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ABSTRACT
The gamma-ray emission detected from several microquasars can be produced by relativistic
electrons emitting through inverse Compton scattering. In particular, the GeV emission de-
tected from Cygnus X-3, and its orbital phase dependence, strongly suggests that the emitting
electrons are accelerated in a relativistic jet, and that the optical companion provides the dom-
inant target. Here, we study the effects related to particle transport in the framework of the
relativistic jet scenario. We find that even in the most compact binary systems, with parameters
similar to Cygnus X-3, particle transport can have a substantial influence on the GeV light
curve unless the jet is slow, β < 0.7. In more extended binary systems, strong impact of particle
transport is nearly unavoidable. Thus, even for a very compact system such as Cygnus X-3,
particle transport significantly affects the ability of one-zone models to infer the properties
of the gamma-ray production site based on the shape of the GeV lightcurve. We conclude
that a detailed study of the gamma-ray spectrum can further constrain the structure and other
properties of the gamma-ray emitter in Cygnus X-3, although such a study should account for
gamma–gamma attenuation, since it may strongly affect the spectrum above 5 GeV.

Key words: radiation mechanisms: non-thermal – methods: analytical – binaries: general –
gamma-rays: stars.

1 IN T RO D U C T I O N

Microquasars (μQ) are binary systems that host a companion star
and an accreting compact object (CO) from which jets are produced.
Several μQ have been detected in the GeV gamma-ray range with
AGILE and Fermi LAT (Abdo et al. 2009; Tavani et al. 2009;
Williams et al. 2011; Bulgarelli et al. 2012; Corbel et al. 2012;
Piano et al. 2012; Bodaghee et al. 2013; Malyshev, Zdziarski &
Chernyakova 2013; Zanin et al. 2016; Piano et al. 2017). The vari-
ability found in the GeV emission in some of these sources is
consistent with inverse Compton (IC) scattering of stellar photons
by relativistic electrons accelerated in the jets (e.g. Dubus, Cerutti &
Henri 2010a; Zanin et al. 2016; Zdziarski et al. 2018, see also Jack-
son 1972). The IC origin of the gamma-ray emission detected from
μQ is supported by arguments based on higher efficiency of lep-
tonic radiation mechanisms, compared to hadronic ones, under con-
ditions of compact binary systems (Bosch-Ramon & Khangulyan
2009).

If the dominant target photon field is provided by the stellar
companion, IC scattering will be strongly anisotropic (see e.g.
Khangulyan & Aharonian 2005; Khangulyan, Aharonian & Bosch-
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Ramon 2008), and the scattering angle will change along the orbit.
This variability of the scattering angle is imprinted in the emis-
sion intensity and may be the dominant factor shaping the GeV
light curve (e.g. Dubus et al. 2010a, for Cygnus X-3). The spe-
cific dependence of the scattering angle on the orbital phase is
determined by the jet and counter-jet orientations and the loca-
tion of the acceleration and the emission sites in the jet. Thus,
gamma-ray light curves can help in constraining the emitter location
in μQ.

Cygnus X-3 is the brightest and best-studied gamma-ray emitting
μQ (e.g. Abdo et al. 2009; Tavani et al. 2009). The high luminosity
of this source may favour, from energetic arguments, relativistic jet
velocities, as they could alleviate the demanding energy require-
ments through Doppler boosting. In such a jet, the non-thermal
distribution of particles and their emission would be significantly
affected by relativistic effects. Nevertheless, a highly relativistic
jet is somewhat in tension with Fermi LAT data in the context
of a one-zone IC emitter (Dubus et al. 2010a; Zdziarski et al.
2018). On the other hand, radio VLBI observations of the jets of
Cygnus X-3, from milliarcsecond-to-arcsecond scales (∼10−104

au), favour an at least moderately relativistic jet (Martı́, Pare-
des & Peracaula 2001; Mioduszewski et al. 2001), which may
point to an even more relativistic flow on the scales of the binary
(∼0.1 au).
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In this paper, we derive the formulas for the IC emission from
a relativistic jet using the distribution function of electrons in the
phase space (r, p), with r and p being the particle spatial and
momentum coordinates in the laboratory reference frame (RF), re-
spectively. This function is a Lorentz invariant, which allows us to
avoid cumbersome RF transformations in the case when the contri-
bution from synchrotron self-Compton (SSC) is negligible1. This
approach also allows us to obtain the results in a form that con-
sistently describes the advection and radiation of gamma-rays by
particles in the case of an extended emitter (EE). In the derivation,
we account both for the transformation of the particle distribution
to the laboratory frame and for the impact of relativistic effects on
the particle cooling in the plasma frame. We obtain an analytic so-
lution for the invariant distribution function under the assumption
of dominant Thomson IC losses and numerically compute the IC
radiation accounting for changes in the target density and scattering
angle along the jet. We discuss the impact of the synchrotron and
adiabatic losses, and characterize the conditions when synchrotron
losses dominate, under which an analytic solution for the particle
distribution can be obtained.

An approach based on the invariant distribution function was
earlier suggested to describe the beaming pattern of the external IC
emission produced by blobs moving relativistically in blazar jets
(Georganopoulos, Kirk & Mastichiadis 2001). This approach was
later applied to study variable IC emission in binary systems (see
e.g. Georganopoulos, Aharonian & Kirk 2002; Romero, Kaufman
Bernadó & Mirabel 2002; Kaufman Bernadó, Romero & Mirabel
2002). In contrast to these studies, in our paper, we consider the
emission produced in a jet that implies a different beaming pattern
compared to an emitting blob. Another difference with the calcu-
lations presented by Georganopoulos et al. (2001) is that we use
the invariant distribution function to describe the propagation and
cooling of relativistic electrons in an EE, which appears to be an
important factor for interpreting the gamma-ray emission detected
from gamma-ray binary systems.

Compared to other models, which involve EEs in μQ (see e.g.
Vila & Romero 2010; Vila, Romero & Casco 2012; Zdziarski
et al. 2014a,b; Pepe, Vila & Romero 2015) and rely on the con-
ventional approach with RF transformations, our method signif-
icantly simplifies the computation of the external IC emission.
Thus, this paper allows us to extend the existing models focus-
ing on the GeV gamma-ray emission from μQ (e.g. Dubus et al.
2010a; Zdziarski et al. 2012, 2018), and to study consistently the
influence of particle advection on the gamma-ray spectra and light
curves.

Under conditions typical for μQ, in the TeV energy band the
Klein–Nishina regime and gamma–gamma attenuation can affect
the IC scattering and propagation of gamma-rays, respectively (see
e.g. Bosch-Ramon & Khangulyan 2009). In some systems with
particularly hot stellar companions, e.g. as Cygnus X-3, these ef-
fects may influence the production of GeV gamma-rays (see e.g.
Protheroe & Stanev 1987; Moskalenko, Karakula & Tkaczyk 1993;
Bednarek 1997; Cerutti et al. 2011; Sitarek & Bednarek 2012).
Therefore, we also consider the influence of the Klein–Nishina ef-
fect on the electron transport and the impact of the gamma–gamma
absorption on the spectrum adopting system parameters similar to
Cygnus X-3.

1Note that in the case of very clumpy jets, the SSC mechanism may provide
a non-negligible contribution (see Zdziarski et al. 2017, for the case of
Cygnus X-1).

Figure 1. Algorithm for calculating the IC emission using the conventional
approach and the Lorentz invariant distribution function.

2 U PSCATTERI NG O F EXTERNA L PHOTO NS
BY A R ELATIVISTIC JET

Conventionally, the IC radiation from relativistic sources is com-
puted as follows. First, one transforms the radiation field to the jet
frame. Then, the distribution of high-energy electrons in that frame
is obtained, from which the IC emission is computed. Finally, us-
ing the relativistic transformation of the radiation to the laboratory
frame, one transforms the emission to that frame (for μQ, see e.g.
Dubus, Cerutti & Henri 2010b; Zdziarski et al. 2012). Although
this method is straightforward, in some contexts it may be more
convenient to follow a different path: using Lorentz invariant quan-
tities allows avoiding several frame transformations and provides
the results in a form that illustrates the influence of different param-
eters clearly (see e.g. Georganopoulos et al. 2001). The difference
between these two approaches is sketched in Fig. 1.

