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1. Introduction

In a series of recent papers Seip [S], Seip-Wallsten [S-W] and Lyubarskii-Seip [L-S]
have studied sets of Interpolation and sampling for various spaces of analytic functions of
one variable. Part of these results concern Hubert spaces of functions that are square inte-
grable against certain weights, and another, closely related part deals with similar spaces
with uniform norms. The methods used in these papers are based on classical-type but
intricate constructions of one-variable nature that to some extent go back to Beurling [B].

In [O] Ohsawa has suggested the use of L2-techniques for cF to prove results of the
above type. In particular, Ohsawa gives a proof of the sufficiency part of the theorem of
Seip-Wallsten concerning Interpolation in the space of entire functions in C satisfying

As in the approach initiated by Bombieri, Hörmander and Skoda (see [H]), the main diffi-
culty in such a proof is the construction of a (pluri)-subharmonic function with prescribed
singularities at the points where one wishes to interpolate. For this Ohsawa uses part of the
constructions of Seip-Wallsten, ultimately going back to Beurling, and he poses äs a pro-
blem to give a more elementary proof. One purpose of this note is to show how that can be
done. As it turns out, the method we use also works for more general weights and therefore
also implies the sufficiency part of the theorem by Lyubarskii-Seip. Furthermore, we shall
show how the positive direction of the sampling theorem can be obtained in a similar
manner, and we shall also permit somewhat more general growth conditions than
Lyubarskii-Seip (see Theorem 2).
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In [O] Ohsawa also gives a new proof of the theorem of Seip about Interpolation in
Bergman spaces of the disk. This part of Ohsawa's work contains two essential ingredients.
The first one is, s in the case of entire space, the construction of a subharmonic function
with prescribed singularities. In [O] no details of this construction is given, so in section 3 of
this paper we shall show how the construction in entire space can be adapted to the disk
case. For this we use a so called invariant convolution in the disk, introduced by Ulrich
[U]. The other ingredient in Ohsawa's proof is a generalized Version of H rmander's L2-
estimates for 5", inspired by a theorem of Donelly and Fefferman [D-F]. Ohsawa deduces
this L2-estimate from a more general Version involving vector bundles over Kahler mani-
folds. Since this terminology probably is not so well known among specialists in one com-
plex variable, we shall also take this opportunity to give a direct proof for the disk (see
also [Bei] for a related argument). In section 3 we shall also prove the positive part of the
sampling theorem, and show that both the Interpolation and the sampling theorems of Seip
[S 2] hold for more general weights.

The theorems of Seip et al. also concern spaces that are defined by other norms than
L2, notably uniform norms. In section 4 we show that the methods of this paper also give
results of this type, even in our somewhat more general setting. The general lines of the
proofs are the same s in the L2 case, with the difference that the L2-estimates of H rmander
are replaced by similar estimates in uniform norms from [Be2] and [Be3].

One comment is in order. The results of Seip et el. are attractive partly because they
are so precise and give necessary and sufficient conditions for Interpolation and sampling.
This paper gives different proofs of the positive directions of these theorems, but we have
no new ideas about proofs of the converse directions. In particular, we do not know if the
conditions in Theorem 2 and 4 are also necessary for sampling and Interpolation, although
this seems likely, and perhaps can be proved along the lines of Beurling [B], and Seip [S],
[S2].

2. Interpolation and sampling in C

Let φ be a subharmonic function in C, and let F2, be defined by

By definition, a sequence Γ = {z,.} c C is sampling for F% if there are constants A and B
such that for any h e F%

The sequence Γ is called interpolating if for any sequence {c,·} such that

we can find an heF£ such that h(Zj) = Cj. Introducing the notation /^ for the space of
space of all sequences ξ = {^} such that ||£||2 = ^\^\2β~φ(ζ^ < oo we see that Γ is inter-
polating iff the natural restriction map from F% to /^ is surjective, and sampling iff it is
bounded and injective, with closed r nge.
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In [S] is defined the notion of upper and lower density of a sequence in the following
way:

D + (F) = limsup sup«(rnA(z,r))/7rr2

and
= liminf inf«(rnA(z,r))/7ir2 .

r-*oo zeC

(If E is a set, n (E) denotes the number of elements in E.) Finally a sequence is called uni-
formly separated if the infimum of the distances between distinct points is strictly positive.
The main results of Seip [S] and Seip-Wallsten [S-W] are s follows.

