MULTIPLIERS AND WEIGHTED 9 ESTIMATES
JOAQUIM ORTEGA-CERIA

ABSTRACT. We study estimates for the solution of the equatian= f in one variable. The new
ingredient is the use of holomorphic functions with precise growth restrictions in the construction
of explicit solutions to the equation.

1. INTRODUCTION

In the present paper we will consider the equatioan= f in one dimension. This equation
plays a key role in the study of many problems in complex analysis and, for this reason has been
extensively studied. It is of particular interest to have good estimates of the sizendérms
of the size off (see [Ber94] for a survey on the state of the art of this problem). The purpose
of this note is to show how a construction of holomorphic functions with very precise growth
restrictions can yield estimates for the solutions todheguation. With this tool we have been
able to obtain new proofs of some well-known results and some new estimates as well.

The most basic estimate is given byihander’s theorem (see §B0, p. 92]):

Theorem (Hormander) Let ¢ be a subharmonic function defined in a dom@irc C such that
A¢ > ¢ for some= > 0. Then there is a solution to the equatiordu = f such that

lue™?ll2 < [1fe=?]l2.

Remark.We write f < g if there is a constank” such thatf < Kg, andf ~ gifboth f < g
andg < f.

We will focus our attention on the case in whi@hs either the disk or the whole plane. When
Q) = C, M. Christ has proved that the solution operator that solve® thguation with minimal
weightedZ? norm is also bounded on weighté&é norms, wherd < p < oo if we assume some
regularity on the weight (see [Chr91]). His theorem is as follows:

Theorem 1 (Christ). Let ¢ be a subharmonic function i@ such that there is a radius > 0
such thatA¢(D) > 1 for any diskD of radiusr. Moreover we assume that¢ is a doubling
measure. Then there is a solutiario the equatiordu = f such that

lue™lly < Ilfe~lp,
forall p € [1, o).
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As M. Christ mentions, the doubling hypothesisAn is not of an essential nature. It can be
relaxed, but nevertheless one has to assume some regulagtypart from the strict subhar-
monicity if one wants to obtaii > estimates for instance. This is clearly seen in the following
example, due to Berndtsson:

Example.Take ¢(z) = X3 - log|z — 1/n|. This is a subharmonic function ib that is
bounded (above and below) 1112 < |z| < 1 and moreovep(1/n) = —oo. Choose any smooth
datum f with support in a small disk lying inside the annulu® < |z| < 1 and such that
fo J(2) dm(z) #0. )

If there is a solution: to the equatio®u = f in D with ||ue™?|| < ||fe™? |, thenu(1/n) =
0 since the right-hand side is finite. In additioans holomorphic outside the support 6f That
means that is identicallyO in a neighborhood ofD. This cannot be so, because- [, udz =
Jp Oudm(z) # 0.

There are more sophisticated examples due to Fornaess and Sibony [FS91] that show that it is
also impossible to have weightdd estimates as in éfmander’s theorem for any > 2 if we
do not assume some regularity on the weight.

In another direction, it is possible to extendirhander’s basic theorem to a larger class of
weights including some non-subharmonic functions. This was done initially by Donnelly and
Fefferman in [DF83] and many others afterwards (see [BC99] and the references therein). A
variant of their theorem (in a particular case of a weight in the disk) is the following:

Theorem. Let ¢ be a subharmonic function in the unit diksuch that its(1 — [z]*)?A¢ > ¢
for some= > 0. Then there is a solution to the equatiordu = f with

[ s am(z) 5 [ 15~ o) dm2)

1— [z
For a simple proof of this case see [BOC95].
If we assume some regularity on the weight, we can extend this redufitrtorms. We require
the Laplacian of the weight to be locally doubling (see section 2 for the precise definition). We
will prove the following:

Theorem 2. Let ¢ be a subharmonic function in the unit diBksuch thatA¢(D(z,r)) > 1 for
somer > 0 whereD(z,r) is any hyperbolic disk with centerc D and radiusr. Moreover we
assume thaf\¢ is a locally doubling measure with respect to hyperbolic distance. Then there is
a solutionu to the equatiordu = f with

/D lu(z) P =% dm(> / £ (2)(1 = |2[*)P e~ dm(z),

1—[z? 1—[2?

foranyp € [1, +00) and

sup [ule™” S sup | F() (1 = [¢])]e~)

Remark.Observe that in the cage € [1,+o00) we could have rewritten the statement of the
theorem if we absorb the factdy (1 —|z|) in the weightp. In this way it will look formally more
similar to Hormander's theorem, but we are allowing weights such(thatz|?)?A¢ > (—1+¢).