To describe the properties of non-thermal particles in the jet, we
use the distribution function in the phase space:

dN = f (t, r, p)d3rd3 p . (1)

We follow a general notation policy in which the uppercase ‘N’
refers to number of particles, i.e. a dimensionless quantity, and the
lowercase letters, e.g. ‘n’, ‘f’, to densities or (differential) distribu-
tions, i.e. dN = ndX, where X is some quantity or a set of quantities.

We assume that non-thermal particles are confined in a narrow jet.
Thus, in a coordinate system in which the jet is directed along the
x-axis, and the system origin is at the CO location, the distribution
function should depend on the x-coordinate only and on the particle
momenta. The acceleration site is located at a distance x = x0

from the CO, and from there non-thermal particles are advected
downstream along a relativistic jet that moves with bulk velocity β

= V/c and Lorentz factor � = 1/
√

1 − β2 (see Fig. 2, where the
model geometry is illustrated).

The acceleration site can be associated for instance with a recolli-
mation shock and may vary with time: x0 = x0(t) (see e.g. Perucho,
Bosch-Ramon & Khangulyan 2010). However, for the sake of sim-
plicity, it is typically assumed that this distance changes slowly
compared to the characteristic advection/cooling times, which are
also significantly shorter than the binary orbital period (e.g. Bosch-
Ramon & Khangulyan 2009).

To compute the radiation accurately, it is necessary to specify
the momentum distribution of the particles. The conventional as-
sumption is that the particles are isotropic in the jet co-moving
frame, and that are injected following a certain energy distribution
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Figure 2. Sketch of the considered jet geometry.

(typically a power law) at x ′
0.2 In the jet co-moving frame, the

particle distribution function is non-stationary:

f ′(t ′, r ′, p′) = �(x ′ − x ′
0(t ′))δ(y ′)δ(z′)g′(p′, τ ) , (2)

where x ′
0 = x0/� − βct ′ is the location of the acceleration site

in the co-moving frame, � the Heaviside function, δ the Dirac
δ-function, and τ the proper age of the particle population. As non-
thermal particles are accelerated at x ′

0, one obtains

τ (t ′, x ′) = t ′ − x0 − �x ′

�βc
. (3)

The evolution of the high-energy particles, which is determined by
g

′
, depends also on the parameters that define the jet orientation and

x0, which for simplicity are assumed to be constant.
The internal energy of the plasma per volume unit can be obtained

as

e(t ′, r ′) = �(x ′ − x ′
0(t ′))δ(y ′)δ(z′)

∫
d3 p′ ε′g′(p′, τ ) , (4)

and the energy injected3 in non-thermal particles at x = x0 is

LNT = �2cβ

∫
d3 p′ ε′g′(p′, 0) . (5)

The up-scattering rate of target photons to gamma-rays is deter-
mined by the differential cross-section:

dσ

dEγ

= dσ

dEγ

(
ε, Eγ , εph, θSC

)
, (6)

where ε = √
m2

ec
4 + p2c2 is the electron energy, with me being

the electron mass, Eγ the gamma-ray energy, εph the target photon
energy, and θSC the scattering angle, i.e. the angle between the
target photon momentum and the observer direction (Aharonian &

2The quantities with primes refer to the jet co-moving frame.
3To remain consistent with the standard one-zone modelling, here one ig-
nores the pressure of non-thermal particles; accounting for their pressure
would increase the required injected luminosity by a ≈30 per cent, for the
same g.

Atoyan 1981). The scattered photons move in the direction of the
electron with accuracy ∼mec2/ε (�1 in the relativistic regime),
thus an observer located in the direction n0 should detect emission
produced by particles with p = pn0.

In the laboratory frame, the gamma-ray spectrum can be obtained
from

dNγ

dtdEγ d�
=

∫
c(1 − cos θSC)

dσ

dEγ

f (t̃ , r, pn0)p2 dnph dp dV ,

(7)

where θ sc in equation (7) depends on r , the location of the source
of target photons, and also the orbital phase, the latter playing an
important role in shaping the gamma-ray light curve.

Photons emitted at t̃(r) = T + rn0
c

(T is the time at which a hypo-
thetical photon at r = 0 would be produced) will be simultaneously
detected by the observer. The emission will arrive to the observer
at a time t = T + TPROP, where TPROP is the time required for the
hypothetical photon to travel to the observer. The linear relation be-
tween t and T implies that equation (7) describes both emitted and
received photons, which is not always the case (see e.g. Rybicki &
Lightman 1979).

The phase-space distribution function is a Lorentz invariant, f(t,
r, p) = f ′(t′, r′, p′), where t′, r ′, and p′ are related to t, r , and p,
respectively, by Lorentz transformations (e.g. Landau & Lifshitz
1975). For t̃ ′ and τ̃ , one obtains

t̃ ′(t̃ , x) = �T + x

(cβ)

D − �

D�
, (8)

and

τ̃ = τ (t̃ ′, x ′(t̃ , x)) = x − x0

βc�
, (9)

where D = (�(1 − β cos θ ))−1 is the Doppler boosting factor, with
θ being the angle between the jet velocity and the observer direction.
The argument of the Heaviside function transforms simply as

�
(
x ′ − x ′

0(t ′)
) = �

(
x − x0

�

)
= � (x − x0) . (10)

Thus, one obtains that the distribution function is stationary in the
laboratory frame:

f (t, r, p) = � (x − x0) δ(y)δ(z)g′
(

p′,
x − x0

βc�

)
, (11)

but it is anisotropic because of the px dependence in p′ =√
�(ε/c − βpx) − m2

ec
2.

The integral over dydz can be computed yielding

dNγ

dt dEγ d�
=

∫ ∞

x0

c(1 − cos θSC)
dσ

dEγ

dNe

dεdx
dε dnph dx , (12)

where

dNe(ε, x)

dεdx
= g′

(
p

D ,
x − x0

βc�

)
p2

c
(13)

is the effective energy distribution density4 of electrons emitting
towards the observer.

For the derivation of equations (12) and (13), one considered that
the injected particle distribution is relativistic, ε � cp 	 Dmec

2.

4We distinguish between energy distribution, i.e. dN = n1dε, and energy
distribution density, i.e. dN = n2dεdV or dN = n3dεdx.
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Since the target density and scattering angle change along the jet
to obtain the IC emission, it is necessary to know the distribution of
the particles along the jet.

3 EVO L U T I O N O F N O N - T H E R M A L
PA RTICLES

3.1 General case

Since in the jet co-moving frame particles are isotropic, it is conve-
nient to use the energy distribution density:

dN = n′(ε′)dε′dV ′ = 4πp′2f ′dp′dV ′ . (14)

Using the energy–momentum relation, ε′2 = c2p′2 + m2
ec

4, one
can substitute energy as dε

′ = c2p′dp′/ε′. Thus, one obtains n′ =
(4π/c2)ε′p′f′. For x ′ > x ′

0, the energy dependence of the g function
can be obtained as

g′(p′, τ ) =
∫
jet

dy ′dz′f ′ ∝ c2n′(ε′)
4πε′p′ . (15)

For the sake of simplicity, we normalize the particle energy density
with equation (5), i.e. with a condition that directly determines g

′
.