Theorem A. A sequence Γ is interpolating for F£ with φ = α|ζ|2 if and only if it is
uniformly separated and

Theorem B. A sequence Γ is sampling for F% with φ = α|ζ|2 if and only ifit can be
written s afinite union of uniformly separated sequences andmoreover contains a uniformly
separated subsequence Γ' satisfying

In Lyubarskii-Seip [L-S], an analogous notion of density depending on an angle is
introduced and shown to characterize interpolating and sampling sequences for F% when
φ is subharmonic, of class C2 and positively homogeneous of degree 2 (i.e. φ(ίζ) = t2 φ (ζ)
for t > 0).

Unwinding the definitions of D + and D ~ we see that D + < y if and only if for some
δ > 0 and all sufficiently large r and all z it holds that

(1) *(ΓηΔ(ζ,Γ))/πΓ 2<}>-(5 ?

and that D ~~ > y if and only if for some δ > 0 and all sufficiently large r and all z it holds
that

(2) «(ΓηΔ(ζ,τ))/πΓ2>7 + (5.

It is not hard to see that both these conditions are equivalent to saying that (1) and
(2) hold for some large r. For a general subharmonic function φ we now define a similar
notion. Here, s well s in the rest of this paper we let the Laplace operator Δ be defined
s Δ = d2 / 'dz dz, a convention which differs from the Standard one by a factor 4.

Definition. The sequence Γ is dense with respect to Δ φ if for some r < oo and δ > 0
it holds that

«(ΓηΔ(ζ, r))/r2

for all z.
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Γ is thin with respect to Δ0 if for some r < oo and δ > 0 it holds that

w(rnA(z,r)X/A·2 < Δ φ (ζ) - δ
for all z.

We are now ready to formulate the first version of our main result.

Theorem 1. Suppose φ is subharmonic in C and that Δ φ is uniformly bounded. Then a
uniformly separated sequence Γ is

(a) interpolating for F% if Γ is thin with respect to Δ</>,

and

(b) sampling for F% if Γ is dense with respect t ο Δ φ.

In the light of what we just said it is clear that when φ = α|ζ|2 this is just a rephras-
ing of the sufficiency part of the theorem of Seip-Wallsten. Moreover, one can check that
when φ is positively homogeneous of degree 2 we get the result of Lyubarskii-Seip (note that
such a function always has a uniformly bounded laplacian if it is of class C2).

Theorem l has s a consequence the following, perhaps more natural, theorem.

Theorem 2. Suppose φ is subharmonic in C and that Δ φ is uniformly bounded. Then a
uniformly separated sequence Γ is

(a) interpolating for F£ if for some r < oo and δ > 0 it holds that

« (Γη Δ (z, r))/ r2 < -^-2 f Δ<£(0-<5 for all z
nr K - z | < r

and

(b) sampling for F£ iffor some r < oo and δ > 0 it holds that

«(ΓηΔ(ζ,Γ))/Γ2> ~ Ι Δ0(0 + 5 for all z.

Assume that the condition in Theorem 2 (a) (or (b)) holds for a certain value of r. Let

l

and

be the averages of φ over disks with radius r. φτ is again subharmonic, and the conditions
mean precisely that Γ is thin (or dense) with respect to Δ φ,. From Theorem l we con-
clude that Γ is interpolating (sampling) for F£. But it is easily seen that, if the laplacian of
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φ is uniformly bounded, then φ — φ,= O (r2). Since r is a fixed number, this proves
Theorem 2, given Theorem l .

To prepare for the proof of Theorem l let v = £ 2j be the measure consisting of a
pointmass at each point in our sequence, which we assume from now on is uniformly
separated. Let E = l /π log | z |2 be the fundamental solution of the Laplace operator (with
our convention ΔΕ = <50). We now define an auxiliary function

v = (v - v * Xr) * E .

