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Abstract 29	

The aim of this paper is to test two methodologies, applicable to different spatial scales (from regional 30	

to local), to predict the capacity of agroecosystems to provide habitats for the species richness of 31	

butterflies and birds, based on the ways their socio-metabolic flows change the ecological functionality 32	

of bio-cultural landscapes. First, we use the more general Intermediate Disturbance–Complexity (IDC) 33	

model to assess how different levels of human appropriation of photosynthetic production affect the 34	

landscape functional structure that hosts biodiversity. Second, we apply a more detailed Energy–35	

Landscape Integrated Analysis (ELIA) model that focusses on the energy storage carried out by the 36	

internal biomass loops, and the energy information held in the network of energy flows driven by 37	

farmers, in order to correlate both (the energy reinvested and redistributed) with the energy imprinted in 38	

the landscape patterns and processes that sustain biodiversity. The results obtained after applying both 39	

models in the province and the metropolitan region of Barcelona support the Margalef’s energy-40	

information-structure hypothesis by showing positive relations between butterflies’ species richness, 41	

IDC and ELIA, and between birds’ species richness and energy information. Our findings support the 42	

view that strong relationships between farming energy flows, agroecosystem functioning and 43	

biodiversity can be detected, and highlight the importance of farmers’ knowledge and labour to maintain 44	

bio-cultural landscapes. 45	

 46	

Keywords 47	

Landscape Agro-ecology; Land-sharing debate; Intermediate disturbance hypothesis; Human 48	

Appropriation of Net Primary Production; Energy Return on Energy Investment  49	
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Highlights 64	

• The energy-information-structure hypothesis of bio-cultural landscapes is tested 65	

• Two models are applied at different scales and verified using biodiversity data 66	

• The results obtained confirm the Margalef’s hypothesis using butterflies and birds  67	

• Importance of farmers’ knowledge and labour to maintain bio-cultural landscapes  68	

• Impact of land-use policies on ecological functioning in human-modified territories  69	
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Manuscript 70	

1. Introduction 71	

“Our civilization is constantly conducting large-scale experiments that could be used more often 72	

than they actually are to develop the foundations of a disturbance ecology. […] Man creates systems to 73	

control and amplify flows of external energy that become more and more powerful. […] By looking at 74	

energy subsidies we can gain a better understanding of the role that external energy plays in 75	

ecosystems” (Margalef 1991). Ramon Margalef (1919-2004) greatly contributed to clarify that 76	

sustainability of human development is a direct function of complexity and an inverse function of energy 77	

dissipation. These ideas are still in the cutting edge of Ecology in the centennial of his birthday; however, 78	

they have been rarely tested in a proper way (Gracia 2008). During this century, there has been an 79	

unprecedented growth in global food production and its associated socio-environmental impacts 80	

stemming from industrialised farming (Mayer et al. 2015). As a result of this socio-metabolic transition 81	

(Schaffartzik et al. 2014) –i.e. the change towards sustainability in the set of material and energy flows 82	

that occur between nature and society-, farm systems are facing the challenge posed by the simultaneous 83	

growing demands of food, energy and biodiversity maintenance (Tilman et al. 2009; Godfray et al. 84	

2010). This requires halting and reversing the current loss of species richness derived from global change 85	

(Cardinale et al. 2012). Industrialisation of agriculture through the ‘green revolution’ has been a major 86	

cause of this biodiversity loss (Matson et al. 1997; Tilman et al. 2002).  87	

As it is increasingly recognized, well-managed farm systems can also play a positive role in 88	

maintaining biodiversity (Tscharntke et al. 2005). From a land-sharing perspective on biological 89	

conservation (Perfecto and Vandermeer 2010), agroecosystems may either enhance or decrease 90	

biodiversity at landscape scale depending on land-use intensity (Swift et al. 2004). In turn, the 91	

environmental impacts of farming and agroforestry disturbances vary across species and biomes 92	

(Gabriel et al. 2013). Therefore, a heterogeneous and well-connected land matrix can maintain high 93	

species richness in human-transformed landscapes (Jackson et al. 2012). In order to solve the global 94	

energy-food-biodiversity challenge, trade-offs between species richness and land-use patterns need to 95	

be assessed by combining the levels and spatiotemporal patterns of ecological disturbances farmers exert 96	
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across the landscape (Fischer et al. 2008; Phalan et al. 2011). If society aims at maintaining ecosystem 97	

services in the future, we need operative criteria, appropriate methods, and meaningful indicators to 98	

assess when, where and why the matter-energy flows driven by farming increases or decreases the 99	

capacity of landscapes to hold biodiversity (Gliessman 1990; Pierce 2014).  100	

The aim of this paper is to test the hypothesis	that the complexity and information of these farming-101	

driven energy flows can lay the foundations for sustainable land-use policy, by testing the linkages that 102	

exist between social metabolism –i.e. the flows of materials and energy that occur between nature and 103	

society-, landscape ecology and biodiversity. We carry out this test applying two complementary 104	

methodologies aimed at describing how the socio-metabolic flows generated by human activity affect 105	

the landscape functional structure which, in turn, maintains biodiversity. We adopt the Intermediate 106	

Disturbance–Complexity model (IDC), a spatially explicit analysis only considering energy inputs and 107	

outputs based on human appropriation of net primary production (Marull et al., 2016a); and the Energy–108	

Landscape Integrated Analysis (ELIA), an improved model that goes deeper in understanding how these 109	

flows of materials and energy are reinvested and redistributed in the landscape (Marull et al., 2016b). 110	

We then test both models with species richness of two main biodiversity components of cultural 111	

landscapes, namely butterflies and birds.  112	

2. Methodology 113	

2.1. Biodiversity components 114	

There could be many measures of efficiency of land management for biodiversity conservation. 115	

Many Essential Biodiversity Variables (EBV) can be potentially used for such purpose (Pereira et al. 116	

2013). In this context, local species richness and abundance can be considered as basic measures of 117	

interaction of species since they describe how species live together in a given area. Functional type 118	

composition of the ecosystem is often derived from species composition and abundance of observed 119	

communities and richness may provide a first indication of these processes. To test the IDC and ELIA 120	

models on real biodiversity data, we used the abundance and the species richness of two different 121	

taxonomic groups (butterflies and birds) in different transects randomly distributed in the Barcelona 122	

(Spain) province and metropolitan region (Figure 1). Both birds and butterflies are known to be 123	
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especially sensitive to global change drivers (Tucker and Heath 1994; Stefanescu et al. 2004; Aronson 124	

et al. 2014; Melero et al. 2016), and they account for large datasets often produced by citizen science 125	

initiatives.  126	

These data were obtained during the period 2005-2015 by the Catalan Butterfly Monitoring Scheme 127	