Under the continuous-loss approximation, particle evolution is
described as

n′(ε′)dε′dV ′ = n′(ε′
0)dε′

0dV ′
0 . (16)

The energy ε′
0 in equation (16) evolves accordingly to the particle

cooling equation:

dε′
0

dτ
= ε̇(ε′

0, τ ) , (17)

with the initial condition ε′
0(τ̃ ) = ε′. The non-thermal energy loss

term typically accounts for synchrotron, IC, and adiabatic losses of
electrons:

ε̇(ε′
0, τ ) = ε̇IC(ε′

0, τ ) + ε̇SYN(ε′
0, τ ) + ε̇AD(ε′

0, τ ) (18)

in the jet co-moving frame. If the particle distribution function is
defined according to equation (2), the volume element occupied by
the non-thermal particles can be taken as constant dV ′ = dV ′

0 for
a constant-velocity jet (this remains correct independent of the jet
geometry – see the discussion after equation 29). Thus, one obtains

g ∝ c2n′
0(ε′

0)

4πε′p′
dε′

0

dε′ . (19)

If the injection spectrum is a power law in energy with index αINJ,
then in the ultrarelativistic limit one obtains

g′(p′, τ ) = A′c2ε
′−αINJ

0

4πp′ε′
dε′

0

dε′ , (20)

where ε′
0 corresponds to ε′

0 = ε′
0(0). The normalization constant A

′

is determined by equation (5). Then, the energy distribution density,
equation (13), can be represented as

dNe(ε, x)

dεdx
= A′D2ε

′−αINJ

0

4π

dε′
0

dε′ (21)

for ε′ = ε/D, assuming the relativistic regime, ε′ ≈ p′c.

3.2 Compact emitter

When particles are advected along the jet, the intensity of the mag-
netic and the photon field, and the rate of adiabatic losses, can

change, meaning that the above equation does not have an ana-
lytic solution in the general case. If advection is slow compared
to radiative cooling, equation (18) becomes simpler since the loss
rates can be considered steady. In this case, the formal solution of
equation (17) is

ε′∫
ε′

0

dε̂

ε̇(ε̂)
= τ̃ , (22)

which should be considered an algebraic equation that determines
ε′

0 as a function of ε
′

and τ̃ . Once the original electron energy
is obtained, one can express the ratio of the infinitesimal energy
intervals as

dε′
0

dε′ = ε̇(ε′
0)

ε̇(ε′)
. (23)

3.3 Synchrotron–Thomson losses; extended emitter

The cooling rate for electrons interacting with background photons
in the Klein–Nishina regime has a rather complicated dependence
on electron energy, which makes finding an analytic solution for
equation (17) difficult. In contrast, if the IC cooling proceeds in the
Thomson regime, the energy loss term has a simple dependence on
energy, which is identical to that of synchrotron cooling.

One can find an analytic solution if the dominant radiative cooling
process is IC in the Thomson regime, or synchrotron emission. In
this case, radiation losses have the following dependence on energy:

ε̇IC + ε̇SYN = −aε′2 , (24)

where a does not depend on electron energy. The coefficient a
accounts for the synchrotron and IC losses and can vary within the
jet, i.e. can be a function of τ :

a = aIC + aSYN,

aIC = 4

3

σTc

(mec2)2
w′

ph,

aSYN = 4

3

σTc

(mec2)2
w′

B, (25)

where σT is the Thomson cross-section; w′
ph and w′

B are the energy
densities of the target photons and the magnetic field in the jet
frame, respectively.

If the dominant photon field is provided by the companion star,
then

w′
ph = D−2

∗
L∗

4πR2c
, (26)

where L∗ and R are the luminosity of the star and the distance to it,
respectively, and the factor

D∗ = 1

�(1 − β cos χ )
(27)

accounts for the transformation of the photon field to the jet co-
moving frame (see e.g. Zdziarski et al. 2012; Khangulyan, Aharo-
nian & Kelner 2014), where χ is the angle between the jet bulk
velocity and the target photon momentum in the laboratory frame
(see Fig. 2, where the model geometry is illustrated).

The energy density of the magnetic field is

w′
B = B ′2

8π
, (28)
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IC from relativistic jets in binary systems 1459

where B
′

is the strength of the magnetic field in the jet co-moving
frame in G.

The rate of adiabatic losses is

ε̇AD(ε′
0) = 1

3

d ln ρ

dτ
ε′

0 , (29)

where ρ is the plasma density in the flow co-moving frame. We
note that ρ corresponds to the jet material. The contribution of
the non-thermal particles described by equation (2) to this density
might be very small. The shape of the jet (e.g. cylindrical or conical)
determines the rate of adiabatic losses. The factor δ(y)δ(z) in equa-
tion (11) does not imply any limitation on the jet shape. The meaning
of this factor is that the conditions for the non-thermal particles do
not change considerably across the jet, and equations (2 ) and (11)
describe the properties of the particle distribution integrated over
the jet cross-section.

Equation (18) can be written as

d

dτ

(
ρ1/3

ε′
0

)
= ρ1/3(τ )a(τ ) , (30)

which provides a relation between particle energy at the injection
and the emission points as(

ρ1/3(τ̃ )

ε′

)
−
(

ρ
1/3
0

ε′
0

)
=

∫ τ̃

0
ρ1/3(t ′)a(t ′)dt ′

=
∫ x

x0

ρ1/3(x̂)a(x̂)
dx̂

�βc
,

(31)

where the relation between τ̃ and x comes from equation (9). Since
the RHS of equation (31) does not depend on energy, the ratio of
the infinitesimal energy intervals is

dε′
0

dε′ =
(

ε′
0

ε′

)2 (
ρ(τ̃ )

ρ0

)1/3

, (32)

where ρ0 and ε′
0 are the initial plasma density and particle energy,

respectively. The initial energy is

ε′
0 =

ε′
(

ρ0
ρ(τ̃ )

)1/3

1 − ε′
τ̃∫

0
a(t ′)

(
ρ(t ′)
ρ(τ̃ )

)1/3
dt ′

. (33)

For a power-law injection spectrum, equation (32) allows us to ob-
tain the electron energy distribution density with equation (21). For
a non-power-law injection, one should use equation (19), or equiva-
lently equation (15) with the following particle energy distribution:

n′(ε′) =
n′

0(ε′
0)
(

ρ0
ρ(τ̃ )

)1/3

(
1 − ε′

τ̃∫
0

a(t ′)
(

ρ(t ′)
ρ(τ̃ )

)1/3
dt ′

)2 , (34)

where n′
0 is proportional to the injection spectrum.

3.4 Synchrotron–Thomson losses; compact emitter

If the rate of radiative losses remains constant over the cooling
distance, one can take the parameter a as a constant. However, the
plasma density dependence should be preserved in this equation, as
otherwise a constant density would imply to ignore adiabatic losses
completely. The density evolution is determined by the structure of
the jet. For example, for a steady conical jet the mass conservation
yields

x2ρ�β = const. (35)

The evolution of the macroscopic quantities in jets is a subject for
dedicated (magneto)hydrodynamic simulations (see e.g. Perucho
et al. 2010) and is beyond the scope of this paper. Equation (35)
does not allow determining the density of the jet material since the
jet may undergo bulk acceleration. For the sake of simplicity, we
assume that the jet velocity remains constant in the region relevant
for gamma-ray production. In this case, ρ decreases as ∝x−2 and
the integral term in equation (34) is

ε′a

x∫
x0

(
x ′

x

)−2/3 dx ′

�βc
= 3aε′

�βc

(
x − x0

(
x

x0

)2/3)

= 3aε′
(

τ̃ + x0

�βc

(
1 −

(
1 + τ̃�βc

x0

)2/3))
. (36)

For a short cooling distance compared to x0, this reduces to

ε′a

x∫
x0

(
x ′

x

)−2/3 dx ′

�βc
≈ aε′τ̃ , (37)

which coincides with a solution without adiabatic losses. This cal-
culation illustrates, to some extent, a trivial physical fact: In steady
jets, the adiabatic losses might be important only in EEs.