This function is certainly well defined if Γ is finite. Notice that the value of v at z then depends
only on the points in Γ with \Zj — z\<r9 since for the other points the two terms in the
definition of v cancel by the mean value property for harmonic functions. Therefore we can
define v for arbitrary sequences by a limiting procedure. An alternative way to define v is
to first let

"r = (Xr - <*o) * E -

This function satisfies (and of course is characterized by) the properties

Aw r = 1/Tir2 — (50

in \z\ < r, and
ur = dur/dn = 0

on |z| = r. Moreover ur = 0 in \z\ > r. Explicitly, ur is given by

if |z| < r and ur = 0 otherwise.

In particular ur has compact support so we can define v by

v = — ur * v .

Since E is subharmonic it follows from the submeanvalue property that ur ̂  0 so we
always have v ̂  0. Of course it holds that

Δι; = v — v * χΓ .

Assume now that Γ is thin with respect to Δ φ. This means precisely that for some large
enough r and some positive δ

nv * Xr

Let
ψ = πν + φ .

Then
^ πν + δ ̂  δ .
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ψ satisfies the estimates

(i) ψ ^ φ in C

and

( ) | tp-log|z-z,|2-4>|^C r

in | z — Zj\ < ε0, if ε0 is chosen so that \zj — zk\ > 2ε0 forj Φ k. (ii) just says that

\nv -\og\z -Zj\2\^Cr

which is clear since v = — ur * v in view of our explicit formula for ur.

The proof of Theorem l now follows Standard lines. Let {cj be a sequence of values
such that

The first step in the construction of an interpolating function is to interpolate locally near
each point in the sequence {z,·}. For eachy we apply the Riesz decomposition formula in a
disk A;. of radius ε0 and center zjf Write

where hj is harmonic and (/[Αφ] is a Green potential. Write hi = 291 H J9 where Hj is
holomorphic. Let Gj = Hj — HJ(ZJ). Then G, is a holomorphic function satisfying

GJ(ZJ) = 0
and

in Aj. This means that

solves

and

in Aj. We next combine the /)'s using a partition of unity.

Let#e Cc°°(C)be suchthatg = l for |z| < ε0/2,# = Ofor \z\ > ε0 and \dg\ ^ Ceo. Put
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Then f(Zj) = cj so / interpolates the right values. Finally we shall modify / to get a holo-
morphic interpolating function by solving a ^-equation. Note first that

We then apply H rmanders J-theorem [H], which implies that we can find a solution U to
fiU = fif satisfying

Since Δ φ ^ δ and fif vanishes when zeA(z J 5 ε0/2) for some zj the right hand side is
dominated by some constant times

Consequently

Moreover U(Zj) = 0 for each Zj since e~v ~ i/\z — Zj\2 near z,·. Let

h=f-U .

Then H(ZJ) = cjy and J |A | 2 e~*<oo since both/ and U satisfy this estimate. The proof of
Theorem l (a) is therefore complete.

We now turn to the sampling part of Theorem l . For a moment, let v be an arbitrary
positive measure on C. Assume v * χΓ ^ C and that

πν * Xr > Δ</> + δ

which is the analog of the density condition for general measures. Put

v = (v - v * χΓ) * E *
and

φ = (πν + φ) .

As before ψ ^ φ but this time we have

Δφ ^ v — <5 .

Let h e F2, and let U = \h\2e~v. Since

Alog£7 S£ —

it follows that

^ -C/Δφ.
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Moreover, ί/e L1(C). Let g be a eut-off function such that g ̂  0, g = l for \z\ < l and
g = 0 for |z |>2. Then

lim lg(z/R)AU= lim f l/ 2(Ag)(z/ ) [7= 0 .
-+ 00 -> D

By the differential inequality for (7

^ 0

so it follows that

(3)

This is already an inequality of sampling type. We would like to choose s before
v = ]T j but we cannot do that directly since ψ would then be identically equal to — oo on
the support of v, so the inequality would be of no value.

