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We prove that a suitably adjusted version of Peter Jones’
formula for interpolation in H∞ gives a sharp upper bound
for what is known as the constant of interpolation. We show
how this leads to precise and computable numerical bounds
for this constant.

With each finite or infinite sequence Z = (zj) (j = 1, 2, . . . ) of distinct
points zj = xj+iyj in the upper half-plane of the complex plane, we associate
a number M(Z) ∈ R+ ∪ {+∞} which we call the constant of interpolation.
We may define it in two equivalent ways. The first is related to Carleson’s
interpolation theorem for H∞ [Car58]. We say that Z is an interpolating
sequence if the interpolation problem

f(zj) = wj , j = 1, 2, . . .(1)

has a solution f ∈ H∞ for each bounded sequence (wj) of complex numbers.
Using the open mapping theorem, we find that if Z is an interpolating
sequence, then we can always solve (1) with a function f such that

‖f‖∞ ≤ C‖(wj)‖∞

for some C <∞ depending only on Z. The constant of interpolation M(Z)
is declared to be the smallest such C. We set M(Z) = +∞ if Z is not an
interpolating sequence.

By a classical theorem of Pick (see [Gar81, p. 2]), we may alternatively
define M(Z) as follows: Let Mn(Z) be the smallest number C such that the
matrices (

1− wjwk

zj − zk

)
j,k=1,2,...,n

are positive semi-definite whenever ‖(wj)‖∞ ≤ 1/C. The constant of inter-
polation is then M(Z) = Mn(Z) if Z is a finite sequence consisting of n
points and M(Z) = limn→∞Mn(Z) if Z is infinite. We will make no use
of this definition, but have stated it to make the reader aware of the rel-
evance of M(Z) for the classical Nevanlinna-Pick problem. Note that this
connection has been investigated by Koosis, who derived Carleson’s theorem
formally from Pick’s theorem [Koo00].
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Carleson’s interpolation theorem [Car58] states that Z is an interpolating
sequence (or alternatively M(Z) <∞) if and only if

δ(Z) = inf
j 6=k

∏
k 6=j

∣∣∣∣zj − zk
zj − zk

∣∣∣∣ > 0.

Clearly, an interpolating sequence satisfies the Blaschke condition. We let
B be the associated Blaschke product and set

Bj(z) =
z − zj
z − zj

B(z),

so that we may write δ(Z) = infj |Bj(zj)|.
An interesting result related to Carleson’s theorem is that if M(Z) <∞,

then the interpolation may be obtained by means of a linear operator. In
fact, P. Beurling [Car63] proved that there exist fj ∈ H∞ with fj(zj) = 1
and fj(zk) = 0 if k 6= j, such that

M(Z) = sup
z

∑
j

|fj(z)|.

The functions fj have the form

fj(z) =
Bj(z)
Bj(zj)

( 2iyj

z − zj

)2 G(zj)
G(z)

,

where G is a bounded analytic function solving a certain nonlinear extremal
problem. Unfortunately, G is not given explicitly, and it seems very difficult
to get much further. The problem of finding G can be seen as a version of the
Nevanlinna-Pick interpolation problem, where one is interested in computing
M(Z) and finding solutions of minimal norm. There are classical results of
R. Nevanlinna describing these solutions, but they are very implicit and
give little help in concrete situations. It is therefore of interest to find more
explicit solution operators, along with good estimates for M(Z).

A remarkably simple formula was found by P. Jones [Jon83]. He showed
that the series

f(z) =
∑

j

wj
Bj(z)
Bj(zj)

(
2iyj

z − zj

)2

exp

−ai ∑
yk≤yj

(
yk

z − zk
− yk

zj − zk

)
defines a function f ∈ H∞ such that f(zj) = wj with ‖f‖ ≤ C‖(wj)‖∞.
Here a can be chosen freely and C is a constant depending on a and the
sequence Z. Jones’ formula can be tweaked in several ways. For instance,
in [Vin83], Vinogradov found functions fj that are rational when the in-
terpolating sequence is finite. This is of interest for some applications; see
[Nik02, p. 179]. The purpose of this note is to show that this explicit op-
erator, conveniently adjusted, is close to optimal. By considering a certain
extreme configuration of points, we are in fact able to prove that it yields
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a sharp upper bound for M(Z). As a result, M(Z) may be bounded from
above and below by fairly explicit numerical constants.

We begin by showing how to “optimize” Jones’ formula. Take an analytic
function g such that g(i) = 1. We need |g| to have a harmonic majorant,
so we require (z + i)−2g(z) ∈ H1 [Gar81, p. 60]. Let u denote the least
harmonic majorant of |g| and set

gj(z) = g((z − xj)/yj), uj(z) = u((z − xj)/yj).

We assume further that g is such that

Uk(z) =
∑

yj≤yk

uj(z)
|Bj(zj)|

defines a harmonic function; let Vk(z) be a harmonic conjugate of Uk, and
set Gk = Uk + iVk. This leads us to the following interpolation formula:

f(z) =
∑

j

wj
Bj(z)
Bj(zj)

gj(z) exp
(
−a(Gj(z)−Gj(zj))

)
with a some constant which may be chosen freely. Clearly, f(zj) = wj . We
define

cJ(Z, g) = sup
j
Uj(zj),

so that for arbitrary z we get the estimate

|f(z)| ≤ ‖(wj)‖∞
exp(acJ(Z, g))

a

∑
j

a|gj(z)|
|Bj(zj)|

exp(−aUj(z)).

Replacing |gj | by uj , we find that the latter sum is a lower Riemann sum
for the integral ∫ ∞

0
e−tdt

so that we arrive at the estimate

|f(z)| ≤ ‖(wj)‖∞
exp(acJ(Z, g))

a
.