In particular, it includes functiong which are not subharmonic.
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This is our main theorem, although the emphasis should be on the method of proof rather than
the new estimates. For instance, it is also possible to show with the same type of proof that
Theorem 1 holds when the measuse is locally doubling instead of doubling.

Our main tool (the multiplier) is a holomorphic function with very precise growth restrictions.

It is constructed in section 3 and it may exist under a less restrictive hypothesis, as in [LM99].
Our construction yields a more precise result that it is needed when we want to obtain estimates
for the 0 equation.

With the same technique we can deal with some degenerate cases when thepigigat-
monic in large parts of the domain. In such a case one has to impose extra conditions on the data
of the equation, as in the following theorem which may be of interest in the study of the so-called
weighted Paley-Wiener spaces.

Definition. A positive Borel measurg in C is atwo-sided Carleson measuvenenever there
is a constant”' > 0 such thatu(D(z,r)) < Cr for all disks of center: € R and any positive
radiusr.

Theorem 3. Let¢ be a subharmonic function i@ such that the measur®¢ is a locally doubling
measure supported in the real line add)(/(z,r)) > 1 for somer > 0 wherel(z,r) is the
interval inR of centerr and radiusr. Consider the equatiofiu = j, wherep is a compactly
supported measure such that®d|u| is a two-sided Carleson measure. Then there is a solution
u with

fmsupfu()e 9 =0 and ol < (14 [ )

2—00 z—x|<1 ’I — Z|
foranyx € R, whereC' does not depend on the supporfu.of

The solutionu to the equationf that we present is fairly explicit. It igot the canonical
solution (i.e. the minimalL? weighted solution). For instance in the case of Theorem 1 our
solutionw is given by an integral kernel

® u(z) = | XIOk(, () dm().

which behaves differently from the canonical one. The kernel for the canonical solution can
sometimes be estimated. If the weighis of the form¢(z) = b(z) and0 < ¢ < V'(z) < ¢,

then the kernek’ of the canonical solution has at most an exponential decay, i.e. there is a
constantA such thatlimsup,_, |k'(z,0)|exp(A|z|) = oo ([Chr91, Proposition 1.18]). The
kernel of our solution has a much faster decay, namely

Proposition 1. Under the hypothesis of Theorem 1 there is a kekiiel() such that the function
u given by(1) is a solution to the equatiofiu = f and for some > 0,

—elz—(J?

e
k ~ .
K 0l =

However, there are some instances in which the canonical kernel has a faster decay than our
solution (whemA¢ is very large).
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The structure of the paper is the following. In section 2 we will prove some basic results on
locally doubling measures which will be needed later. In section 3 we will construct our main
technical tool, the so-called multiplier. We will do so in the disk and in the whole plane. The
proof follows the same lines in both cases. Finally in section 4 we will show how we can use the
multipliers to prove Theorem 2 and a new proof of Theorem 1 in which the doubling condition
onAg is replaced by the locally doubling condition. We will also sketch how the same ideas can
be used to prove Theorem 3 and Proposition 1.

2. LOCALLY DOUBLING MEASURES

In this section we compile some basic facts we need on locally doubling measures. There
are some intersections with the analysis of [Chr91]. Recall that we always work in a d@main
which is either the plane or the disk. When the domai@ the natural distance is Euclidean; in
the case ob) we will work with hyperbolic distance.

Definition. A measureu in Q2 is called aocally doubling measurerhenever there is a constant
C > 1 such thap(B) < Cu(B’), for all balls B C 2 of radius smaller tham, whereB is the
ball with the same center &% and twice its radius.

Example.There are many locally doubling measures that are not doubling. They can grow faster,
for instancedu(z) = el#ldm(z) is a locally doubling measure i equipped with Euclidean
distance, while any doubling measure has at most polynomial growth. Moreover they do not need
to satisfy any strong symmetric condition, for instance the megsure)3dm(z) for Im 2z > 0
and(Im z)?dm(z) for Im z < 0 is locally doubling and it is not doubling.

We start with an elementary lemma which is in fact an alternative description of locally dou-
bling measures.