Instead we shall take v to be a smoothed Version of a sum of Dirac measures. Let Γ
be a sequence which is dense with respect to Δ</>. Let v be defined s

where 0 < i < l (we make no distinction between an absolutely continuous measure and
its density with respect to Lebesgue measure). Since Γ is dense we can choose t so close to
l that

for some large r. Then ψ = ην + φ will satisfy the estimates

Ο') φ-€ε^ψ^φ

and

(ii') | t / ; - / log8 2 -</> |^C

in | z — Zj | ̂  s.

Take h e F£. Then h E F* so (3) holds. This together with (i') and (ii') gives

(4) 0/2J|A|^-^cXLi J \h\2e~*.

Now we have to use that h is holomorphic (so far we have used only that log|A|2 is
subharmonic). Fix j for the moment and write

(5) f \h\2e~*= i \he-Gi\2e-*e2*G>~ f |$,|2<?-*(">,
|z-z,|<e |z-zy|<£ |z-Zj |<c
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where gj — he~Gj is holomorphic in |z — Zj\ < l and gj(zj) = h(zj). Clearly

A> i \g,\2e-+W£2\h(zt)\2e-+W + Ce2e-+W sup \gj\2 ·
πε |ζ-ζ . |< ε \*-*j\<*

But, by Cauchy's estimate

sup IgJI^-^^C J |gj|2e~^>~ J \h\2e~*.
\z~Zj\<£ |z-z,- |<1 |ζ-ζ,· |<1

Summing over j we find

Choosing ε small enough we can absorb the second term on the right in the left hand side.
This proves that Γ satisfies the left of the inequalities in the sampling condition. The other
inequality is trivial since we have assumed that Γ is separated, so Theorem l (b) is now
completely proved.

3. Interpolation and sampling in D

Let φ be a subharmonic function in D, and let JF^2(B) be defined by

F2(0) = {A 6 ff (D); U / H } =. f |/|2 -^ < 00} .
ο -1 ~ l z l

A sequence Γ = {zj} c D is sampling for F% if there are constants A and B such that for
any AeF/(B)

A\\h\\2 ^ Σ \h(zj)\2e-*^(l - \zj\2) £ B\\h\\l .

The sequence Γ is called interpolating if for any sequence {cj} such that

we can find an A 6 /^2(D) such that h(Zj) = Cj.

A sequence Γ is called uniformly discrete or separated if

inf Q(zj9zk)>0,
j*k

where ρ is the pseudo-hyperbolic distance in D,
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Following [S 2] we shall define the notion of upper and lower density of a uniformly
separated sequence in D. Notice however that our definition differs frorn the one in [S 2] by
a factor of two.

z„e<p(F)
sup * / a <l ' - l<

l <peAut(P) ,

and

ζηεφ(Γ)
D ' (Γ) = lim inf inf 1 /2<|z" l<r

r-*l <peAut(D)

The main results of [S 2] concerning weighted Bergman spaces in the disk are the following:

Theorem C. A sequence Γ is interpolating for /^2(O) with φ = α log l /(l — |z|2) if
and only if it is uniformly separated and

Theorem D. A sequence Γ is sampling for /^2(D) with φ = α log l /(l — |z|2) if and
only ifit can be written s afinite union of uniformly separated sequences andmoreover con-
tains a uniformly separated subsequence Γ' satisfying

Let us first reformulate the hypothesis of these theorems. In order to do so we recall
the definition (cf. [U], [St]) of the invariant convolution of two functions /, g:

where φζ(0 = - — — ; and άλ(ζ) is the invariant measure, i.e. άλ(ζ) = dm(z)/n(l — |z|2)2.

Similarly, if μ is a measure on the disk and g is a function, we define

We will need the following easy properties of the invariant convolution. If /, g, h are
measurable functions on the disk, and morover h is radial, then

(/»*) = (**/) and (/* )*g=/*(A*g) .

The first property is just a change of variables and the second holds since
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For any 1/2 < r < l, we define

!̂ i f i / 2 < | C | < r ,

0 i f r < | C | ,

where cr is chosen in such a way that Hir | |Li(d ) = 1. Observe that c r/log- > l s

r -»l, thus D + (Γ) < γ if and only if there exists some δ > 0 such that for all z e D and for
all r < l large enough it holds

where v (z) = π £ (l — l^l2)2^^)· Analogously, D~(F) > γ if and only if there exists
zier

some δ > 0 such that for all r < l large enough it holds

We will define now a corresponding notion for arbitrary subharmonic functions. We
define the invariant Laplace operator s = (l — \z\2)2d2jdzdz.