As shown above, assuming a compact emitter (CE) in a steady jet
implies a small impact of adiabatic losses. Adopting a power law
in energy with index αINJ for the injected particles, one obtains for
a CE

n′(ε′) ∝ (1 − aτ̃ε′)αINJ−2ε′−αINJ . (38)

Accordingly with equation (20), one obtains that

g′
(

p

D ,
x − x0

βc�

)
= A′D2c

4πp2

(
1 − a

x − x0

βc�

pc

D

)αINJ−2 ( cp

D
)−αINJ

,

(39)

in the limit of ε � cp 	 Dmec
2. The maximum energy in equa-

tion (39), ε′
MAX, is limited by the injection process, and the following

relation should be fulfilled: ε′/(1 − aτ̃ε′) < ε′
MAX. In equation (12),

the limit imposed by the maximum energy translates into the integral
upper limit:

xMAX = x0 + cβ�

a

ε′
MAX − ε′

ε′
MAXε′ . (40)

The dominance of radiation cooling over advection implies that the
cooling length, (xMAX − x0), is small compared to the characteristic
distance over which the loss rate can change significantly. Under
these conditions, as noted, one can compute the integral over x
analytically:
xMAX∫
x0

dx

(
1 − a

x − x0

β�

p

D

)αINJ−2

= βD�

ap(αINJ − 1)

[
1 − (1 − uMAX)αINJ−1

] � βD�

ap(αINJ − 1)
, (41)

where uMAX = (ε′
MAX − cp/D)/ε′

MAX � 1, for a large maximum in-
jection energy.

4 INVERSE C OMPTON EMI SSI ON FROM A
COMPAC T R ELATI VI STI C EMI TTER

Combining equations (12), (13), (39), and (41), one obtains the fol-
lowing expression for the spectrum produced in a compact gamma-
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ray emitter in the case of dominant Thomson or synchrotron losses:

dNγ

dtdEγ d�
� A′

∫
c(1 − cos θSC)

dσ

dEγ

βD�

ap(αINJ − 1)

D2c

4πp2

×
( cp

D
)−αINJ

p2 dp dnph. (42)

According to equation (5), for a power-law injection with αINJ > 2,
the normalization coefficient A

′
is approximately

A′ ≈ LNT(αINJ − 2)

�2β
εαINJ−2

MIN , (43)

yielding

dNγ

dt dEγ d�
= LNTε

αINJ−2
MIN c

4πa

αINJ − 2

αINJ − 1

D3+αINJ

�

×
∫

c(1 − cos θSC)
dσ

dEγ

ε−(αINJ+1) dε dnph. (44)

The relativistic limit, ε ≈ pc, was used above for the sake of sim-
plicity.

If IC scattering of stellar photons is the dominant cooling channel,
a ≈ aIC, where aIC is defined by equations (25) and (26), one obtains

dNγ

dtdEγ d�
=

[D2αγ +1D2
∗

�

] ∫
c(1 − cos θSC)

dσ

dEγ

dÑ

dε
dε dnBB,

(45)

where nBB = (2R/R∗)2nph is the Planck distribution, R∗ the radius
of the optical star, and the function Ñ depends on the basic parame-
ters characterizing the system (stellar temperature T∗ and available
non-thermal power), and the acceleration mechanism (accelerated
particle energy dependence and minimum energy):

dÑ

dε
= 3

64π

LNT

σBσTT 4∗ mec2

(
εMIN

mec2

)−3
αINJ − 2

αINJ − 1

(
ε

εMIN

)−(αINJ+1)

,

(46)

where σB is the Stefan–Boltzmann constant, and the gamma-ray
photon index is related to αINJ through αINJ = 2(αγ − 1).

If the injection process remains steady over a time similar to, or
longer than, the orbital period, there are two factors that affect the
variability of the GeV gamma-ray emission. The changing scatter-
ing angle and the relativistic effects can vary with the orbital phase.
The relativistic effects are accounted by the term

[
D2αγ +1D2

∗�
−1
]
,

which includes both Doppler boosting of the emission, and the
transformation of the stellar photon field to the jet RF.

In line with equation (13), one can also consider the effective
energy distribution of particles in the whole jet for a CE:

dN (CE)
e

dε
=

∞∫
x0

dx
dNe(ε, x)

dε dx

=
[D2αγ +1D2

∗
�

]
3

4

LNTR
2

L∗σTmec2

(
εMIN

mec2

)−3
αINJ − 2

αINJ − 1

×
(

ε

εMIN

)−(αINJ+1)

. (47)

The emission spectrum can be written as

dNγ

dtdEγ d�
=

∫
c(1 − cos θSC)

dσ

dEγ

dN (CE)
e

dε
dε dnph , (48)

where the target photon density contains the dilution factor:

nph =
(

R∗
2R

)2

nBB . (49)

To model the GeV emission from Cygnus X-3, Dubus et al. (2010a)
introduced a factor related to relativistic effects obtained for a blob
emitter. Zdziarski et al. (2012) argued that this enhancement factor
is not applicable to jet sources and proposed instead the factor
derived by Sikora et al. (1997) for the enhancement of the emission
in blazars. The impact of stellar field relativistic boosting, D∗, is
also accounted in the model considered by Zdziarski et al. (2012). In
that study, this factor affects several different parameters: electron
density; scattering angle; and scattering rate. However, combining
their equations (15), (22), and (A9) and taking into account that
x (in the notation of Zdziarski et al. 2012) is determined by the
scattering angle in the jet frame (x = DD∗(1 − cos θ ), where θ is
the scattering angle in the laboratory frame), one can derive that the
IC flux is indeed ∝D2

∗, which agrees with equations (47) and (48).
For a power-law energy distribution of electrons, the gamma-

ray spectrum in the Thompson regime allows a simple analytic
approximation (Dubus et al. 2010a; Zdziarski et al. 2012). This
allows us to obtain the dependence of the IC flux analytically (for
the exact expression see Zdziarski et al. 2012):

dNγ

dtdEγ d�
∝ (1 − cos θSC)

αINJ+2
2 E

− αINJ+2
2

γ . (50)

5 EVO L U T I O N O F N O N - T H E R M A L
ELECTRONS IN A N EXTENDED EMI TTE R

Equation (45) describes the IC emission if the cooling length is short
compared to x0 (see equation 40) and the scattering proceeds in the
Thomson regime. If ε is the energy responsible for the generation of
gamma-rays in the laboratory frame, then combining equations (25)
and (40) one obtains the condition for a compact production site:

cβ�DD2
∗

a0x0ε

(
R

d

)2

� 1 , (51)

with

a0 = 4

3

σT

(mec2)2

L∗
4πd2

� L39

6d2
12

GeV−1 s−1 , (52)

where d is the separation between the normal star and the CO, and
fiducial parameter values between those of the gamma-ray emitting
μQ Cygnus X-3 and Cygnus X-1 were used: L∗ = 1039L39 erg s−1

and d = 1012d12 cm. At typical Fermi LAT energies, say Eγ ∼
200 MeV, the dominant contribution is produced by electron ener-
gies of a few GeV (ε = ε̂ GeV). Thus, the condition for the appli-
cability of the CE approximation becomes

0.2
β�DD2

∗d12

ε̂L39

(x0

d

)−1
(

R

d

)2

� 1 , (53)

and can be violated even for a mildly relativistic jet with � ∼ 2.
It is worth noting that for higher energy electrons, IC scattering

proceeds in the Klein–Nishina regime. This should lead to an even
larger extension of the production site since IC losses in the Klein–
Nishina regime proceed slower than in Thomson.

Losses through IC are not necessarily the dominant cooling mech-
anism. As indicated above, synchrotron and adiabatic cooling can
be also considered. Since adiabatic losses trace a change in the
density, they are to be included when the CE approximation fails.

MNRAS 481, 1455–1468 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/2/1455/5088363 by U
N

IVER
SITAT D

E BAR
C

ELO
N

A. Biblioteca user on 08 June 2020



IC from relativistic jets in binary systems 1461

If synchrotron losses dominate, the condition for a CE is deter-
mined by the magnetic field in the jet. The synchrotron time is

t ′
SYN � 4 × 105

(
B ′

G

)−2 (
ε̂

D

)−1

s . (54)

The cooling length, xSYN = �βct ′
SYN, remains small compared to x0

if the magnetic field is

B ′ 	 100

√
β�D
ε̂x0,12

G . (55)

For the sake of simplicity, let us parametrize the jet radius as a
fraction of x0: rj = �x0, where � � 1. Then the Poynting energy
flux in such a jet is

S = V B ′2�2π2x2
0

4π

	 2.5 × 1037 � 2β2D�3

ε̂

( x0

1012 cm

)3/2
erg s−1 .