Lemma 1. Let i, be a locally doubling measure . Then there is & > 0 such that for any
balls B’ C B of radiusr(B’) andr(B) < 1 respectively, we have

<u<8>>” _n(B) _ (u<B>>W
p(B) ) ~r(B) ™ \uB)
Proof. The left inequality is essentially Lemma 2.1 in [Chr91] and the right inequality follows

directly from the definition. The converse is also true. If a measure satisfies the inequalities with
B = 2B'thenitis locally doubling. |

As a consequence of this lemma any locally doubling measure has no atoms. But it is possible
to prove more:

Lemma 2. Given any segmeritC 2 and any locally doubling measuein €2, thenu (1) = 0.

Proof. Assume that this is not the case. Then there is a subinténall such that.(’) > 0
and such that the square of side lenffth that is bisected by’ is inside(? (see figure 1). We
define a doubling measuren the interval/ which is the base of the square that contding he
measure/(A) of any setA C J is defined ag/(A) = u(Ra4), whereR 4 is the set in the square
that projects orthogonally ontd. Sincey is locally doubling, then is doubling, therefore it
has no atoms. This implies that!’) = 0. |
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FIGURE 1

Let us introduce some notations. Lebe a locally doubling measure §awith 1(Q) = +oc.
Definition. For anyz € (2, denote byp(z) the radius such that(B(z, p(z)) = 1.

This is always well defined since for any locally doubling measur®,ithe measure of any
sphere i$) (with the same proof as in Lemma 2). Thus the functiep p(B(z,r)) is continuous
and strictly increasing.

Since the measures that we consider (in Theorems 1, 2 and 3) are all measures such that
w(B(z,7)) > 1 for somer uniformly in z, thenp(z) has an upper bound, but it can be very
small.

The following claim is an immediate consequence of Lemma 1.

Claim 1. Letu be a locally doubling measure such thdt) has an upper bound. Then for any
K > 0 there is aC such thatl /Cx < p(z)/p(w) < Cx whenever

d(z,w) < K max(p(2), p(w)).

Thus the radius of balls of measure one do not change very abruptly. The following estimate
is basic in our analysis:

Lemma 3. If x is a locally doubling measure if?, then there is amn € N such that for any
0>0,

p(z) \"
d < C5 < +o0.
fulég /5p(w)<d(z7w)<1 (d(z, w) ) M(Z) b o
Proof. We split the integral into two. In the first we integrate over the regigiw) < d(z, w) <
p(w). In this regionp(z) ~ p(w), therefore the integral is bounded 6%..(B(w, p(w)). In the
second we integrate over the regipfw) < d(z,w) < 1. We split this into rings of doubling
size and we may estimate it by

k m
3 p(z)
d
0 /2n<tm<2n+1 <2np(w)> w(z),
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wherek is such thatl < 2¥p(w) < 2.

Consider now the balB’ of centerz and radius(z) and the ballB of centerw and radius
Cd(z,w) ~ 2"p(w). The constant’ is chosen in such a way thatd(z, w) > p(z) + d(z, w).
This is always possible, singg€z) and p(w) are equivalent wheneveris close tow. There-
fore B C B, the radius ofB is smaller thanl and we may apply Lemma 1. We estimate
p(2)/(2"p(w)) by (C/u(B(w, 2"p(w)))”, and the integral is bounded by a constant times

5- 1 _ g~ pBw ()™
2 (u(B(w, 27p(w)))™ 1~ 2 (u(B(w, 27 p(w)))™ 1

We apply Lemma 1 to this expression and compare the quotient of measures by the quotient
of radii (we considell = u(B’) = u(B(w, p(w)) as the numerator) and obtain

k (my—1)/~

p(w) )

C < +o00
nz:% (2”p(w)

provided that we choose so thatmy > 1. |

3. THE MULTIPLIERS

The main tool used to prove these results is the construction of the so-called multipliers. These
are holomorphic functions that have very precise growth control. They have been used to solve
some interpolation and sampling problems in several function spaces (see [OCS98], [LS94])
and also the zero sets as in the Beurling-Malliavin theorem (see also [Sei95]). They all boil
down to an approximation of subharmonic functions by the logarithm of entire functions outside
an exceptional set. The most general result of this type is due to LyubargkiMalinnikova,
[LM99], where they do not assume any regularity condition on the Laplacian of the subharmonic
function. However we need a more precise description than theirs on the exceptional set in which
the approximation need not hold.

The following theorem is a result by Lyubarskind Sodin which will serve as a model (see
[LS94] for a proof).

Theorem (Lyubarski-Sodin) Let ¢ be a subharmonic function i€ such that its Laplacian
satisfiesA¢ ~ 1. Then there exists an entire functigrwith a uniformly separated zero s&t f)
(le infmbez(f)’a?gb d(CI,, b) > O) such that

f(2)] = e?®,
when|z —a| > eforall a € Z(f).