(http://www.catalanbms.org/), and by the Catalan Breeding and Wintering Bird Surveys 128	

(http://www.ornitologia.org/ca/quefem/monitoratge/seguiment/socc/index.html). These biodiversity 129	

programmes are based on walked transects repeated several times each year. For each breeding bird 130	

species and each year, the maximum count recorded during these two censuses is retained as the best 131	

estimation of its annual abundance. Butterfly censuses are carried out on 30 consecutive weeks from 132	

March to September and the sum of the individuals recorded during the surveys for a species is retained 133	

as the estimate of its annual abundance. In this study we used data consisting of: i) transects monitored 134	

to get data of birds (linear buffer: 500 m) in the province (151 transects) and the region (91 transects) of 135	

Barcelona (Figure 1); and ii) transects monitored to obtain data of butterflies (circular buffer: 750 m) in 136	

the province (56 transects) and the region (41 transects) of Barcelona (Figure 1). We studied the 137	

dynamics of abundance and species richness of the biodiversity components (Table 1) only using 138	

transects with data for all the years considered in the period of analysis. 139	

To analyse the spatial association between the values of IDC and ELIA models and these biodiversity 140	

components, we performed lineal regression analyses for the observations (a proxy of abundance) and 141	

species richness of butterflies, breeding and wintering birds, using transects with data of 2009 as 142	

biodiversity data and buffers around them as models’ data (34 and 23 butterfly transects, and 96 and 69 143	

bird transects for the province and region of Barcelona, respectively). Both IDC and ELIA models are 144	

calculated over the land-cover patches of transects’ buffers. The province provides a gradient of 145	

landscape transformation highly responsible for strong changes in biodiversity (Clotet et al 2016, Marull 146	

et al. 2018). In the region, the focus is located in the metropolitan context where farming transformation 147	

and its effects on biodiversity are especially intense (Guirado et al. 2007; Santos et al. 2008).  148	

The regression analyses took into account all the variables included in the models: primary and 149	

secondary energy variables; composition and configuration landscape variables; ELIA and IDC; and 150	
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biodiversity components (Table A1). Before doing any analysis, a non-parametric contrast was 151	

conducted for each of the endogenous variables to analyse their distributions (Normal, Exponential and 152	

Poisson, to assess if it was necessary to apply ordinary least-squares model –OLS, log model or Poisson 153	

model, respectively). We performed OLS to contrast normal endogenous variables (log-lin model was 154	

required in two specific cases; Table 3). VIF<5 ensured no multi-collinearity between the exogenous 155	

variables used in the regression analyses. T-student tests were applied in all cases (only significant 156	

variables are represented in Table 1, Table 2 and Table 3).  157	

2.2. The Intermediate Disturbance–Complexity Model (IDC) 158	

The IDC model analyses how the interplay between different farming disturbances exerted across 159	

different land-uses create diverse combinations of landscape heterogeneity and ecological connectivity, 160	

and they jointly become a key mechanism for biodiversity maintenance (Loreau et al. 2010), as well as 161	

the provision of ecosystem services to society (Tscharntke et al. 2005).  162	

2.2.1. Measuring landscape complexity 163	

Much of this farm-associated biodiversity is only perceived at scales larger than plot or farm level, 164	

because it depends on the landscape patterns and processes that take place in agroforest mosaics 165	

(Margalef 2006).  166	

Landscape Heterogeneity (L) was calculated as a modification of the Shannon-Wiener Index, to 167	

capture the landscape patterns (richness and evenness) of habitats.  168	

𝐿 = #−%𝑝! log" 𝑝!

"

!#$

* (1 − 𝑝%) 169	

Where k is the number of different land cover categories. The existence of built-up land cover 170	

𝑝!results in a loss of potential habitats. Thus, 𝑝" is the proportion of non-urban land covers i.  171	

The assessment of landscape processes is based on the ecological connectivity model proposed by 172	

Marull and Mallarach (2005). It relies on defining a set of Ecological Functional Areas (EFA; including 173	

forests, scrublands, croplands, pastures and agroforestry mosaics) of minimum size depending on each 174	

category and a cost distance model (based on an ad-hoc impedance matrix), which includes the effect 175	

of anthropogenic barriers (urban areas, road and rail networks), the range of distances and the involved 176	
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land cover categories. The assessment defines a basic Ecological Connectivity Index (ECIb) in a 177	

normalized scale from 0 to 10. This ECIb emphasizes the functional role played by the land matrix: 178	

ECIb = 10 – 9 [ln (1 + xi) / ln (1 + xt )3] 179	

Where xi is the value of the sum of the cost distance by pixel and xt the maximum theoretical cost 180	

distance, then, ECIa is the absolute Ecological Connectivity Index: 181	

𝐸𝐶𝐼& = % 𝐸𝐶𝐼'

(#)

(#$

/𝑚 182	

Where m is the number of EFA considered. This index helps to emphasize the role played by all sorts 183	

of EFA in keeping up ecological connectivity (Pino and Marull 2012). 184	

We then obtain an indicator of landscape complexity, the Landscape Ecology Metric (Le) (Marull et 185	

al. 2015); capturing landscape patterns (L, heterogeneity) and processes (ECIa, connectivity). 186	

𝐿𝑒 =
4𝐿 + *+,&

$-
6

2  187	

The statistical test was based on biodiversity transects where locations of birds and butterflies have 188	

been observed in 2009. The landscape composition and configuration of these transects was taken from 189	

the 2009 Land Cover Map of Catalonia (www.creaf.uab.es/mcsc/) reclassified in eight land cover 190	

categories: forest, scrubland, river corridor and wetlands, pasture, cropland, unproductive, road and rail 191	

networks and urban areas (Figure 1). 192	

2.2.2. Measuring farming ecological disturbance 193	

In the IDC model, we use the Human Appropriation of Net Primary Production (HANPP) as a 194	

measure of farming disturbance, where NPP is the net amount of phytomass produced annually by 195	

autotrophic organisms that constitutes the nutritional basis for food chains. HANPP is calculated using 196	

the following identities (Haberl et al. 2014): 197	

HANPP = HANPPluc + HANPPharv 198	

HANPPluc = NPP0 – NPPact 199	

Where HANPPharv is the NPP appropriated through harvest, and HANPPluc is the change of NPP 200	

through farming-induced land conversions. HANPPluc is defined as the difference between the NPP of 201	

the potential (NPP0) and actual (NPPact) vegetation. HANPP is calculated in each land unit of the study 202	
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area as the weighted sum of some fixed land unit coefficients (wi) by the proportion of surface occupied 203	

by each land unit within the sample cell: 204	

𝐻𝐴𝑁𝑃𝑃 =%𝑤!𝑝!

