This solution is ϕ+
0 = K sup(|bk|e−ε| Imλk|)B+

0 ,
where B+

0 is an interpolating Blaschke product whose zeros λ′k satisfy σ(λk, λ
′
k) ≤ 1/3,

Imλk ≥ A, and K is a positive constant depending only on the separation and Carleson
constant of Λ (see [G, pp. 308�313]). It follows from Earl's proof that in fact

B+
0 (z) =

∏
Imλk≥A

λ′k
λ′k

(
z − λ′k
z − λ′k

)
.

We solve similarly ϕ−0 (λk) = bke
−iελk in H∞ of the lower half-plane, and obtain then

ϕ−0 = K sup(|bk|eε−| Imλk|)B−0 , where

B−0 (z) =
∏

Imλk≤−A

λ′k
λ′k

(
z − λ′k
z − λ′k

)
,

λ′k satisfy σ(λk, λ
′
k) ≤ 1/3 and K is the same positive constant as above.

Now we correct the solution which is e−iεzϕ+
0 in the upper half-plane and eiεzϕ+

0 in the
lower half-plane. Set

FΛ′(z) =
∏

| Imλk|≥A

(1− z/λ′k)ezRe(1/λ′k),

where Λ′ = {λ′k = ξ′k + iη′k} is the union of the zero sets of the two Blaschke products B±0 ,
and correspondingly

mΛ′(x) =
1

π

∑
λ′k∈Λ′

|η′k|
(x− ξ′k)2 + η′k

2 .

We apply Lemma 3 to the function U = ε| Im z| − log |FΛ′/B±| for which m = ε/π −mΛ′ ,
and set h0 = K sup(|bk|eε| Imλk|)FFΛ′ . We de�ne bk,1 = bk,0 − h0(λk), and observe that it
may be written as

bk,1 = bk,0
(
1− F (λk)FΛ′(λk)e

±εiλk/B±0 (λk)
)

for λk ∈ C±0 . Then because of the special form of the two Blaschke products B±0 , inequality
(3) of Lemma 3 yields

|bk,1/bk,0| ≤ exp

(
π2

A(ε− π‖mΛ′‖∞)

)
− 1.
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Now if A has been chosen so large that the right-hand side is bounded by, say 1/2, this
procedure can be iterated, i.e., we may solve inductively φ±n (λk) = bk,ne

±iελk for n =
1, 2, 3, . . . , and obtain a sequence h1, h2, h3, . . . such that

h(z) =
∞∑
n=0

hn(z),

with convergence in Bε.

6. Extension of Beurling's sampling theorem

We say that Λ = {λn} ⊂ C is a sampling sequence for Bτ if the inequality

sup
z∈C
|f(z)|e−τ | Im z| . sup

λ∈Λ
|f(λ)|e−τ | Imλ|

holds for all f ∈ Bτ . In this section, we shall explain how Beurling's characterization of real
sampling sequences [B, p. 346] can be extended to the case of arbitrary complex sequences.
We introduce again an adequate notion of density. Suppose Λ is separated. Denote

by n−A(r) the minimum number of points from Λ to be found in a rectangle of the form
{z = x + iy : t < x < t + r, |y| < A}, where t is any real number. The lower uniform
density of Λ is de�ned to be

D−(Λ) = lim
A→∞

lim
r→∞

n−A(r)

r
.

Theorem 2. A sequence Λ is sampling for Bτ if and only if there exists a separated

subsequence Λ′ ⊂ Λ such that D−(Λ′) > τ/π.

The su�ciency of this condition is proved by means of Jensen's formula and a charac-
terization of sampling sequences in terms of sets of uniqueness for Bτ . We omit this part
of the proof because it is in essence identical to Beurling's proof for real sequences (see [B,
p. 346]).
We turn to the proof of the necessity. First we show how we can reduce our discussion

to separated subsequences.

Lemma 5. If Λ is a sampling sequence for Bτ , then there exists a separated subsequence

Λ′ ⊂ Λ which is also a sampling sequence for Bτ .