In the case of the disk the following theorem from Seip, [Sei95] is the analogue to the multi-
plier lemma of LyubarsKiand Sodin,

Theorem (Seip) Let be a subharmonic function iB such that its Laplacian verifie§l —
|2|?)2Av ~ 1. Then there is a function € H (D), with a uniformly separated zero s&{g), and

l9(2)] = e,

when

ol > cforall a € Z(g).

|[1—az|
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We will need an analogous theorem for locally doubling measur€sand inDD.

Theorem 4. Let ¢) be a subharmonic function if2 such that its Laplaciam\y is a locally
doubling measure, with the properdy,)(D(z, R)) > 1 for all disks of some large radiuB8 > 0.
Then there is a holomorphic functidgnwith zero setZ (k) = A such that

d(z, ) Aot < (A M
ey ~ 1M 5( p<z>>

for some fixed/ € N, whered(z, A) is the distance (in the appropriate metric) fronto A.

Remark. It will follow from the construction ofh thatd(z, A) < p(z), thus|h| ~ e¥ outside a
setE), composed of small disks around the zeroaof;, = Uyea D(A, ep(N)).

With a slight refinement of the construction it is possible to prove that the zerb sat be
chosen in such a way thdt\;, \;) > e max(p(\;), p(};)), for somes > 0 andM can be chosen
to bel, but we won'’t need this here.

We will simultaneously prove Theorem 4 on the multipliers in the disk and in the plane, since
we have to follow the same steps. To begin with, we need a partition of the domain into rectangles
that is well adapted to the measure and the metric.

Lemma 4. Assume thaj: is a locally doubling measure i with u(D(z, R)) > 1. Given
any N € N there is a partition ofQ2 into rectangles{ R;};c; such thatu(R;) = N and if
we denote by, the length of the longer side @t; and[; the length of the smaller side, then

Remark.When(2 is a disk, one has to understand that by “rectangles” we mean rectangles in
polar coordinates. This lemma is basically the partition theorem from [Yul85], but we include a
proof, since the doubling assumption (which is not needed) makes it particularly easy.

Proof. We start by assuming that = 1, the general case follows if we use the same construction
with the measure = i/ N instead of the measure We will first find a partition into rectangles
{R;}icr in such a way that(R;) € N, 1 < u(R;) < C and with the ratio of side-lengths
bounded and’ is the doubling constant. Later on, we will refine this partition in order to obtain
rectangles of mass one.

Recall that there is som& > 0 such thatu(D(z, R)) > 1 for all z € Q. Let us partition
the plane (see next paragraph for the disk) into parallel strips of witdtfihen, we slice each
strip in rectangles of mass a natural number (the sides of the rectangle have no mass because of
Lemma 2). The length of any piece will be betweemnd2R. Since any square of size x R
has mass at leadt it is possible to slice the strip in such a way that the resulting rectangles
have the ratio between the sides bounde®byVe have no upper bound of the mass of these
rectangles; we only know that it is a natural number.

In the case of the domain being the disk, one has to replace the strips by annuli centered at the
origin of width betweenk and2R and in such a way that they all have mass which is a natural
number. Now we split each annulus in rectangles of integer mass. The length of the sides will
be betweerk and2R, except possibly the last one which closes the circle and which has to been



8 JOAQUIM ORTEGA-CERIA

taken of side-length betweeh and3R. In any case, the resulting rectangles have the ratio of
lengths of sides bounded Byand again without control on the upper bound of the mass.

From now on the procedure in the disk and in the plane will be the same. We will divide each
rectangle in two. All the resulting rectangles will still have integer mass and the ratio of the sides
will always remain bounded by. We will bisect each rectangle until the mass is smaller than
the doubling constar’ of the measure.

The bisection is done as follows: denote the original rectanglB by [a, a + w] x [b,b + (]
wherel < w < 3. Consider a smaller auxiliary rectangk C R of the formR' = [a + w/2 —

h/2,a +w/2+ h/2] x [b,b+ ] with an auxiliaryh < w so thatu(R') = 1. The lengthh of R’
cannot be very large. li > w/3, thenR C 2R’ andu(R) is already smaller than the doubling
constant”, thus we do not need to biseBt Sinceu(R') = 1, there must be & < ¢ < h such
thatu(R,) € N, whereR, = [a,a +w/2 — h/2 4+ t] x [b,b+ []. We denote byR, = R\ R;. It
also verifiesu(R2) € N. Finally it is easily checked th&f3 < w/3 <w/2—h/2+t < w < 3,
therefore the quotients of the sides-lengthiffare bounded by 3 and similarly witR,.