"

!#$

 205	

Where 𝑤𝑖 denotes the weight of land unit i, and pi the proportion of land unit i in the study area. 206	

Variations in HANPP not only depend on the variations of pi, but on the variations of wi as well.  207	

To estimate HANPP values in the same transects in which birds and butterflies were monitored, it 208	

was necessary to assess different levels and amounts of NPP and harvests. Harvest ratios taken from 209	

each land cover were transformed into the energy content of all biomass flows driven by farming. 210	

Conversion factors such as the residue/product ratio and weed biomass (Guzmán et al. 2014) were 211	

accounted for the harvested by-products and for the unharvested biomass left for all heterotrophic 212	

organisms in each land cover category. 213	

2.2.3. Calculating the IDC indicators 214	

The result is that we have one Le and HANPP value for each unit of analysis (Marull et al. 2016a). 215	

HANPP expresses a NPP appropriation average number for each unit, but can be obtained with different 216	

land cover combinations; and L (or Le) expresses a land cover pattern value (richness and evenness) for 217	

each unit, but can be obtained with different NPP combinations. The IDC model combines the landscape 218	

structure (L) with the biomass available to other species (1-HANPP/100) (Figure 2): 219	

IDC = L (1 – HANPP /100) 220	

Where L is the “energy imprint” in the landscape patterns (L can be substituted by Le, including the 221	

landscape processes). IDC ranges from 0 to 1, even though its maximum value depends on where the 222	

weights (wi) of HANPP are displayed (Figure 2).  223	

Figure 2 shows all the possible values for the theoretical relationship between human disturbance 224	

and landscape complexity, wherever it is possible to represent the site-specific disturbance-complexity 225	

(IDC) values of a given territory. 1-HANPP expresses the average energy available for (butterflies or 226	

birds) species in each transect (our unit of analysis), but the same HANPP value can be obtained with 227	

different land cover combinations (having one or various habitats composition). Furthermore,  the same 228	
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L value can also be obtained using different land cover categories, although the contribution of each 229	

land cover to biodiversity may vary (due to the variable amount of energy available for the trophic 230	

chains). Consequently, the combination of spatially uneven disturbances and land cover heterogeneity 231	

in human-modified landscapes could greatly affect biodiversity maintenance. 232	

IDC aims at improving our understanding of the functioning of agroecosystems, and the subsequent 233	

effects on biodiversity on a regional scale (Marull et al. 2016a), by revealing how and why different 234	

managements lead to turning points in the relationship between farming disturbance (HANPP) and the 235	

landscape structure in terms of land cover heterogeneity and ecological connectivity. In order to go 236	

deeper into the analysis at local level, we need to account the biomass flows moved by farming in the 237	

more precise manner performed through the ELIA model by accounting how the energy is reinvested 238	

and redistributed in the land matrix. 239	

2.3. The Energy-Landscape Integrated Analysis (ELIA) 240	

Through the ELIA model we can represent in more detail the energy flows in an agroecosystem. 241	

Figure 3 shows how the biomass produced by solar radiation obtained from solar radiation, that accounts 242	

for the actual Net Primary Production (NPPact) is the energy source for consumers living there (Vitousek 243	

et al. 1986), either domesticated or not. From this starting point, we analysed the pattern adopted by 244	

energy flows subsequently carried out through the metabolic circulation of farming-driven biomass, the 245	

internal loops generated, the final product extracted, and the external inputs introduced from outside the 246	

agroecosystem. The graph shows the three subsystems of internal energy loops (“forestry” –green; 247	

“farmland” –red; and “livestock” –purple) included in a mixed farming agroecosystem. 248	

In all of the sub-processes identified (Figure 3), the energy flows are differentiated between those 249	

that remain within the agroecosystem and those that go to other subsystems or out of the whole 250	

agroecosystem. Accordingly, there is always a pair of incoming-outgoing energy flows for each sub-251	

process. Hence, we can account twelve coefficients (βi) along all the edges of the graph. Then we can 252	

differentiate between even and odd βi’s, where the even βi’s account for the energy flows looping inside 253	

the agroecosystem, and the odd ones for those that are leaving it.  254	
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Based on these agroecosystem’s energy flows (Figure 3) and its related land matrix, ELIA combines 255	

the following three indicators (Marull et al., 2016b): the complexity attained through the energy storage 256	

of internal loops in an agroecosystem (E); the information embedded in the energy network of flows (I); 257	

and energy imprinted in the landscape functional structure (L).  258	

The energy analysis is based on a flow-fund representation of agroecosystems (Tello et al. 2016; 259	

Cattaneo et al. 2018), using data from the Spanish Ministry of Agriculture and the Catalan Statistics 260	

Institute (2009) for the parameters calculation (Table A1). The landscape composition and configuration 261	

of the biodiversity transects have been calculated from the 2009 Land Cover Map of Catalonia 262	

(www.creaf.uab.es/mcsc/). 263	

2.3.1. Measuring the energy storage 264	

We understand agroecosystem complexity as the differentiation of dissipative structures (Gonzalez 265	

de Molina and Toledo 2015). The more complex the space-time differentiation is, the more energy is 266	

stored within a system (Ho and Ulanowicz 2005). Conversely, given that speciation is a result of this 267	

space-time differentiation that gives rise to habitat diversity, the maintenance of biodiversity also 268	

requires complex landscapes with different, intermingled land covers. In the ELIA model, higher mean 269	

values of even βi’s entail that agroecosystems are increasing in complexity because the different cycles 270	

are coupled together, and the residence time of the stored energy is higher thanks to a greater number of 271	

interlinked transformations looping inside (Figure 3). Accordingly, our way of calculating the Energy 272	

Storage (E) is as follows: 273	

𝐸 =
𝛽# + 𝛽$
2

𝑘% +
𝛽& + 𝛽'

2
𝑘# +

𝛽%( + 𝛽%#
2

𝑘). 274	

𝑘% =
𝑈𝐵

𝑈𝐵 + 𝐵𝑅 + 𝐿𝑆
, 𝑘# =

𝐵𝑅
𝑈𝐵 + 𝐵𝑅 + 𝐿𝑆

, 𝑘) =
𝐿𝑆

𝑈𝐵 + 𝐵𝑅 + 𝐿𝑆
, 275	

Where the coefficients 𝑘%, 𝑘#, 𝑘) account for the share of reusing energy flows that are looping 276	

through each of the three subsystems of the graph model (Figure 3). 277	

E assesses the amount of all the energy flows that go inside the agroecosystem, relative to the total 278	

amount of energy flowing across each one of the three subsystems of the network structure. Hence, E 279	
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measures the proportion of energy flows stored on the land matrix, and remains within the range	[0,1]. 280	