(56)

The numerical coefficient 2.5 × 1037 corresponds to approximately
5 per cent of the Eddington luminosity for a 5 M� black hole. Al-
though such a strong magnetic field cannot be excluded in Galactic
jet sources, modelling tends to favour a weaker magnetization of
the jet (Dubus et al. 2010a; Zdziarski et al. 2012, 2018). Thus, we
conclude that there are no robust arguments excluding a signifi-
cant extension of the gamma-ray production region in gamma-ray
emitting μQ.

5.1 Synchrotron and adiabatic loss treatment

The structure of equation (31) allows us to consider IC losses and
synchrotron losses independently. First, we will start with syn-
chrotron losses. The combined impact of synchrotron and adiabatic
losses is determined by the following integral:

τ̃∫
0

ρ1/3(t ′)a(t ′)dt ′ ∝
x∫

x0

ρ1/3(x̂)B ′2(x̂)dx̂ . (57)

The density and the magnetic field depend on the structure of the jet,
but most likely they can be approximated by power-law functions
in a limited section of the jet. Thus, the above integral can be solved
analytically yielding a description of the joint impact of synchrotron
and adiabatic losses. For example, if the impact of IC losses is small,
then such a treatment of adiabatic and synchrotron losses allows us
to obtain a solution for equation (31), and thus to obtain an analytical
description of the spatial-energy distribution of electrons in the jet.

5.2 Thomson and adiabatic loss treatment

For the case of dominant IC losses, the function a has a more
complicated structure since it depends not only on the distance
from the CO, but also on the angle between the jet velocity and
target photon momenta. Modelling by Dubus et al. (2010a) suggests
that the jet in Cygnus X-3 is not perpendicular to the orbital plane.
Thus, we consider here also a case when the jet is inclined by a fixed
angle α. In this case, the cooling rate depends on the parameter ζ

= (x/d − cos α), where α is the angle between the jet velocity
and the direction from the CO to the companion star (see Fig. 2,
where the model geometry is illustrated). Including ζ , equation (17)

describing particle cooling becomes

d

dζ

ρ1/3

ε̃
=ρ1/3(x(ζ ))

ζ 2
(
1+β2

) + sin2 α − 2βζ
√

ζ 2+sin2 α(
ζ 2 + sin2 α

)2 ,

(58)

where the dimentionless energy, ε̃, is defined as

ε̃ = ε′
0

L∗�σT

3πcβd(mec2)2
. (59)

In general, equation (58) does not allow an analytic solution. We can
still treat it numerically, for which we will adopt a density profile
of ρ = ρ0(x0/x)2.

5.3 Thomson loss treatment

In case adiabatic losses are weak, i.e. ρ is roughly constant, equa-
tion (58) determines ε̃(x):

1

ε̃
= π/2 − χ

sin α

(
1 + β2

2

)
+ 2βd

R
− β2d

√
R2 − d2 sin2 α

2R2
+ C,

(60)

where χ = χ (x) and R = R(x) are functions of x, and C is an
integration constant. This relation allows one to link the particle
energy at the injection point x0 to that at the emission point x:

1

ε̃0
+ E(x0) = 1

ε̃
+ E(x) , (61)

where

E(x) = −
π
2 − χ (x)

sin α

(
1 + β2

2

)
− 2βd

R(x)

+ β2d
√

R(x)2 − d2 sin2 α

2R(x)2
. (62)

Equation (61), together with equation (16), allows us to obtain an
analytic representation of the energy distribution of the particles in
the jet:

n′(ε′) = ε′2
0

ε′2 n′
0(ε′

0) , (63)

where the initial particle energy

ε′
0 = ε′

1 − ε′ L∗�σT(E(x0)−E(x))
3πcβd(mec2)2

(64)

should remain smaller than the maximum energy, ε′
MAX, in the in-

jection spectrum n′
0.

For a power-law injection spectrum, one obtains that the distri-
bution function is

g′
( p

D , x
)

= A′D2c

4πp2

(
1 − L∗�σT(E(x0) − E(x))

3πβd(mec2)2

p

D

)αINJ−2

×
( cp

D
)−αINJ

. (65)

Equation (65) describes the Thomson cooling of high-energy
electrons in the jet also in the case when electrons may travel dis-
tances comparable to the orbital separation. This analytic solution
does not account for the impact of adiabatic losses, as it is the case
for instance in a cylindrical jet. Equation (65) can be easily general-
ized to account for synchrotron losses, for example, if the magnetic
field strength has a power-law dependence.

For the computation of the IC emission, one should note that in
equation (12) the photon density nph and the IC scattering angle
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depend on x. In the next section, we apply a numerical approach to
compute the radiation from such an extended region.

6 R A D I AT I O N FRO M A N EX T E N D E D
EMITTER

To study the impact of advection in the jet, we adopt parameters
similar to those of Cygnus X-3, which is a highly compact system
with a very bright star, and also one of the most powerful GeV
sources in the Galaxy. The temperature and luminosity of the donor
star were adopted to be T∗ = 105 K and L∗ = 1.8 × 1039 erg s−1,
respectively, and the CO was assumed to be located at a distance
of d = 2.7 × 1011 cm from the companion star. This separation
distance is the largest allowed by Koljonen & Maccarone (2017)
and corresponds to a CO with MCO � 5 M� and a WR star with
MWR � 15 M�.

6.1 Emitter size

First, we study the size of the gamma-ray emitting region for differ-
ent locations of the acceleration site and for different orientations
of the jet. We adopt the maximum energy in the injection spec-
trum to be ε′

MAX = 10 GeV and compute the maximum distance
that electrons with energy ε

′
can reach. For electrons with larger

energy, ≥10 GeV, and the stellar temperature of Cygnus X-3, the
Klein–Nishina effect should weaken the IC losses compared to the
Thomson case. This should lead to an increase in the advection dis-
tance, although the impact on the GeV light curve should be small
given the steepness of the measured spectrum. Efficient advection
of high-energy electrons may have an important influence on the
multi-GeV gamma-ray flux, since in this energy band the gamma–
gamma attenuation is strong, and more efficient advection of the
emitting electrons can significantly reduce the attenuation factor.

The advection distance, xMAX, is determined through equation (58)
as

ρ
1/3
0

ε̃MAX

− ρ1/3(xMAX)

ε̃

=
ζ (xMAX)∫
ζ (x0)

dζρ1/3(x(ζ ))
ζ 2

(
1+β2

)+ sin2 α − 2βζ
√

ζ 2+ sin2 α(
ζ 2+ sin2 α

)2 ,

(66)

which in the case of weak adiabatic losses reduces to

1

ε̃MAX

+ E(x0) = 1

ε̃
+ E(xMAX) . (67)

We solve numerically equation (66) for a conical jet and several jet
velocities and orientations. However, if the jet expands slower than
a conical one, the rate of adiabatic losses will be smaller. Thus, we
also compute the case for dominant IC losses (equation 67). Fig. 3
shows the relative size of the emitting region

λ = xMAX(ε) − x0

x0
, (68)

for different injection points: x0 = 0.3d, d, and 3d (from bottom to
top); jet inclinations: α = π/4, π/2, and 3π/4 (from left to right);
and jet velocities: β = 0.5, 0.7, and 0.9 (line colour). It is seen that
even in such a compact system as Cygnus X-3, the advection of
GeV electrons might be significant if the acceleration site is located
at d ∼ 1012 cm from the CO, in a jet that moves with a bulk Lorentz
factor � ≥ 2 (β ≥ 0.87).

Figure 3. Relative size of the jet filled with electrons of different energies.
Calculations are performed for conditions similar to Cygnus X-3, three
different jet orientations (columns for α = π/4, π/2, andπ/4, injection
locations (raws: x0 = 0.3d, d, and 3d), and jet velocities (colours: β = 0.5,
red; β = 0.7, green; and β = 0.9, blue). The case with negligible adiabatic
losses is shown with the dashed lines and for a conical jet with the solid
lines.