Proof. The lemma is a consequence of a basic Bernstein-type inequality for functions f ∈
Bτ : ∣∣|f(z)|e−τ | Im z| − |f(w)|e−τ | Imw|∣∣ . σ(z, w)‖f‖, for σ(z, w) < 1.

Suppose that Im z ≥ 0 and that f(z) 6= 0. We claim that then∣∣∇(|f(z)|e−τ | Im z|)
∣∣ . |∇feiτz| . ‖f‖/(1 + | Im z|),

from which the Bernstein inequality follows. The �rst inequality is trivial, while the second
follows by an application of Cauchy's formula to the bounded analytic function f(z)eiτz in
the half-plane C+

−1. We argue similarly if Im z < 0. �
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We may assume from now on that Λ itself is separated. Since for any x ∈ R the operator
Tx : Bτ → Bτ de�ned as Txf(z) = f(z − x) is an isometry, we may apply the same
arguments as in [B, Thm 4, p 345] and conclude that if Λ is a sampling sequence, then it
is also a sampling sequence for a slightly bigger space Bτ+δ. Therefore, in order to prove
the theorem it is enough to show that D−(Λ) ≥ τ .
We �nally prove the inequality D−(Λ) ≥ τ . We assume to the contrary that D−(Λ) =

τ − ε for some ε > 0 and show that this leads to a contradiction. Set Sr(t, R) = {x+ iy ∈
C : t ≤ x < t+R, |y| < r} and

G(z) =
∏

λk∈Sr(t,R)

sin
π(z − λk)
R− 2r

,

for R > 2r > 0. Take x∗ to be the maximum of |G(x)| in the interval [t + r, t + R − r),
and note that x∗ is in fact a global maximum of |G(x)| since |G(x)| is an (R− 2r)-periodic
function. De�ne

f(z) =
G(z)

G(x∗)

sin δ(z − x∗)
δ(z − x∗)

,

where δ = ε/2. By our assumptionD−(Λ) = τ−ε, we can �nd a t ∈ R and R > 2r such that
G is of type less than τ−δ. By the Phragmén-Lindelöf principle, |G(z)| ≤ |G(x∗)|e(τ−δ)| Im z|

for all z, and so ‖f‖ = 1 and

|f(λk)|e−τ | Imλk| ≤ 1

δr
.

Since r can be chosen arbitrarily big, we have reached a contradiction.
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References

[A] E. Amar, Extension de fonctions holomorphes et courants, Bull. Sci. Math. 207 (1983), 25�48.
[B] A. Beurling, The Collected Works of Arne Beurling, vol. 2, Birkhäuser, Boston, 1989.
[BM] A. Beurling and P. Malliavin, On Fourier transforms of measures with compact support, Acta Math.

107 (1962), 291�309.
[C] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958),

921�930.
[E] J. P. Earl, On interpolation of bounded sequences by bounded functions, J. London Math. Soc. 2

(1970), 544�548.
[F] K. Flornes, Sampling and interpolation in the Paley-Wiener spaces Lpπ, 0 < p ≤ 1, Publ. Mat. 42

(1998), 103�118.
[G] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[J] P. Jones, L∞ estimates for the ∂̄ problem in a half-plane, Acta. Math. 150 (1983), 137�152.
[K] P. Koosis, Leçons sur le Théorème de Beurling et Malliavin, Les Publications CRM, Montréal, 1996.
[LS] Yu. I. Lyubarskii and K. Seip, Complete interpolating sequences for Paley-Wiener spaces and Mucken-

houpt's (Ap) condition, Rev. Mat. Iberoamericana 13 (1997), no. 2, 361�376.



MULTIPLIERS AND AN INTERPOLATION PROBLEM 13

Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071

Barcelona, Spain

Email address: quim@mat.ub.es

Dept. of Mathematical Sciences, Norwegian University of Science and Technology,

N�7034 Trondheim, Norway

Email address: seip@math.ntnu.no