E close to 0 implies low reuse of energy flows —usually corresponds to an agro-industrial management, 281	

dependent on external inputs and with high levels of HANPP. E close to 1 implies more internal energy 282	

loops, meaning that a high share of energy flows harvested are reused within the agroecosystem —283	

usually associated to organic farming with lower dependence on external inputs, lower biomass 284	

extraction as final produce, and moderate HANPP levels.  285	

2.3.2. Comparing E and HANPP 286	

We compare HANPP and E (Marull and Font 2017) to analyse two important variables of both 287	

models, IDC and ELIA. Expanding the formula of E and assuming the spatially explicit expression of 288	

each βi	(that is, the energy flows specific for each land use), we have: 289	

𝐸 = (𝛽/ + 𝛽0)
𝑘$
2 + (𝛽1 + 𝛽2)

𝑘/
2 + (𝛽$- + 𝛽$/)

𝑘3
2  290	

=%𝑝!

)

!#$

1
2 ?𝑘$𝛽/

! + 𝑘$𝛽0! + 𝑘/𝛽1! + 𝑘/𝛽2! + 𝑘3𝛽$-! + 𝑘3𝛽$/! @. 291	

Now, we can call 𝛼𝑖 =
1
2 4𝑘1𝛽2

𝑖 + 𝑘1𝛽4
𝑖 + 𝑘2𝛽6

𝑖 + 𝑘2𝛽8
𝑖 + 𝑘3𝛽10

𝑖 + 𝑘3𝛽12
𝑖 5, so we obtain: 292	

𝐸 =%𝑝!𝛼!

)

!#$

. 293	

This expression is similar to the HANPP formula; in fact, the two indicators have the same behaviour. 294	

Given that ∑ 𝑝𝑖
𝑛
𝑖=1 = 1, in both cases we have a weighted sum of 𝑤𝑖 and 𝛼𝑖, respectively. 295	

According to the new expression of E, the difference between HANPP and E can be compared with 296	

the values 𝑤𝑖 and 𝛼𝑖. This is because 𝛼𝑖 plays the same role as 𝑤𝑖 in HANPP. However, we should 297	

remember that E and HANPP have opposite meaning. High values of HANPP indicate more human-298	

appropriation and so less energy available for other species, while high E denotes just the contrary, more 299	

internal energy processes within agroecosystems (and this means more energy available to sustain 300	

biodiversity). For this reason, it is better to compare E and 1-HANPP when it comes to assess the energy 301	

carried through biomass flows that cycle within the land matrix and remain available to all heterotrophic 302	

species for a while.  303	
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2.3.3. Measuring the energy information 304	

Information can be interpreted as a measure of uncertainty, or the degree of freedom for the system 305	

to evolve (Prigogine 1996). This kind of information is often called structuring-information that registers 306	

the likelihood of the occurrence of a pair of events (Ulanowicz 2001). It differs from the meaningful 307	

content of the information farmers use to direct the energy flows they move according to a defined 308	

purpose. Accordingly, the Energy Information (I) shows whether the βi’s pairs are evenly distributed or 309	

not. This measure of I accounts for the equi-proportionality of pairwise energy flows that exit from each 310	

node in all the sub-processes of the graph (Figure 3) that represents the agroecosystem functioning:  311	

𝐼 = −
1
6
:;𝛽" log# 𝛽"

%#

"*%

? (𝛾+ + 𝛾,)(𝛼+ + 𝛼,), 312	

𝛾+ =
𝑈𝐵 + 𝑁𝑃𝑃-

2(𝑈𝐵 + 𝑁𝑃𝑃- + 𝐹𝑊)
, 𝛾, =

𝐿𝑆 + 𝐿𝑃
2(𝐿𝑆 + 𝐿𝑃 + 𝐿𝑊)

	313	

𝛼+ =
𝐹𝐸𝐼𝑟

2(𝐹𝐸𝐼𝑟 + 𝐹𝐸𝐼𝑛𝑟)
, 𝛼, =

𝐿𝑆 + 𝐿𝑃
2(𝐿𝐸𝐼𝑟 + 𝐿𝐸𝐼𝑛𝑟)

	314	

Base 2 logarithms are applied as the probability is dichotomous. Sometimes some energy flows 315	

circulating inside the agroecosystem are turned into what Odum (1993) named a ‘resource out of place’ 316	

(i.e. waste, non-renewable). The introduction of the information-loss coefficients 𝛾+ , 𝛾, ensures that I 317	

remains lower than 1 when the agroecosystem presents farm and/or livestock waste. The coefficients 318	

𝛼+ , 𝛼, penalize the use of non-renewable external inputs as a loss of information. 319	

I values close to 1 are those with an equi-distribution of incoming and outgoing flows of the 320	

agroecosystem’s network structure where the structuring information-message is high, whereas values 321	

close to 0 mean patterns of probability far from equi-distribution. I values close to 0 correspond to a low 322	

site-specific information content in agroecosystem functioning, which may be related to an 323	

industrialised farm system with high HANPP and low relevance of traditional peasant knowledge 324	

embedded in the landscape; or, by contrast, to an almost ‘natural’ turnover with slight HANPP that may 325	

also correspond at present to rural abandoned forest or pastoral areas. Pristine spaces, with high value 326	

for biodiversity conservation, can also have I values close to 0, but they are not included in the ELIA 327	
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agroecosystem’s assessment. Conversely, agroecosystems with I equal to 1 are the ones with equi-328	

distributed incoming and outgoing energy flows in each sub-process, as well as with intermediate levels 329	

of HANPP, that correspond to organic mixed farming (heterogeneous landscapes characterized by a set 330	

of land-uses possessing contrasting disturbances and low no-renewable external inputs) deeply 331	

embedded in local knowledge. 332	

2.3.4. Calculating the indicators of the ELIA model 333	

After having defined all the ELIA indicators (E, I and L), we can analyse the relationship between 334	

variables included in the model. We surmise that the interplay between E and I jointly leads to 335	

complexity, understood as a balanced level of intermediate self-organisation (Gershenson and 336	