Figure 4. Relative size of the jet filled with electrons of different energies.
Calculations are performed for conditions similar to those in Cygnus X-1,
assuming a jet perpendicular to the orbital plane and a jet velocity of β

= 0.5. Three different injection points are shown: x0 = 0.3d (red), x0 =
d (green), and x0 = 3d (blue). The case with negligible adiabatic losses is
shown with the dashed lines, and adiabatic losses for a conical jet with the
solid lines.

For a system with a larger star separation than Cygnus X-3,
the impact of advection should be stronger. For parameters similar
to Cygnus X-1 (T∗ = 3 × 104 K, L∗ = 8 × 1038 erg s−1, and d =
3 × 1012 cm; see e.g. Caballero-Nieves et al. 2009, and reference
therein), we show in Fig. 4 the extension of the GeV emitter for three
different injection points: x0 = 0.3d, d, and 3d. As seen from the
figure, under dominant IC losses the CE approximation for Cygnus
X-1 (or similar systems) is only justified if the injection occurs very
close to the CO, or if the jet is not relativistic.
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IC from relativistic jets in binary systems 1463

Figure 5. Energy distribution of electrons in the jet calculated for conditions
similar to those in Cygnus X-3. Three different jet velocities are shown: β

= 0.5 (red), β = 0.7 (green), and β = 0.9 (blue). The case with negligible
adiabatic losses is shown with the dashed lines, and for a conical jet with the
solid lines. The grey lines show the energy distribution obtained for a CE,
equation (47). The thin lines show the electron distribution weighted with
the target photon density (see equation 70). Other model parameters were
set as B = 0, x0 = 3d, and α = π/2.

6.2 Particle distribution

Advection affects the particle energy distribution in the jet. As the
baseline case, we adopt the results obtained for a CE, equation (47).
We assume that the non-thermal injection occurs at x = 3d, and
the acceleration spectrum is steep: αINJ = 3. As follows from equa-
tion (50), for this electron injection spectrum the gamma-ray photon
index should be ∼2.5, which is roughly consistent with the spec-
trum detected from Cygnus X-3 with Fermi LAT (see e.g. Zdziarski
et al. 2018). Thomson cooling should render an energy distribution
∝ε−4. Thus, in Fig. 5 we plot the particle distributions multiplied by
ε4. For the case of an EE, we define the effective energy distribution
in accordance with equation (13) and similar to equation (47) as

dN (EE)
e (ε)

dε
=

∞∫
x0

dx
dNe(ε, x)

dεdx
. (69)

In Fig. 5, the results of the calculations of the electron energy
distribution are shown for β = 0.5, 0.7, and 0.9, and x0 = 3d.
The maximum energy in the injected spectrum was assumed to
be ε′

MAX = 30 GeV, the Doppler boosting factor D = 1.7 (which
implies different viewing angles for different jet velocities), and the
magnetic field was assumed to be weak (formally set to B = 0).
The energy distribution of a CE, equation (47), for the same jet
parameters, is shown with grey lines in Fig. 5.

As shown in Fig. 5, the energy distributions that account for ad-
vection have three characteristic features compared to equation (47).
At the highest energies, there are less particles than in the CE ap-
proximation, which is caused by ignoring the injection maximum
energy in equation (47) (the CE case), and thus it should not be asso-
ciated with advection. At lower energies, advection leads to particle
accumulation in regions with slower energy losses. Thus, for the
same injection, the amount of particles for a steady jet is higher.
Obviously, these features are the mostly pronounced in electron
distributions computed for weak adiabatic losses. Adiabatic losses
expected in conical jets appear to be significant enough to determine
the shape of the electron distribution at lower energies as shown in
Fig. 5 with thin lines.

To illustrate the effect of photon target dilution, we also compute
the amount of emitting electrons weighted by the target photon
density (the thin lines in Fig. 5):

dN̄e
(EE)

dε
=

∞∫
x0

dx
dNe

dεdx

(
R0

R(x)

)2

. (70)

As seen in the figure, the weighted energy distribution is suppressed
with respect to the CE approximation at low energies because of
particle escape. In the calculations, we adopted a maximum jet
length of 35d, as particles reaching that far from the CO are already
strongly cooled down due to adiabatic losses. We also note that
particles that reached that distance from the CO should not produce
variable gamma-ray emission, as θ sc does not significantly change
along the orbit. Fig. 5 shows that for β ≥ 0.7, the particle energy
distribution features a break or steepening at energies around ε �
1 GeV, which might be testable with Fermi LAT in Cygnus X-3.

6.3 Spectral energy distribution and gamma-ray light curve

To compute the radiative output from a jet in a binary system,
it is necessary to define the inclination of the orbit and the jet
orientation. The jet orientation should also include the assumption
if one considers jet or counter-jet; the former is located on the
same side as the observer, and the latter on the opposite side, with
respect to the orbital plane. We consider two cases, iORB = 30◦

and iORB = 60◦, and the emission produced only by the jet since
for relativistic bulk velocities the emission from the counter-jet
is strongly suppressed. To illustrate the impact of advection, we
consider the simplest case of a circular orbit, which is reasonable for
Cygnus X-3. For simplicity, the jet is assumed to be perpendicular to
the orbital plane. In this case, there are three relevant orbital phases:
superior/inferior conjunction of the CO (SUPC/INFC); and when
the CO crosses the plane of the sky (NODE). IC losses and radiation
are affected by three angles: χ (jet velocity-photon momentum
angle); θ (jet velocity-line-of-sight angle); and θSC (IC scattering
angle), which are shown in Fig. 2. These angles depend on the
inclination of the orbit, the jet orientation, and the emitter location
in the jet. The dependence of these angles on the distance from the
CO is shown in Fig. 6 for the selected inclinations.

The combined effects of particle advection and changes in the
photon density and scattering angle may affect the gamma-ray spec-
trum in a quite complex manner, as shown in Fig. 7. For certain
orientations of the jet, the emission from the inferior conjunction
is strongly suppressed by unfavourable scattering angles, in which
case advection along the jet will tend to enhance the emission below
1 GeV. At high electron energies, the cooling length is shorter, and
the IC cross-section has a weaker dependence on the scattering an-
gle, so the particle transport has a minor impact on the high-energy
part of the spectrum. Thus, advection may distort the spectral shape
in the GeV energy band. This effect is strongly pronounced in fast
jets (see top and bottom panels of Fig. 7).

Around the superior conjunction of the CO, advection tends to
harden the radiation spectrum. This is caused by the escape of lower
energy electrons to regions of weaker photon fields, as illustrated
in Fig. 5 with thin lines. As shown in Fig. 7, advection tends to
enhance the emission around inferior conjunction and reduces the
emission around superior conjunction. Thus, the orbital variation
of the gamma-ray emission will be weakened by advection. This is
illustrated in Fig. 8, where light curves for different jet velocities (β
= 0.7 and β = 0.9), and inclinations (iORB = 30◦ and iORB = 60◦),
are shown, with the acceleration site assumed to be at x0 = 3d. It
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1464 D. Khangulyan, V. Bosch-Ramon and Y. Uchiyama

Figure 6. Characteristic angles that determine electron cooling and emis-
sion in a relativistic jet. Figure shows χ (target-photon momentum–bulk
velocity), θ (observer direction–bulk velocity), and θSC (observer direction–
target-photon momentum) angles. Calculations are performed for two orbital
inclinations: iORB = 60◦ (top panel) and iORB = 30◦ (bottom panel). The jet
was assumed to be perpendicular to the orbital plane, α =π/2, and thus only
θSC depends on the orbital phase; three different orbital phases are shown:
SUPC (solid lines), INFC (long dashed lines), and NODE (dashed lines).

can be seen that even in the slower case with β = 0.7, the orbital
variation becomes significantly weaker.