Definition. The sequence Γ is dense with respect to Αφ if for some r < l and δ > 0
it holds that

for all z.

Γ is thin with respect to Αφ if for some r < l and δ > 0 it holds that

for all z, where s before v (z) = π £ (l — |zi|2)2(52.(z) .

Then the following theorem holds.

Theorem 3. Suppose φ is subharmonic in D and of class C2. Suppose that Αφ is
uniformly bounded. Then a uniformly separated sequence Γ is

(a) interpolating for /^2(D) if Γ is thin with respect to Αφ,

and

(b) sampling for F2(D) if Γ is dense with respect to Αφ.

Just s in section 2, this theorem implies



120 Berndtsson and Cerd , Interpolation and sampling

Theorem 4. Suppose φ is subharmonic in B and ofclass C2. Suppose that Αφ is uni-
formly bounded. Then a uniformly separated sequence Γ is

(a) interpolating for /^2(B) iffor some r < l and δ > 0 it holds that

v*{ r(z)< 0*{r(z)-5, V Z E B ,

(b) sampling for F^2(B) iffor some r < l and δ > 0 it holds that

ξ.(ζ) + δ9 V Z E B .

The proof of Theorem 4, follows the same pattern s the proof of Theorem 2. Notice
that Ά(φ * £r) = (Αφ * £r) since Α(</>(φ)) = (Αφ) ο φ, for any φ e Aut(B).

We now prove Theorem 3. Let v (z) = π £ (l - |ζ4|2)^(ζ) and let E = log|z|2. It
Zi6.rfollows from the definition of invariant convolution that Δ (μ * £) = μ for any measure μ

provided that μ * E is well defined.

We will need s before an auxiliary function

v = (v — v * £r) * E .

Observe that the value of v (z) is determined by the points in Γ such that ρ (z, Zj) < r, since
(/* £r) =/when / is harmonic. Moreover, since ξ, is radial, we have that

That follows from the fact that v * E is subharmonic and ξτ is radial with H^ r l lL i ( d A ) = l·
Now define

ψ = φ + Ό.

Since v ̂  0, we have ψ (ζ) ̂  φ (z). Moreover, it follows from the definition that

-r 2

t?-log

for all z such that Q(Z,ZJ) < ε0, if ε0 is chosen so that Q(zj,zk) > 2ε0 for all j Φ k. We are
ready to solve the Interpolation problem now. Let {cj} be a sequence such that

For eachy* let Gj be a holomorphic function such that GJ(ZJ) = 0 and

if Q(z9Zj) ^ 2ε0. Such a function G,· exists since Αφ is uniformly bounded. To see this, we
can first'apply an automorphism of the disk sending Zj to 0, and then the same proof s in
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section 2 works. Take #eCc°° such that g = l for |ζ |<ε 0 /2 , g = 0 for |ζ|>ε 0 and

This function interpolates the values Cj in the points z,·, and moreover

We finally have to modify the function / to get a holomorphic function. We need the
following variant, due to Ohsawa, of H rmander's theorem.

Theorem E (Ohsawa). Lei ψ be any subharmonic function in the disk such that
Δ φ > δ > 0. Then there is a solution U to the equation 3 U = g such that

~ l z lp - ~ p

If the sequence z,· satisfies the hypothesis in Theorem 4 (a),

Άψ = Αφ -f v — v * < ! ; r > ( 5 .

Thus, by the above 5-theorem, there is a solution to 5 U = 3/ such that

Since 3/vanishes when Q(Z,ZJ) < ε0 it follows that

and

Consequently, since

we find

Moreover t/(z,) = 0 since ^ ψ · l - zf,
z·-z.

near z^. If we then take
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we get that h(zj) = cj9 h e H (D) and

< +00 .

Hence the Interpolation part of theorem 3 is proved.