Thus far, the rectangles are not very deformed and all have a mass bétaee6'. In order
to obtain rectangles of mads we divide each of them into rectangles of mass one by cutting
along the direction of the longest side. The local doubling condition ensures that all of them
will be essentially of the same proportion (we use Lemma 1). At most we are dividing each
rectangle inC' pieces, therefore the resulting rectangles have a bounded ratio of side-lengths as
desired. |

The family of rectangles that we have just constructed looks very much like squares, since the
excentricity is bounded, but moreover the size of the rectangles changes very slowly, along with

p(z):
Claim 2. The family of rectangle$R;} constructed in Lemma 4 has the following two proper-
ties:
e The ratio between the diameter&fandp(z) for anyz € R is bounded above and below
by two constants independent®fandz € R.

e ForanyK > 0 there is a constant’x > 0 such that whenevek R, N K R; # () the ratio
between the diameters &f and R; is bounded by k.

Proof. The first assertion follows sinc& has bounded excentricity and constant mass. The
second one is an immediate consequence of Claim 1. |

In order to construct the multiplier, we first select its zeros. We take a very ldrge mk
(the samen as given by Lemma 3 ankl € N that will be chosen in Lemma 5). We patrtition
Q) in rectangles{ R;},c; of massN as in Lemma 4. For any € I, we will chooseN points
{\ ..., A%} which lie nearR; and such that the moments of order,2,...m — 1 of the
measure\¢ restricted taR; coincide with the corresponding moments of the meag;jli_e1 5A3-_.

The following lemma addresses this point.

Lemma 5. Let R be a rectangle with ratio of side-lengths boundedyGiven anym € N and
anyC > 1thereis ak € N such that for any measuyein a rectangleR C C of total massV =
mk, there are two sets aV pointsA(R) = {\y,..., Ay} insideR andx(R) = {k1,...,kn}
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inside4C' K R\ C'R satisfying
/szd,u(z):)\{+---+)\§Q:/{{+---+/{§V, j=0,....,m—1.
Proof. We want that

[ROLIOEDWIEY

for all polynomials of degree less than or equatte- 1. We may take any Chebyshev quadrature
formula with £ nodes inR that is exact for polynomials of degree — 1. This can be done,
eventually takingk much larger thann (see [Gau76] or [Kor94], for a survey on quadrature
formulas with equal weights). These are the points that will be used in the construction of
the multiplier; they will be in fact the zeros of it. Note that all the pointsappear with a
multiplicity m since there ar&/ = km points with equal weights. For later use, it is convenient
to have an alternative set of zeros.. . . , ky at our disposal which are separated from the original
ones (outside”'R) and still have the same moments. This is easily done. It can be checked
immediately thatmp();) = %" p(\; + 7e2™/™), for any T € C and any polynomial of
degreem — 1. Thus, we could take as an alternative sgt = \; + 7e2™/™ j = 1,...k,
=0,...,m — 1, wherer is chosen so that all; are outside”'R and insidelC' K R. ]

Now we take a holomorphic functiol that vanishes at all the poin{g\é}iemzl 77777 ~, Where
{A§} C R; (the rectangles defined in Lemma 4). This function is defined up to a factor of the
form e9, with g € H(2). We choose thig in such a way that

1
log ] = — o [ log|z = Cl(Av = 3 dy,),
in the case of2 = C and
log |h] = w——/log | (A~ 6y)

in the case of) = D In both case® is the subharmonlc function in the statement of Theorem 4.
Thus the problem has been reduced to show that

d(z,A) d(z,A)
2 Mlo +C < [log|lz—=Cl[(AyY =) 6,:) <lo + C,
in the case of) = C, and whert)? = D, we have to obtain
d(z,A) —C d(z,\)
3 Mlo +C< [ lo (A 0yi) <lo
© £y O ylos|i | v~ Kay) <o %

The integral (2) is split as

/1og|z—¢|<m AV Zéx )
el

In any of these integrals we can subtract any polynomlal of degreel to the logarithm
since the moments up to order — 1 of x g, (¢)Av¥(¢) and Zj.vzl 5A;(§) are the same. For any

R, far from z (we exclude the rectanglg; to which z belongs and its immediate neighbors) we
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take a polynomiap of degreem — 1, which is the Taylor expansion g |z — (| about some
point\) € R;.