As expected, adiabatic losses result in a less-extended production
site, and thus the orbital phase dependence remains stronger than in
the case of negligible adiabatic losses (solid versus dashed lines in
Fig. 8). However, the spectral change caused by propagation effects
may remain strong. In particular, the combined effects of particle
advection towards regions with weaker photon field, and adiabatic
cooling, result in a hardening of the photon spectrum around 0.1–1
GeV (see Fig. 7).

7 QUA N T U M E L E C T RO DY NA M I C S EF F E C T S

There are two quantum electrodynamics (QED) effects that may
have a substantial influence on the gamma-ray emission produced
in compact binary systems. The first is related to the transition from
the classical Thomson limit to the quantum Klein–Nishina regime.
The Thomson limit is valid when electron and target photon energies
are small:

4εωph(1 − cos θSC) � 1. (71)

If the electron and the target photon energy are high enough to
violate this relation, the precise QED cross-section should be used
(for astrophysical conditions, see Aharonian & Atoyan 1981). The
Klein–Nishina effect has a strong impact both on the energy-loss
rate and on the IC spectrum.

The second important QED effect is the gamma–gamma atten-
uation. Typically, in binary systems this effect is important in the
TeV energy band (Dubus 2006). If the stellar temperature is high, as
e.g. in Cygnus X-3, the attenuation might be important for gamma-
rays with relatively low energy, Eγ ≥ 10 GeV (Protheroe & Stanev
1987; Moskalenko et al. 1993; Bednarek 1997; Cerutti et al. 2011;
Sitarek & Bednarek 2012). In Fig. 9, we show the attenuation factor
for gamma-rays interacting with the stellar field. The target photon
field is provided by the optical star with radius and temperature of
R∗ = 1.6 × 1011 cm and 105 K, respectively. The calculation takes
into account the finite size of the star integrating over the stel-
lar surface (which can give a substantial difference compared to

Figure 7. Spectral energy distributions of the IC emission for an EE ob-
tained for three different orbital phases: SUPC (green); INFC (red); and
NODE (blue). The jet is assumed to be perpendicular to the orbital plane, α

= π/2. The case with weak adiabatic losses is shown with the dashed lines,
and adiabatic losses for a conical jet with the solid lines. The region between
these two regimes is filled with colour. The grey lines show the spectral en-
ergy distributions obtained for a CE (equation 45). The grey dashed lines
show the spectral energy distributions for SUPC and NODE phases obtained
by applying the orbital-phase dependent coefficient in equation (50) to INFC
spectrum obtained under CE approximation (grey solid line). Cases with β

= 0.9 and iORB = 30◦, β = 0.7 and iORB = 30◦, and β = 0.9 and iORB = 60◦
are shown in the top, middle and bottom panels, respectively. Other model
parameters were set as B = 0 and x0 = 3d.
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IC from relativistic jets in binary systems 1465

Figure 8. Light curves of the IC emission accounting for electron advec-
tion. Calculations are performed for two orbital inclinations: iORB = 60◦ (top
panel) and iORB = 30◦ (bottom panel). The jet was assumed to be perpen-
dicular to the orbital plane, α = π/2. The case with weak adiabatic losses is
shown with the dashed lines, and adiabatic losses for a conical jet with the
solid lines. The region between these two regimes is filled with colour. Two
different jet velocities are shown with different colours: β = 0.7 (blue); and
β = 0.9 (red). The green lines correspond to the electron spectrum obtained
for a CE (equation 47). Other model parameters were set as B = 0 and
x0 = 3d.

calculations adopting a point-like approximation for the star if the
gamma-ray emitter locates within a few stellar radius distance from
the star, see e.g. Dubus 2006; Bosch-Ramon, Khangulyan & Aharo-
nian 2008; Bosch-Ramon & Khangulyan 2009; Romero, Del Valle
& Orellana 2010), this accounts for the occultation by the star, as
seen in the map opacity for 1 GeV photons in Fig. 9. For 10 GeV
gamma-rays, the attenuation can be very significant for almost half
of the orbit unless the gamma-ray production site is located at a
large distance from the CO. At a few GeV, the influence of the
gamma-ray absorption is smaller, although it still can suppress the
emission from the counter-jet at SUPC phases, which can be rele-
vant if the jet bulk velocity is relatively small. This may result in
an additional factor affecting the orbital variability with a strong
energy dependence, yielding a multi-GeV light curve significantly
different from the GeV light curve.

In the case of Klein–Nishina losses, electrons may lose a signifi-
cant fraction of energy in a single interaction, which is inconsistent
with the assumptions used for the continuous-loss approximation.
However, the continuous-loss approximation was shown to pro-
vide results consistent with a detailed kinetic treatment (see e.g.

Figure 9. Gamma–gamma attenuation factor for 1 GeV (top panel), 5 GeV
(middle panel), and 10 GeV (bottom panel) gamma-rays traveling towards
an observer looking from the right. The calculations are done for R∗ =
1.6 × 1011 cm and T∗ = 105 K.

Khangulyan & Aharonian 2005). Thus, to account for the Klein–
Nishina effect we solve equation (18) for a conical jet using the
approximation for IC losses in a Planckian photon field suggested
in Khangulyan et al. (2014). To compute the electron density, we
use the continuous-loss approximation, i.e. the energy distribution
density of electrons is described by equation (21). The influence
of the reduction of energy losses due to the Klein–Nishina effect
is shown in Fig. 10. It is seen that the weakening of the IC energy
losses results in a ∼ 30 per cent increase of the number density of
GeV electrons.
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Figure 10. Energy distribution of electrons in the jet calculated for condi-
tions similar to those in Cygnus X-3. The jet velocity was assumed to be β

= 0.9 and non-thermal electrons with αINJ = 3 were injected at a distance x
= 3d from the CO. The grey lines correspond to densities shown in Fig. 4
and obtained for Thomson losses: CE (CE, thin line); EE with Thomson
losses only (dashed line); and EE with adiabatic losses for a conical jet
(solid line). The solid blue line shows the energy distribution of electrons
computed using an accurate IC loss prescription, under adiabatic losses in a
conical jet. The jet was taken perpendicular to the orbital plane, α = π/2.

For each considered gamma-ray energy and location in the jet,
we compute the gamma–gamma opacity, τ γ γ , in the stellar pho-
ton field in the direction of the observer. The influence of differ-
ent transport and cooling assumptions is illustrated in Fig. 11. As
seen in the figure, Klein–Nishina IC cooling has a similar impact
at different orbital phases on the gamma-ray emission intensity,
resulting in a small transformation of the light-curve shape. In con-
trast, gamma–gamma attenuation strongly affects the gamma-ray
spectrum above 5 GeV for SUPC. We note that Fig. 11 shows the
emission produced in the jet; for the counter-jet the impact should
be considerably stronger, for relatively low jet velocities. Thus, a
detailed study of multi-GeV gamma-ray emission from Cygnus X-3
may significantly constrain the possible locations of the production
site.

8 C O N C L U S I O N S

We have studied the properties of the gamma-ray emitting region in
a relativisitic jet in a binary system. To facilitate the interpretation
of the results, we have used an approach based on the distribution
function in the phase space, which is Lorentz invariant. This allows
obtaining results in a compact form that permits studying the influ-
ence of different parameters in a clearer way. The main focus of the
study was on the impact of advection on the gamma-ray spectrum
and light curve.