To prove the sampling part, consider the ftmction

VE = 72 (π Σ Ο ~ 1*1 1*)* a*, * ΧΔ(Ρ,ε)) = ~2 (V
G G

We can choose r and i close enough to one and ε small enough so that

Then consider the functions
Ό = (νε - VE * ̂ r) * E

and

ψ = φ + Ό.

The hypothesis on v from Theorem 4 (b) gives that

and moreover it holds that

Furthermore

(6)

and one may also verify that

(7) |t;

for any z such that ρ (z, z^) < ε.

Let Ae/^2(B), and put t/= |A|2e~v. Since log|A| is subharmonic it follows that

and therefore,

Take a family of cut-off functions gr such that gr ̂  0, g = l if |z| < r, g = 0 if
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and such that gr is uniformly bounded by a constant independent of r. Then, by (6),
and

lim f (l - \z\2)gr(z)&UdX(z) = lim J Δ((1 - |z|2)gr(z)) Udl(z) ^ 0 .
r-* l 0) r -+ l p

Therefore
lim J (l - |z|2)gr(z) υ&ψάλ ^ 0 .
-

Thus,

ί ί W2 Τπ~^ o v-1""!^!

Taking into account (7), we obtain

^ i \h\2e-«dm(z) ^ J

Consider ΗοΙοιηοφΜο functions G^ defined for all z such that ρ (ζ, z,·) ^1/2 with
the properties:

Gj(zj) = 0 and

for all z such that ρ (ζ, ζ;·) ̂  l / 2. As before, the existence of such functions follows since we
have assumed Αφ is bounded. Fix j and call gj = he~Gj, then

ρ(ζ,ζ< / ·)<ε j ρ (ζ ,ζ>)<ε - j

Clearly, since m({z9Q(z,Zj) ^ ε}) ^ Ce2(l - |z,.|2)2 it follows that

i e-4>(*j)

\zj + s e - - z j s u p
|z

But, by Cauchy's estimate

( l - | ) sup
ρ(ζ,ζ< /)<ε

Summing over j we find

If we take ε small enough, we may absorb the second term on the right in the left band
side, and we obtain the left inequality in the sampling condition. The other inequality is
clear since Γ is a separated sequence.
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4. The non-Hilbert case

The Interpolation theorems we have been discussing also have natural analogs in
spaces that are not defined by L2-norms (see [Sl], [S 2] and [S-W]). We shall now briefly
indicate how the methods of the previous sections can be adapted to uniform norms.

First we treat the case of entire space. Let, s in section 2, φ be a subharmonic
function with uniformly bounded laplacian in C, and put

ΒΡφ = {/eJy(C); sup \f\2e'+£ C] .

A subsequence Γ of C is interpolating for ΒΡφ if for any sequence {q} such that

there is a function / in ΒΡφ such that /(z,·) = cjf

We then have the following theorem.

Theorem 5. IfT is a separated sequence which satisfies the hypothesis of Theorem 2 (a),
then Γ is interpolating for ΒΡφ.

Το prove this theorem we proceed s with Theorem l . We take

0(ζ) = ( ν - ν*χ Γ )*£,
and let

ψ = φ + v .

Then
Δ φ = Αφ + v — ν * χ Γ ^ < 5 + ν.

As in section 2 we first solve the Interpolation problem locally. We then find functions fj
that are holomorphic in Δ,· = Δ (ζ,·, ε0) satisfying fj(Zj) = cj and

in Aj. Then put

where g is the same cut-off function s in section 2. gain, we need to solve a S-equation,
but this time we want to estimate the solution in uniform norm. Let

tp(z)= sup
|ζ-ζ|<«ο/

We apply the following theorem from [Be3]:
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Theorem F. Lei ψ be a plurisubharmonic function in C" such that id^ip > δ > 0. Then
iff is a Ή-closed (0, \)-form in Cn and u is t he solution to?)u = fwhich is of minimal norm in
L2(C",<rv), usatisfies

This theorem has s a consequence a more precise Statement that we will need. Let h
be any harmonic function in C and write h = 9l/f where H is entire. Then v = ue~HI2 is
the canonical solution to 'S v = e~H/2fm L2(e~tp + h). Applying Theorem F to this Situation
instead we see that ψ (z) can be replaced by

where h is any harmonic function in C. It is even enough to assume that h is harmonic
in Δζ=:Δ(ζ,ε0/2), since any such h can be approximated by functions that are globally
defined. Choosing h to be the harmonic extension oft/; from <9Δ2 to the interior of Δζ, we
see that φ (z) can be replaced by ψ (z) — G (z) where G is the Green's potential of Δ ψ over
Δζ. In particular, if the laplacian of ψ is uniformly bounded, the Green's potential will be
bounded, so Theorem F holds with ψ replaced by φ.