The difference betweeldog |z — | — p(¢)| is bounded b){sz\g — \b|™, wherew is some
point in R;. Sincez does not belong td; or any of its immediate neighbors agde R;, it
follows that|z — w| ~ |z — ¢| and|¢ — )| < p(¢) by Claim 2. Thus the integral is bounded by

a constant times
pO™ pA)™
A N———.
o Te= A+ N
Both the integral and the sum are comparable sjii¢e ~ p(\)), |z — (| ~ |z — \j| and the

mass of the rectangle i§. This estimate is true for alR; except the one that containsand its
neighbors. There is @ > 0 (uniform in z because of Claim 1), such that the sum over all such

rectangles is bounded by
p(O™
A .
/|Z—C|Z5P(Z Vo

) [z =™
Call M = 2sup, p(z). If we integrate in the regionp(z) < |z — (| < M we may apply
Lemma 3. If we integrate in the region — (| > M, we may estimate the integral by

p(¢)?
/|Z—C>M K |z — C|3A¢(O-

We use thap(¢)? = Jic_, <, dm(w) and then Fubini's theorem to obtain

1
/ K——dm(w) < 4o0.
le—w|>M/2 |z — w3

There are at most a finite number of immediate neighboring rectangles (uniformly i)
to the rectangle that containdecause all of them have size comparable(tg. In each of them
the integral is bounded by

N

|z — (| 2]
/R Jog = AG(C) + 3 log L5

j=1
The integral is bounded whenevA&r) is locally doubling. This is Lemma 2.3 of [Chr91] which

L . M
is in turn a direct consequence of Lemma 1. The sum accounts for the(féf;%ﬁ#) in the

statement of the theorem.
We will to estimate now the integral (3), which can be expressed as

> [flog =8 (xRxg)Aw(c) - gmc)) .

i€l
As before we can subtract a Taylor polynomial of degree 1 at a point\) € R,. Now, since

el 1P
T=Col| ~ L= Cellz— ™

‘V’C” log
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the integral is bounded by

(1 — |z = [¢[*)mp()™ 2 — Al
@ e B TR e T e
where the sum is over all; that are in the rectangl&; which contains: and its immediate
neighbors.
We split the integral in two pieces. In the first we integrate over the dofain= {( €
D; d(z,() < 1,¢ ¢ 6D(z, p(2))}, and we use Lemma 3 to obtain

p(O™
o0 d(z. omAw(C) < 00
In ©, we have thati(z, () > 1, and (4) is bounded by

(1— [2[)(1 = [¢)2p(0)?
A 2 T AP(C).

We may think of(1 — [¢]*)?p(C)? @S [y ¢)<(c) dm(w) and apply Fubini’s theorem to obtain

(1= =) = [¢)?p(O)? (1—|2?)
/QQ |1 — §Z|3 A¢(C) < /H)de(w) <4+00. N

Theorem 4 is not yet what we need for the estimates t@thquation because the exceptional
set of the multiplier introduces a technical difficulty. We need to approximate the weight by
a holomorphic functioreverywhere This obstruction can be avoided using several multipliers
simultaneously as described in the next proposition:

Proposition 2. Given as in the statement of Theorem 4 there is a collection of multipliers
hi, ..., h, satisfying the conclusion of Theorem 4. Moreover their exceptional sets (see the
remark after Theorem 4) are disjoint; i.&;,, N---N E,, = (.

Proof. Take the partition of2 in rectangles given by Lemma 4. We distribute the rectangles in a
finite number of families of rectanglés = U?"_, (U;c;, R!) with the property that any two rectan-
gles of the same family!, Ré are very far apart (i.eM R N MRé = (), for some large constant
M). This is possible with the Besicovitch covering lemma. Now for each fafiify};-;, we can
construct a multiplief; in such a way that it has no zeros in any of the rectangles of the family
R! nor in their immediate neighbors. The way to proceed to constiuist the following: For

any rectangleR that is neither from the famil§ ! },c;, nor one of its immediate neighbors we
take the set of pointa(R) given by Lemma 5. For the rectangl&srom the family or its adja-
cent rectangles we use the alternative set of paiffg) also defined in Lemma 5. We build as
before a multiplier,; with zeros at the selected points. It has the right growth and the additional
property that it has no zeros in the rectangles from the fafiily};.;, and its adjacents. This is
clear because we can choose a congstairt Lemma 5 in such a way that the point§R) are
neither inR nor in its immediate neighbors. Moreover they are not so far apart fidadhat they
reach another rectangle from the family (this can be prevented by choosing a verylarge
the splitting of the rectangles into families). Thus the exceptional sét, fdoes not include any
rectangle from the family R'};c;,. |
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4. THE O-ESTIMATES

This section contains three parts. In the first one, we will see how the weights that we consider
can be regularized without losing generality. In the second subsection we praleregghted
0-estimates in the plane and the disk. Finally in the last part we indicate how Theorem 3 can be
proved.