Fernández 2012). We also assume that the complexity of interlinked energy flows (E·I) and L values of 337	

landscape heterogeneity are related to landscape ecological processes and biodiversity. This ELIA 338	

modelling enables us to test the relationship we deem to exist between the simultaneous loss in energy 339	

throughput and landscape ecological efficiency (Marull et al. 2016b).  340	

In order to go a step forward from previous explorations of the linkages between intermediate levels 341	

of socio-metabolic ecological disturbance, as assessed with HANPP, and the ecological functioning of 342	

cultural landscapes on a regional scale (Marull et al. 2018), we use ELIA as an operative model that 343	

combines, the landscape functional structure with the complexity of the interlinking pattern of energy 344	

flows and the information carried by them: 345	

𝐸𝐿𝐼𝐴 =
(𝐸 · 𝐼)	𝐿
𝑚𝑎𝑥{𝐸𝐼}𝑒 346	

Where E is the energy storage, I is the information carried by the network of energy flows, and L is 347	

the energy imprint in the landscape patterns (L can be substituted by Le; i.e. including landscape 348	

processes). According to the assumptions of the ELIA model, we have that the equilibrated 349	

𝑚𝑎𝑥{𝐸𝐼}𝑒 = 0.6169 (𝑘𝑖 =
1
3). Once we have the maximum 𝐸 · 𝐼 (energy reinvested and 350	

redistributed), which corresponds to the highest farmer’s capability to structure the land matrix, we can 351	

add the landscape energy imprint (L). This synthetic expression of ELIA ranges from 0 to 1. 352	

3. Results and discussion 353	
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3.1. Analysing birds’ and butterflies’ biodiversity dynamics 354	

A preliminary analysis of the dynamics of the biodiversity indicators in the province of Barcelona 355	

showed that the number of bird observations (total breeding birds: mean = 13,852; standard deviation = 356	

1,696) experienced a steep decrease between 2005 and 2015 (Figure A1). This decrease was especially 357	

stronger in species associated with agriculture (Santos et al. 2008; Vallecillo et al. 2008), for both 358	

breeding (mean = 3,210; standard deviation = 449) and wintering (mean = 3,167; standard deviation = 359	

211) birds. This fits with the constant decrease in populations of common bird species related to open 360	

spaces reported at European level, which has been related to continental-wide long-term land use trends 361	

of agricultural and grassland surface reductions, while urban growth and forestland increase (Inger et al. 362	

2014). 363	

Regarding butterflies, while their populations showed evident fluctuations during the period of 364	

analysis (Figure A1), probably due to external factors –e.g. climate, we could see a declining trend in 365	

the number of species, mostly specialists –i.e., related to specific plants and habitats (mean = 19.6; 366	

standard deviation = 2.8) and those associated with open spaces –such as agriculture or pasture (mean 367	

= 68.1; standard deviation = 1.4). This is in concordance with the observed declines in butterfly species 368	

associated with species’ degree of habitat specialisation (Melero et al. 2016).  Many studies (Brückmann 369	

et al. 2010; Verdasca et al. 2012) have showed that butterflies are particularly sensitive to climate and 370	

habitat changes, such as those that the European rural landscapes have experienced in recent decades 371	

(Stefanescu et al. 2010). 372	

3.2. Testing the IDC and ELIA models with birds’ and butterflies’ data 373	

To test the social metabolism / landscape ecology models as predictors of biodiversity, energy and 374	

landscape components were set as independent variables (Table A1), and empirical data of biodiversity 375	

from transects of birds and butterflies as dependent variables, in the province (IDC model) and the region 376	

(ELIA model) of Barcelona. Our regression analyses showed a relationship between the energy and 377	

landscape variables with the number of observations and the species richness of butterflies, breeding 378	

birds and wintering birds (Table 1, Table 2 and Table 3, respectively).  379	
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In the province of Barcelona, IDC and Edge Density (a proxy of landscape ecotony) were positively 380	

related (r2=0.160) with the abundance of butterflies (Table 1); and IDC and Polygon Density (number 381	

of land cover patches) with species richness (r2=0.286). Therefore, we interpret this result as a support 382	

to the intermediate disturbance of suitable habitats, with intermediate values of landscape complexity 383	

contributing to species richness and abundance of butterflies. The results confirmed others obtained in 384	

previous tests (Marull et al. 2018), relating IDC values with biodiversity of different taxa (vascular 385	

plants, amphibians, reptiles and mammals) in Catalonia.  386	

In the region of Barcelona (Table 1), only ELIA was positively related with the observations of 387	

butterflies (r2=0.266); Shannon and Ecological Connectivity (heterogeneous and well-connected 388	

landscapes) and I (information-driven redistribution of biomass flows) were also positively correlated 389	

with species richness (three of the ELIA components), while Grassland (pasture) and FEInr (non-390	

renewable external inputs –fertilizers, pesticides) correlated negatively (r2=0.521).  391	

Other regressions showed which energy and landscape variables have statistical relation with the 392	

number of observations and species richness of breeding (Table 2) and wintering (Table 3) birds. The 393	

case of birds was more complex because, in general, this group responds better to landscape 394	

heterogeneity at larger spatial scales than butterflies. However, the results confirmed previous analyses 395	

(Marull et al., 2018) that also supported IDC relation with vascular plants, amphibians, reptiles and 396	

mammals, but not with birds. In this paper, we wanted further explore the specific response of birds’ to 397	

the IDC. 398	

In the province of Barcelona, Cropland and Grassland cover positively affected the distribution of 399	

breeding birds (Table 2), while Ecological Connectivity was negatively related (r2=0.361). Largest Path 400	

Index (size of land cover patches) increased species richness while Scrubland reduced it (r2=0.206). In 401	

the case of wintering birds (Table 3) HANPP (harvest), Cropland (arable crops) and Grove (fruit crops) 402	

were positively related (r2=0.380) with the abundance (birds are moving to these land-uses to find food), 403	

as well as the percentage of Open Space and Shannon with species richness (r2=0.301). 404	

Finally, applying the ELIA model in the region of Barcelona, I (the biomass redistributed between 405	

different land-uses) was the key explaining both the number of observations and the species richness of 406	
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breeding (r2=0.500 and r2=0.248, respectively) (Table 2) and wintering birds (r2=0.543 and r2=0.401, 407	

respectively) (Table 3). This indicator penalizes the use of non-renewable inputs, such as pesticides and 408	

synthetic fertilizers together with polluting waste. 409	

3.3. Using the IDC and ELIA models to test Margalef’s hypothesis 410	

The combination of energy-flow pattern characterisation and information on the way energy is 411	

redistributed in space appears as a good starting point to model the society-environment relationships. 412	