In our case where ψ — φ H- υ one sees in a similar way that we can replace ψ by φ in (*).

Let us now for a moment suppose that our sequence Γ is finite. Then 3/ lies in L2 so
Theorem F applies and we see that the canonical solution to Ή u = ^/satisfies

Moreover the canonical solution also satisfies the L2 estimate from section 2, so it follows
that u(Zj) = 0. Letting h = /— u we get an interpolating function in ΒΡφ. Since the norm
does not depend on the number of points in the sequence, we can also permit infinite
sequences by a normal family argument.

We can also treat the disk case in a similar manner. Let φ be subharmonic in the disk,
and suppose that the invariant laplacian of φ is uniformly bounded. Put

ΒΡφ(0) = {/etf(D); sup |/(z)|2e"* ̂  C} .
zeO

A subsequence Γ of the disk is interpolating for ΒΡφ if for any sequence {Cj} such that

there is a function / in ΒΡφ such that f(Zj) = Cj. We then have

Theorem 6. Let Γ be a sequence in the disk which satisfies the hypothesis of Theo-
rem 4 (a). Then Γ is interpolating for ΒΡφ(Ώ).

The proof again follows the same pattern s in the L2 case; the only difference being
that we need to replace the L2~estimates for Ή by uniform estimates. In [Be3] there is also a

9 Journal f r Mathematik. Band 464
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theorem analogous to Theorem F for the case of the disk (or ball in C") but it requires
that Αφ > 4. In one dimension one can avoid this restriction by instead appealing to the
following theorem from [Be2].

Theorem G. Lei ψ be a subharmonic function and

Lei f be a function in D such that

sup — e~*l2< + 00.η

Lei u be the canonical solution t ο Ή u —f in L2. Then

<TV / 2 ,
Ά

where ψ (z) = sup ψ(0·
ρ(ζ,ζ)<1/2

In our construction from section 3 it holds (after subtraction of a harmonic function
like in the case of entire space), that ψ — φ is uniformly bounded, and moreover the
corresponding η will be of size 1/(1 — |z|2). Therefore Theorem 6 follows in the same way
s Theorem 5.

Finally, it may be worth remarking that since we use the canonical solution of the 3-
equation, we can interpolate between L2 and L00 and get similar results in Lp for p between
2 and infinity.

Appendix. A proof of Theorem E

The one dimensional case of H rmander's theorem that we used in section 2 says that
if φ is subharmonic in a domain in C we can solve the equation 5w = g with the estimate

(8)

in Ω.

That Ή u = g in the sense of distributions means that if α is any function in Cc°°( ) it
holds that

Taking the supremum of the norm of the right band side over all g such that J —- e φ ̂  l,
we get from (8)

da(9) |Δφ|α|2£φ^ f —dz
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for all α e Cc°°( ). Conversely (9) implies H rmander's theorem, and the usu l proof of (8)
consists in establishing (9) using Integration by parts.

To prove Theorem E we let Ω = D be the unit disk and put s before

Put φ = φ + φ0 in (9). The crucial point is that φ0 satisfies

(10) Δ0 0^ |δ0 0 | 2 .

Substitute α = γβ~φο in (9), and assume Δ ψ ̂  <5Δφ0. Then we get

dy δφ0

~d~z~J~d7

^ (l + 21 δ) J dy
Tz

δφ0

dz

Rearranging and using (10) we obtain

or more explicitly

y
dz

dz

(l-|z|2)^.

A Standard functional analysis argument then shows that for a given g we may find u such
that

forallyeCc°°(B), and

This completes the proof of Theorem E.
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