For the case of a compact production site, we have obtained an
analytic representation of the energy distribution of the emitting
electrons. When IC cooling dominates over advection, the gamma-
ray spectrum, given by equation (45), has a simple form that al-
lows one to determine the process that affects the variability of the
emission. Namely, it contains three factors that change with orbital
phase: (i) IC proceeds in the anisotropic regime, and the scatter-
ing angle varies along the orbit (Khangulyan et al. 2008; Dubus
et al. 2010a; Zdziarski et al. 2012); (ii) the Doppler boosting factor,[
D2αγ +1�−1

]
, that accounts for the relativistic transformation of

radiation produced in a stationary jet (Sikora et al. 1997); and (iii)

Figure 11. Comparison of gamma-ray spectral energy distributions cal-
culated under different assumptions on transport and cooling for emission
obtained for a CE (grey lines); dominant Thomson cooling (green lines);
Thomson cooling with adiabatic losses in a conical jet (blue); and Klein–
Nishina cooling with adiabatic losses in a conical jet (red lines). Two orbital
phases are shown: SUPC (solid lines) and INFC (dashed lines). Calcu-
lations account for gamma–gamma attenuation in the photon field of the
optical companion. For SUPC, the intrinsic spectra are shown with thin
lines (for INFC the attenuation is negligible). The jet velocity was assumed
to be β = 0.9, and two different injection points are considered: x = 3d
(iORB = π/6, top panel) and x = 0.1d (iORB = π/3, bottom panel). The jet
was taken perpendicular to the orbital plane, α = π/2.

in the case of dominant IC losses, an additional factor, D2
∗, should

be introduced. The stellar photon boosting effect on cooling can be
ignored if the dominant losses are due to synchrotron cooling.

Adiabatic losses can be relevant only if relativistic particles are
advected along the jet over a distance in which the jet material
density undergoes a significant change. In particular, this can be the
case for low-energy electrons that are subject to slower radiative
losses. In the case of a (at least) mildly relativistic jet, � ≥ 2,
advection might be important for GeV emitting electrons even in the
most compact binaries such as Cygnus X-3. In the case of dominant
radiative losses, we have obtained an analytic solution that describes
the properties of non-thermal electrons in a relativistic inclined
jet. This solution can, however, be generalized to the case when
adiabatic losses are important under weak IC losses, i.e. covering a
broad range of synchrotron and adiabatic losses.

It is generally expected that in gamma-ray emitting μQ IC losses
should dominate over synchrotron for GeV electrons (see e.g.
Zdziarski et al. 2012). Thus, as test cases, we have considered
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two cases for EEs: (i) dominant IC losses, which allow an analytic
solution for the particle density, equation (63); and (ii) the case with
IC and adiabatic losses, the latter being expected in a conical jet, for
which a numerical treatment has been applied. The simulations have
shown that, in systems similar to Cygnus X-3, particle advection
may have a significant impact on the gamma-ray light curve if the
jet velocity is high, β ≥ 0.7. For even faster jet velocities, β ∼ 0.9,
one should also expect a strong transformation of the gamma-ray
spectrum from different orbital phases. In a more extended system,
e.g. in Cygnus X-1, advection is very important unless synchrotron
losses prevent efficient particle transport (see equation 55), which
is probably not very realistic.

In the specific case of Cygnus X-3, the stellar companion should
be very hot, T∗ � 105 K. For such a target photon field, two QED ef-
fects may influence the electron transport and gamma-ray spectrum
in the GeV energy band. The Klein–Nishana effect weakens the IC
energy losses and affects the gamma-ray spectrum, and gamma–
gamma absorption can significantly suppress the flux above a few
GeV. To study the influence of these effects, we have performed de-
tailed calculations of the electron transport, radiation, and gamma–
gamma opacity. Since in the case of Cygnus X-3, the orbital sepa-
ration is comparable to the stellar radius, in the calculations of the
gamma–gamma opacity we have accounted for the finite size of
the optical star. The simulations show that the Klein–Nishina effect
has a small impact on the intrinsic gamma-ray spectra. Unless the
gamma-ray production site is located at large distance from the CO,
x 	 3d, the gamma–gamma attenuation should significantly affect
the spectrum at multi-GeV energies, Eγ > 5 GeV.

To summarize, we have performed a detailed study of the IC
process in realistic jets in compact binary systems. The performed
study has revealed that the particle advection along the jet might be
important even in a very compact binary system, e.g. in Cygnus X-
3. In systems similar to Cygnus X-1, advection should be accounted
for even in the case of a weakly relativistic jet.

If adiabatic losses are weak, which would be the case, e.g. in
cylindrical jets, advection can impact significantly the gamma-ray
emission, potentially leading to a strong dependence of the gamma-
ray spectrum shape on the orbital phase. For advection in a conical
jet, adiabatic losses weaken the effects on the spectrum.

Independent of the dominant cooling channel, advection results
in a significant weakening of the orbital phase dependence. Thus,
if the properties of the accelerator in Cygnus X-3 and Cygnus X-
1 are similar, one should expect differences in the orbital phase
dependence of the GeV emission between these two systems.

To illustrate the relevance of this effect, in Fig. 12, we show
the light curves computed for a system similar to Cygnus X-1 (the
temperature and luminosity of the optical star are taken as T∗ = 3 ×
104 K and L∗ = 8 × 1038 erg s−1, respectively; the CO was assumed
to be in a circular orbit with d = 3.2 × 1012 cm).

The IC emission shown in Fig. 12 was averaged over two orbital
phase bins: |φ| < 0.25 and |φ| > 0.25, the orbit being −0.25 < φ <

0.75). The injection point was assumed to be located at x0 = 4d, and
the injection spectrum and jet velocity were assumed to be ∝ε−4

and β = 0.5, respectively. The orbital inclination was selected to
be iORB = π/3, and the figure includes only the contribution from
the jet (i.e. the counter-jet emission is not accounted for because it
is expected to be relatively small and to weaken the orbital phase
dependence even stronger). The data points are from Zdziarski et al.
(2017), and the open and filled squares correspond to the emission
expected from a CE and an EE, respectively. The adiabatic losses
were assumed to be weak and the magnetic field set to B = 0, so the
dominant cooling mechanism is the Thomson scattering. As seen

Figure 12. Light curves of the IC emission from a system similar to Cygnus
X-1: T∗ = 3 × 104 K, L∗ = 8 × 1038 erg s−1, d = 3.2 × 1012 cm (circular
orbit), β = 0.5, and iORB = 60◦. The jet was assumed to be perpendicular
to the orbital plane, α = π/2. The case with weak adiabatic losses is shown
with the filled squares and the emission expected from a CE is shown with
the open squares. The data points are adopted from Zdziarski et al. (2017).
Other model parameters were set as B = 0 and x0 = 4d.

from Fig. 12, the advection may provide a possible explanation
for a weaker orbital phase dependence of the GeV emission from
Cygnus X-1 and alleviate the requirement for an SSC contribution.
Zdziarski et al. (2017) studied the broad-band emission and gamma-
ray variability in Cygnus X-1 for the parameter space with x0 �
d. In that parameter space, it was found that external Compton
models, including those with an EE, are incompatible with the
Fermi LAT emission from Cygnus X-1, and a better agreement can
be achieved if one assumes a highly clumpy jet, which enhances the
SSC emission.

In the case of a conical jet (as was assumed by Zdziarski et al.
2017), adiabatic losses lead to considerable cooling at distances x
∼ x0, so plasma cools down on a scale in which the IC regime
does not change for x0 � d. Thus, advection cannot considerably
affect the IC light curve for parameters adopted by Zdziarski et al.
(2017). The simulations shown in Fig. 12 show that for x0 ≥ d,
advection can improve the agreement between the observational
data from Cygnus X-1 and predictions of models that account for
stellar IC only. We note, however, that the calculations presented
in Fig. 12 are for illustrative purposes only and cannot substitute a
detailed broad-band study (as the one presented in Zdziarski et al.
2017).

The influence of advection on the gamma-ray light curve also
significantly affects the ability of one-zone models (Dubus et al.
2010a; Zdziarski et al. 2012, 2018) to accurately infer the prop-
erties of the gamma-ray production sites even in the case of the
most compact binary systems. For example, Zdziarski et al. (2018)
suggested that the Fermi LAT emission in Cygnus X-3 is best ex-
plained by IC scattering from a production site located at x =
2.3d in a jet with β = 0.73. As shown by our simulations, for
this location of the production site the transport effects might be
relevant.

We present in this paper the theoretical framework and discuss
the impact of advection on the GeV gamma-ray spectrum and light
curve. A detailed application to the gamma-ray data of Cygnus X-3
will be presented in a forthcoming paper.
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