According to Margalef (1991, 2001), to understand how human activities affect the organization of space 413	

where ecosystem functioning takes place it is necessary to clarify conceptually and formulate 414	

quantitatively “the relationship between the external energy inputs and the dimensions that characterize 415	

the spatial patterns of its distribution” –i.e. the functional structure of the land matrix. The models 416	

proposed in this paper allowed us to assess the relationships between landscape structure and energy 417	

and information flows with biodiversity in human-transformed landscapes. 418	

As previously shown in other studies (e.g. Tucker and Heath 1994), the biodiversity indicators 419	

(butterflies and birds) used in statistical tests showed a special strong decrease in species associated with 420	

agroforestry mosaics (Santos et al. 2008; Melero et al. 2016). These effects are added to those of climate 421	

change (Stefanescu et al. 2010; Devictor et al. 2012). This study confirms the constant decrease in 422	

populations of common bird species related to open spaces in the Barcelona Province. The decrease of 423	

birds’ populations is of increasing concern in Europe (Inger et al. 2014). The preservation of bio-cultural 424	

landscapes and of traditional mixed farming are recognized as key elements to halt the serious decline 425	

of butterfly populations in Europe (van Swaay et al. 2008). Moreover, butterflies are a proxy of 426	

biodiversity (Thomas 2005). These troubling birds’ and butterflies’ population dynamics justify the need 427	

for an integrated land-use planning, where organic mixed-farming agriculture may have a key role as 428	

green infrastructure guaranteeing ecosystem services provisioning. 429	

The IDC and ELIA models linking social metabolism with landscape ecology here tested at different 430	

resolutions have demonstrated their capability as predictors of biodiversity locations using butterfly 431	

empirical data either at regional (IDC) or at local (ELIA) levels. In the case of birds (also butterflies), 432	

the information-driven redistribution of biomass flows within agroecosystems (I) appears to be a major 433	
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factor behind biodiversity patterns (Table 1, Table 2 and Table 3). This is an interesting result, because 434	

it points out to the role of farmers’ knowledge and labour in maintaining the ecological functionality of 435	

bio-cultural landscapes by means of a subtle and historically changing human-nature dynamics (Marull 436	

et al. 2018). This is good news for addressing the energy-food-biodiversity trilemma currently posed at 437	

global scale (Tilman et al. 2009).   438	

The combination of spatially and temporarily uneven disturbances with increased landscape 439	

complexity can be capable to offer more habitats and available energy resources for different species 440	

and ecological communities within and agro-ecological land matrix. As a result of this combination of 441	

intermediate disturbances in heterogeneous bio-cultural landscapes, beta-diversity (at landscape scale) 442	

increased, and overrode the inevitable fall in alpha-diversity (at plot level) in cropland, which is the 443	

typical local impact of organic farm system functioning on biodiversity (Gliessmann 1990). As long as 444	

this newly introduced farm-associated biodiversity (Altieri 1999) did not preclude the survival of former 445	

species richness, which would be sheltered in more undisturbed land-units, the whole process could 446	

even entail an increase in gamma-diversity (on a regional scale). 447	

In summary, the relationship between biodiversity and agrarian metabolism shows that abundance 448	

and species richness are positively related to non-intensive farming (IDC and ELIA models with 449	

butterflies; Table 1) and the heterogeneous distribution of energy flows across the landscape with 450	

minimum use of industrial inputs (I with butterflies and birds; Table 1, Table 2 and Table 3). These 451	

findings are in line with a recent comprehensive review in conservation biology (Sanchez-Bayo and 452	

Wyckhuys 2019) for what concerns the worldwide decline of entomofauna. 453	

4. Conclusion 454	

This paper has been the first attempt to check the Margalef’s energy-information-structure hypothesis 455	

testing the links of landscape patterns and energy and information flows with biodiversity in human-456	

transformed landscapes. We used an Intermediate Disturbance–Complexity (IDC) model to assess how 457	

different levels of human appropriation of photosynthetic capacity affect the landscape structure that 458	

hosts biodiversity on a regional scale (Marull et al. 2016a). We also applied an Energy–Landscape 459	

Integrated Analysis (ELIA) of agroecosystems to measure the “energy storage” (E) and “energy 460	
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information” (I) held in the whole network of agricultural socio-metabolic flows, to correlate both 461	

variables (E·I) with the “energy imprint” in the landscape patterns and processes that sustain biodiversity 462	

on a local scale (Marull et al. 2016b).  463	

Both models can increase our capability to understand the ultimate factors that determine different 464	

components of biodiversity location (butterflies and birds) in human-transformed landscapes. The IDC 465	

is an energy-space input-output model (based on the human appropriation of net primary production), 466	

while ELIA goes deeper in opening the black box on how energy is reinvested (E) and redistributed (I) 467	

in the land matrix (assessing the complexity of the internal energy loops at local scales). As Margalef 468	

suggested (Margalef 1991), “the patterns of energy distribution”–in terms of inputs, outputs, and 469	

internal flows- have been determinant to understand species richness and abundance in Mediterranean 470	

human-transformed landscapes.  471	

Confirming or rejecting the Margalef’s hypothesis requires further research applying IDC and ELIA 472	

to different case studies in diverse bioregions, and using larger biodiversity datasets in order to find out 473	

the critical thresholds in the interplay among energy throughputs and information-complexity landscape 474	

patterns. This research agenda would help to reveal how and why different agroecosystem managements 475	

can lead to key turning points in the relationship of the network of socio-metabolic energy flows of 476	

farming with landscape ecological functioning and biodiversity (Agnoletti 2014).  477	

Testing these linkages between social metabolism, landscape ecology and biodiversity may also 478	

assist to appraise the wider impact of land-use policies on ecological functioning in human-modified 479	

territories (IDC and ELIA models can be potentially regionalized), thus helping to resolve the global 480	

energy-food-biodiversity trilemma (Tilman et al. 2009). The traditional sectorial policies have to be 481	

overcome by a new systemic vision of the agricultural, forestry and livestock metabolic circulation 482	

within the landscape functional structure of green infrastructures (Marull et al. 2019). This requires 483	

going ahead in an agro-ecology research useful for designing more sustainable human-transformed 484	

landscapes worldwide in the future. 485	
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Table 1 Linear regression analysis taking into account all the predictor variables (energy and landscape; 639	
Table 1) and the dependent variables of biodiversity components (total butterfly species richness and 640	
abundance), applying the Intermediate Disturbance–Complexity (IDC) and the Energy–Landscape 641	
Integrated Analysis (ELIA) models at the Barcelona province and region, respectively 642	