4.1. The regularization of ¢. In the hypothesis of the theorem we assume that for some large
radiusr > 0, A¢(D(z,7r)) > 1 at any pointz € 2. This is a condition that ensures that

¢ is “strictly subharmonic”. It will be more convenient for us to assume that > sdm(z).

This means that the measure is more regular since there are no “holes” with zero measure. The
following proposition allows us to do so:

Lemma 6. If the measuré\¢ is a locally doubling measure it and A¢(D(z,r)) > 1 for some
large radiusr > 0 and any point: € 2 then there is a subharmonic weightequivalent to the
original, i.e. sup, [¢ — | < +o0, such thatAi) is a locally doubling measure and moreover
Ay > edm(z) for somes > 0.

Proof. We will split A¢ in two measureg,; + 1». To describe the measurg, let us tile the
plane into square®; of diameterR > 0 (dyadic squares in the case of the disk) in such a way
that A¢p(Q);) > 2 for all );. This is feasible because of the hypothesis on the measure. The

measureu, is defined asgu|g, = mm. The measures, is p — py. It follows from the

definition that%Agzﬁ < us < Ag, thereforeu, is a locally doubling measure. It is also true that
w1 is locally doubling becausé¢((),) does not change abruptly in neighboring squares and
moreoveru; (Q);) = 1.

We will regularize the measuyg by taking the convolution (the invariant convolution wHen
is a disk) of it with the normalized characteristic function of a very large digks= 11, * Ié%?;g))l :
The measurgi, in the plane satisfiesdm(z) < p; < Kdm(z) (when) = D, it satisfies
e < (1= [z < K).

It is clear from their definition that; (D (0, 7)) < v?in C andp, (D(0,7)) < (1 —r)~2inthe
disk. The same is true fqr;. We introduce integral operatofs|;;| and K'[i;] that solve the
Poisson equation K'[v] = v. The operator may be defined as

Kl = [ k(=) dv(C).

In the case of) = C we choose

2
= - logls =GP = (= wman(@) e (nldl - 24 55

k(2. 0) 47 2 22

which makes the integrals definirg[;.;] and K'[1;] convergent. In the case of the disk, set

k;(z,g):jw{log - +(1—|<‘2>{(1_12<;> " (1—1z<> _1}}'

1—(z
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Andersson [And85] and Pascuas [Pas88] estimate
1—\Cl2>2{ 1-¢2
k ZaC S ( ~ 1 + lOg )
e e —¢
therefore the integrals defining|.;| and K'[i;] are convergent.
We take as) = ¢ + K|[u] — K[u1]. The Laplacian of) is ji; + p which has the desired

properties. Moreovep — | = |K[u1] — K[ || = | K [p1] — K[py] * fij(gO;g) |. This difference
is bounded by

2R
/D(z,2R) log 7d(z, 3 dp(€).

This integral is bounded by a constant time$D(z,2R)), whenever; a locally doubling
measure. This is Lemma 2.3 of [Chr91]. The di3kz, 2R) is covered by a bounded number of
cubes);, therefore the difference betweerand¢ is bounded as claimed. |

4.2. Proofs of Theorem 1 and 2.Let us start with Theorem 2. There are some weights that
are particularly simple. These are the standard radial weights = «log1/(1 — |z|?). The
following lemma deals with this situation.

Lemma 7. For any« € (0,1) andp € [1,+00), the solution

LR O,
u:) = [ T e i)

to the equatiordu = f in D satisfies the estimate

L lu@P = [ tdm(=) S [ 1F) = [2DP = [ dm(z).
Moreover,
sup [u(=)] (1 = |21)" S sup [£(2)|(1 = 2.