Note: Farmland External Input no-renewable (FEInr); Energy Information (I). See Table A1.  643	

Total Butterflies – Abundance (Province) 
  Coef. t VIF 
(constant) 18,724.647 0.607   
IDC 221,202.465 2.730 1.201 
Edge Density 97.207 1.938 1.201 
  Adj. R2 F Sig 
Statistics 0.160 4.132 ,026(b) 
a) Dependent variable: TB-AB 
b) Predictor variables: (constant), IDC, Edge Density 
Only significative variables are represented   

Total Butterflies – Species Richness (Province) 
  Coef. t VIF 
(constant) 23.778 2.754   
IDC 102.183 3.830 1.066 
Polygon Density 0.078 1.658 1.066 
  Adj. R2 F Sig 
Statistics 0.286 7.596 ,002(b) 
a) Dependent variable: TB-SR 
b) Predictor variables: (constant), IDC, Polygon Density 
Only significative variables are represented   

Total Butterflies – Abundance (Region) 
  Coef. t VIF 
(constant) 41,293.408 2.109   
ELIA 527,216.781 2.824 1.000 
  Adj. R2 F Sig 
Statistics 0.266 7.978 ,010(b) 
a) Dependent variable: TB-AB 
b) Predictor variables: (constant), ELIA 
Only significative variables are represented 

Total Butterflies – Species Richness (Region) 
  Coef. t VIF 
(constant) 7.623 0.561   
Ecological Connectivity 4.032 2.405 1.386 
FEInr -0.307 -4.062 1.553 
I 92.206 2.758 1.314 
Grassland -189.150 -3.022 1.758 
Shannon 48.194 2.493 2.003 
  Adj. R2 F Sig 
Statistics 0.521 6.005 ,002(b) 
a) Dependent variable: TB-SR 
b) Predictor variables: (constant), Ecological Connectivity, FEInr, I, Grassland, Shannon 
Only significative variables are represented 
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Table 2 Linear regression analysis taking into account all the predictor variables (energy and landscape; 644	
Table 1) and the dependent variables of biodiversity components (breeding birds species richness and 645	
abundance), applying the Intermediate Disturbance–Complexity (IDC) and the Energy–Landscape 646	
Integrated Analysis (ELIA) models at the Barcelona province and region, respectively 647	

Total Breeding Birds – Abundance (Province) 
  Coef. t VIF 
(constant) 502.910 10.661  
Ecological Connectivity -56.406 -6.753 1.009 
Cropland 166.904 1.863 1.075 
Grassland 779.270 1.735 1.067 
  Adj. R2 F Sig 
Statistics 0.361 19.070 ,000(b) 
a) Dependent variable: TBB-AB 
b) Predictor variables: (constant), Ecological Connectivity, Cropland, Grassland 
Only significative variables are represented 

Total Breeding Birds – Species Richness (Province) 
  Coef. t VIF 
(constant) 113.412 16.681  
Largest Path Index -1.251·10-5 -4.700 1.116 
Scrubland -39.183 -3.597 1.116 
  Adj. R2 F Sig 
Statistics 0.206 13.459 ,000(b) 
a) Dependent variable: TBB-SR 
b) Predictor variables: (constant), Largest Path Index, Scrubland 
Only significative variables are represented 

Total Breeding Birds – Abundance (Region) 
  Coef. t VIF 
(constant) 526.167 7.576  
Grassland 2,134.082 3.029 1.262 
E -316.791 -4.063 1.142 
Le -446.136 -3.676 1.231 
I 523.249 2.125 1.353 
  Adj. R2 F Sig 
Statistics 0.500 17.273 ,000(b) 
a) Dependent variable: TBB-AB 
b) Predictor variables: (constant), Grassland, E, Le, I 
Only significative variables are represented 

Total Breeding Birds – Species Richness (Region) 
  Coef. t VIF 
(constant) 70.962 9.144  
BEROI -15.720 -2.060 1.090 
I 69.576 2.440 1.217 
Grassland 158.545 1.773 1.291 
  Adj. R2 F Sig 
Statistics 0.248 8.257 ,000(b) 
a) Dependent variable: TBB-SR 
b) Predictor variables: (constant), BEROI, I, Grassland 
Only significative variables are represented 

Note: Energy Storage (E); Energy Information (I); Landscape Complexity (Le); Biodiversity Energy Return of Investment 648	
(BEROI). See Table A1.  649	
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Table 3 Linear regression analysis taking into account all the predictor variables (energy and landscape; 650	
Table 1) and the dependent variables of biodiversity components (wintering bird species richness and 651	
abundance), applying the Intermediate Disturbance–Complexity (IDC) and the Energy–Landscape 652	
Integrated Analysis (ELIA) models at the Barcelona province and region, respectively 653	

Total Wintering Birds – Abundance (Province) 
  Coef. t VIF 
(constant) 3.485 6.815  
HANPP 2.732 6.329 2.233 
Scrubland -2.262 -5.067 1.273 
Open Space (%) 1.200 2.909 2.386 
  Adj. R2 F Sig 
Statistics 0.406 20.139 ,000(b) 
a) Dependent variable: ln(TWB-AB) 
b) Predictor variables: (constant), HANPP, Scrubland, Open Space 
Only significative variables are represented 

Total Wintering Birds – Species Richness (Province) 
  Coef. t VIF 
(constant) 75.439 11.161  
Ecological Connectivity -11.614 -4.839 4.311 
Open Space (%) 40.571 2.385 4.496 
Shannon 50.302 3.304 1.568 
Scrubland -21.032 -1.640 1.163 
  Adj. R2 F Sig 
Statistics 0.301 10.052 ,000(b) 
a) Dependent variable: TWB-SR 
b) Predictor variables: (constant), Ecological Connectivity, Open Space, Shannon, Scrubland 
Only significative variables are represented 

Total Wintering Birds – Abundance (Region) 
  Coef. t VIF 
(constant) 5.981 14.292  
Grassland 7.808 2.568 1.267 
E -1.694 -4.264 1.235 
I 3.057 2.725 1.212 
  Adj. R2 F Sig 
Statistics 0.543 22.015 ,000(b) 
a) Dependent variable: ln(TWB-AB) 
b) Predictor variables: (constant), Grassland, E, I 
Only significative variables are represented 

Total Wintering Birds – Species Richness (Region) 
  Coef. t VIF 
(constant) 80.723 5.558  
BEROI -24.532 -2.213 1.509 
I 114.948 2.745 1.449 
Ecological Connectivity -3.950 -2.607 1.058 
  Adj. R2 F Sig 
Statistics 0.401 12.811 ,000(b) 
a) Dependent variable: TWB-SR 
b) Predictor variables: (constant), BEROI, I, Ecological Connectivity 
Only significative variables are represented 

Note: Human Appropriation of Net Primary Production (HANPP); Energy Storage (E); Energy Information (I); Biodiversity 654	
Energy Return of Investment (BEROI). See Table A1. 655	
  656	
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Figure 1 Butterfly transects (circular buffer: 750m)* and bird transects (longitudinal buffer: 500m)** 657	
monitored in the Barcelona province and region (RMB), represented over a land cover map (2009)  658	
 659	
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Source: * Catalan Butterfly Monitoring Scheme (CBMS); ** Institut Català d’Ornitologia (ICO). 684	
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Figure 2 Theoretical values of the Intermediate Disturbance–Complexity (IDC) model. Relationship 685	

between Landscape Heterogeneity (L) and Human Appropriation of Net Primary Production (HANPP) 686	

 687	

 688	

 689	

 690	

 691	

 692	

 693	

 694	

 695	

 696	

Note: IDC = L (1- HANPP/100) 697	
Source: Marull et al. 2016a. 698	
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Figure 3 Graph model of the energy carriers used in the Energy–Landscape Integrated Analysis (ELIA) 700	

 701	

 702	
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 704	
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 707	

Variables: Actual Net Primary Production (NPPact); Unharvested Biomass (UB); Harvested Net Primary Production (NPPh); 708	
Biomass Reused (BR); Farmland Biomass Reused (FBR); Livestock Biomass Reused (LBR); Farmland Final Produce (FFP); 709	
External Input (EI); Farmland External Input (FEI); Livestock External Input (LEI); Livestock Total Input (LTI); Livestock 710	
Produce and Services (LPS); Livestock Final Produce (LFP); Livestock Services (LS); Final Produce (FP); Agroecosystem 711	
Total Turnover (ATT); Farmland Total Input (FTI); Farmland Internal Input (FII); Farmland Waste (FW): Livestock Waste 712	
(LW). nr means no-renewable. βi's are the incoming-outgoing coefficients. 713	

Relationships between variables:  NPPact = UB + LP; NPPh= BR + FFP; BR = FBR + LBR; EI = FEI + LEI; LTI = LEI + 714	
LBR; LPS = LP + LS; FP = FFP + LFP; ATT = FTI + UB; FTI = FII + FEI; FII = FBR + LS. 715	
 716	
Note: The colours of the arrows represent the ‘forestry’ (green), ‘farmland’ (red) or ‘livestock’ (purple) subsystems.  717	
Source: Marull et al. 2016b. 718	
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Appendix A 721	

Figure A1 Butterfly species richness and abundance (represented as generalist / specialist, open-space / 722	
close-space species) and bird species richness and abundance (represented as total or farmland breeding 723	
/ wintering species) in the Barcelona province, from 2005 to 2015 724	
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Source: * Catalan Butterfly Monitoring Scheme (CBMS); ** Institut Català d’Ornitologia (ICO).  755	
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Table A1 Variables used in the Intermediate Disturbance–Complexity (IDC) and the Energy–Landscape 756	

Integrated Analysis (ELIA) models at the Barcelona region and province (RMB & PROV, respectively) 757	

 758	

Typology Code Name RMB PROV 

Energy 

Primary  Energy 
Variables 

FEI r Farmland External Input  renewable *   
FEI nr Farmland External Input no-renewable *   

FEI Farmland External Input  *   
UB Unharvested Biomass  *   
FW Farmland Waste *   
FBR Farmland Biomass Reused *   
LBR Livestock Biomass Reused  *   
FFP Farmland Final Produce  *   

LEI R Livestock External Input  *   
LEI nr Livestock External Input renewable *   

LEI Livestock External Input no-renewable *   
LW Livestock Waste *   
LS Livestock Services *   

LFP Livestock Final Produce *   

Secondary Energy 
Variables 

NPPact Actual Net Primary Production *   
NPPh Harvested Net Primary Production *   
ATT Agroecosystem Total Turnover *   
LTI Livestock Total Input *   
LPS Livestock Produce and Services *   
FTI Farmland Total Input *   
FII Farmland Internal Input  *   

Socio-economic 
Indicators 

EF-EROI External - Energy Return of Investment *   
IF-EROI Internal - Energy Return of Investment *   
F-EROI Final - Energy Return of Investment *   

Agro-ecological 
Indicators 

NPP-EROI Net Primary Production - Energy Return of Investment *   
AF-EROI Agro-ecological - Energy Return of Investment *   
B-EROI Biodiversity - Energy Return of Investment *   

Energy Indicators 
E Energy Storage *   
I Energy Information *   

HANPP Human Appropriation of Net Primary Production   * 

Landscape 

Landscape 
Composition 

CR-LC Cropland * * 
GR-LC Grove * * 
VN-LC Vineyard * * 
GS-LC Grassland * * 
SC-LC Scrubland * * 
FR-LC Forest * * 
WT-LC Wetland * * 
UN-LC Unproductive * * 
UR-LC Urban * * 

Landscape 
Configuration 

LPI Largest Path Index * * 
PD Polygon Density * * 
ED Edge Density * * 

EMS Effective Mesh Size * * 
L Landscape Heterogeneity * * 

ECI Landscape Connectivity * * 
Le Landscape Complexity * * 

Energy - 
Landscape ELIA / IDC 

ELIA Energy - Landscape Integrated Analysis *   
IDC Intermediate Disturbance Complexity   * 

Biodiversity 
(transects) 

Birds 

TBB-SR Total Breeding Bird Species Richness 

69 96 

FBB-SR Farmland Breeding Bird Species Richness 
TBB-AB Total Breeding Bird Abundance 
FBB-AB Farmland Breeding Bird Abundance 
TWB-SR Total Wintering Bird Species Richness 
FWB-SR Farmland Wintering Bird Species Richness 
TWB-AB Total Wintering Bird Abundance 
FWB-AB Farmland Wintering Birds Abundance 

Butterflies 

TB-SR Total Butterfly Species Richness 

23 34 

TB-AB Total Butterfly Abundance 
OPE-SR Open-space Butterfly Species Richness 
OPE-AB Open-space Butterfly Species Abundance 

CLOS-SR Close-space Butterfly Species Richness 
CLOS-AB Close-space Butterfly Species Abundance 
GEN-SR Generalist Butterfly Species Richness 
GEN-AB Generalist Butterfly Species Abundance 
SPE-SR Specialist Butterfly Species Richness 
SPE-AB Specialist Butterfly Species Abundance 