Proof. This is an immediate consequence dflter’s inequality. |

We take an arbitrary weiglatunder the hypothesis of Theorem 2, thatlis- |2|*)2A¢ > ¢ and
A¢ is a locally doubling measure with respect to the hyperbolic measure. Consider the auxiliary
subharmonic functiog = ¢ — (¢/2) log(1 — |z|?). By hypothesig1 — |z|?)2Av > ¢/2 and still
A is IocaIIy doubling. Using Theorem 4, we can construct a a holomorphic fungtsrch

that 4220 < |g|e~v < A9 (nggggM_
To begin, Iet us assume that the supporf o far from the zero set of the multipligr That is,

there is somé > 0 such thatd ) > 4. Instead of solving the equatigh: = f, we consider
the auxiliary equatiodv = f/g We take as a solutiomthe function provided by Lemma 7 (we

takea = ¢/2). Then, sincelg = 0, the functionu = vg is a solution tadu = f. Moreover,
because of Lemma 7, we know that for ang p < oo

Ju(z)/g(=)I” o IE /g |zm o
Loty e ame) 5 [ (1~ [2)*"2dm(2).
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We always have thdy| < e¥, thus

u)lP Ju(z)/g(2)P? s
/| e / ,Z‘ — |2))2dm(2),

and since the support gfis far from the zero sets af, then

D (1—1z) 1 - IZI

The case = oo follows with the same scheme.

Now, we must overcome the restriction on the supporf.ofiVe denote as abovwe = ¢ —
e/2log(1 — |z|*). For this subharmonic function we take the set of multipliergiven by
Proposition 2 and its corresponding exceptional &ts

We split the domain into disjoint pieces:

= (2\ En,) U (En, \ Eny) U ((Bny 0 Eny) \ Eny) U=+ U (i, 0= 0 By, )\ Eny ).

For the sake of simplicity we denote this partitiony= ©, U- - -US,,. In eachf2; the multiplier
|h;] ~ e¥. We can take as a solution to the equatibn= f the function

uls) = - hi(Z)XQi(<)>11_|€|2 FQ iy — [ i .
(2) /D(Z ) r oG e tmQ = [ G OrQ dm(Q)

Thus,
| (Z C)| (1 B |C‘2) (1 B |C|>E/26¢(Z).
1= C2lI¢ = 2| (1 — |2[)*/2e2©
From this estimate thé? boundedness of the solution follows. This proves Theorem 2. R
The same construction proves Theorem 1. We replace Lemma 7 by the following one which
is also a direct consequence adblder’s inequality:

Lemma 8. For any« > 0 andp € [1, +o0], the solution
| 2@l
u(z) = /Cz_gf(ﬁ) dm(C)
to the equatiomu = f in C satisfies the estimatéu(z)e=|, < ||f(¢)e k||, for any
p € [1,00].

_ In this case the auxiliary subharmonic functignis ¢ — ¢/2|z|*>. We take as a solution to the
0 equation the function

(L hi(2)xauo) | 1 eI ey
/c@ hi(C) >w s JQdm(Q) = /C/e(z,Of(odmm.

Therefore,
o(2) p—elz—¢[?
/ ~Y
|K'(2, Q)] ~ Oz — (|

This estimate proves Proposition 1 and Theorem 1. |
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4.3. The degenerate weight.We can prove thi® estimate along the same lines . We need two
ingredients, a multiplier theorem and sotestimates when the weightis of the forma/| Im z|
for somea > 0. This is the multiplier theorem that we need:

Theorem 5. Let¢ be a subharmonic function id such that the measur®¢ is a locally doubling
measure supported in the real line add)(I(x,r)) > 1 for somer > 0 wherel(z,r) is the
interval in R of centerx and radiusr. There is a holomorphic functiosi with zero setA
contained inR such that for any: > 0, | f(2)| ~ ¢?®), for all z such thatiz — \,,| > ep(\,,) for
all A, € Z(f).

Proof. The proof of this theorem is the same as in Theorem 4 whenC, except that at some
points it is easier. For instance, it is trivial to split the real line into intervals all of mass WA

On the other hand the-estimate that we need in the flat case, i.e. whena|Im z|, is not as
easy as in the disk or the plane; we need the following theorem, a proof of which can be found
in [OCS99]:

Theorem. Consider the equatiofiu. = j, wherey is a compactly supported measure such that
e~lm=ld|,| is a two-sided Carleson measure for some 0. Then there is a solution with

lim sup |U(2)‘€7Q|Imz| =0 and J|u(x)|<C (1 _|_/| W)

Z2—00 z—x|<1 |l’ - Z’
for anyz € R, whereC only depends on the Carleson constant ofl ™ #Id| 4.

These two ingredients together prove Theorem 3 in the same way as we proved Theorem 1
and Theorem 2.

Added in proof. Richard Rochberg has informed me of un unpublished manuscript of Tom
Wolff from 1988 where some of the ideas concerning the multiplier (Theorem 4) are already
present.
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