We see that the optimal choice of a is 1/cJ(Z, g), and this leads us to the
bound

M(Z) ≤ ecJ(Z, g).

We may finally minimize cJ(Z, g) and define

cJ(Z) = inf
g
cJ(Z, g)

so that

M(Z) ≤ ecJ(Z).
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We have then proved one part of the following theorem:

Theorem 1. For every sequence Z in the upper half-plane,

M(Z) ≤ ecJ(Z).(2)

The inequality is best possible in the sense that the constant e on the right
side of (2) cannot be replaced by any smaller number.

We postpone for the moment the proof of the sharpness of (2); it will be
established by means of an explicit example at the end of this note.

It may be argued that finding the g minimizing cJ(Z, g) is not much easier
than solving for the function G in P. Beurling’s formula. However, we will
now point out that cJ(Z) relates nicely to more computable characteristics.

An immediate observation is that if we choose g(z) = −4/(z + i)2, then
u(z) = 4(y + 1)/|z + i|2 so that cJ(Z, g) becomes

cHJ(Z) = sup
n

∑
yj≤yn

4yj(yj + yn)
|zj − zn|2

1
|Bj(zj)|

.

This choice of g corresponds to the original version of Jones’ formula. (The
letter ‘H’ in cHJ(Z) stands for Havin; see below.) For this characteristic we
have the following result:

Theorem 2. For every sequence Z in the upper half-plane,

M(Z) ≤ kcHJ(Z)

for some universal constant k. The best possible k lies in the interval
[π/ log 4, e] = [2.2662 . . . , 2.7183 . . . ].

We have already established the upper bound for k. The lower bound will
again follow from the example to be considered below.

Our third and final characteristic was introduced by V. Havin in the first
appendix of [Koo98]. Havin’s presentation in [Koo98] was based on work
by Vinogradov, Gorin, and Hruščëv [VGH81]. We get Havin’s characteris-
tic from the expression for M(Z) obtained from Carleson’s duality argument
(see [Gar81, p. 135]):

M(Z) = sup
{

4π
∑ yj |h(zj)|

|Bj(zj)|
: h ∈ H1, ‖h‖1 ≤ 1

}
.

If we choose h(z) = π−1yk/(z − zk)2, k = 1, 2, . . . , we arrive at

cH(Z) = sup
k

∑
j

4ykyj

|zk − zj |2
1

|Bj(zj)|

along with the estimate

M(Z) ≥ cH(Z).
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Since clearly cHJ(Z) ≤ 2cH(Z), we may summarize our findings as a chain
of inequalities:

cH(Z) ≤M(Z) ≤ ecJ(Z) ≤ ecHJ(Z) ≤ 2ecH(Z).(3)

In [Koo98], Havin proves that

cH(Z) ≤M(Z) ≤ kcH(Z),

with k a universal constant. To prove the right inequality, he proceeds by du-
ality and uses the invariant Blaschke characterization of Carleson measures,
which is closely related to the original proof of Carleson. By computing
both cH(Z) and M(Z) when Z consists of two points, he also shows that
the left inequality is best possible. In fact, it may be checked that each of
the inequalities in our chain (3) is sharp.

To interpret the “geometric” contents of our characteristics, it may be
useful to relate them to the condition

sup
k

∑
j

yjyk

|zk − zj |2
< +∞,(4)

which is called the invariant Blaschke condition (see [Gar81, p. 239]). We
see that our three characteristics are closely related to the supremum ap-
pearing in (4). It may also be noted that by the bound M(Z) ≤ 2ecH(Z)
and a calculus argument applied to the invariant Blaschke sum, we obtain

M(Z) ≤ 2e+ 4e log(1/δ(Z))
δ(Z)

;

see [Koo98, p. 268].
We finally turn to our example which proves the sharpness of (2) and the

lower bound for k in Theorem 2. In what follows the notation a(γ) ∼ b(γ)
will mean that a(γ) and b(γ) are asymptotically equal, i.e.,

lim
γ→+∞

a(γ)/b(γ) = 1.

An example. Fix γ > 0 and consider the Blaschke product defined by

B(z) = B(γ, z) =
∏
k≤0

z − iek/γ

z + iek/γ

∏
k>0

iek/γ − z

z + iek/γ
.

The signs have been chosen so that iB′(i) > 0, which ensures convergence
of the product. The sequence of zeros Zγ = (iek/γ)k∈Z is clearly an inter-
polating sequence with M(Zγ) blowing up when γ tends to +∞. To obtain
appropriate estimates for B, we relate it to the function

F (z) = 2e−
π2γ
2 sin(πγ log(−iz)),

where log(z) is the principal branch of the logarithm. Both B and F are
bounded functions, and they have the same zeros. The quotient F (z)/B(z)
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is an outer function with modulus close to 1 when γ is large. More precisely,
we have

sup
x∈R\{0}

∣∣∣∣log
|F (x)|
|B(x)|

∣∣∣∣ ∼ e−π2γ ,

and therefore the same asymptotic relation holds in the upper half-plane.
The Blaschke product B is highly symmetric. It is real on the imaginary
half-axis iR+ and moreover B(e1/γz) = −B(z). We check that on iR+ the
modulus of B peaks at the points {ie(k+1/2)/γ : k ∈ Z}. Again comparing it
to F , we check that

B(ie(k+1/2)/γ) = (−1)k2e−
π2γ
2 tγ with tγ ∼ 1.(5)

We will now obtain a lower estimate for M(Zγ) by finding a minimal norm
solution of the interpolation problem

f(iek/γ) = (−1)k, k ∈ Z.

By (5), the problem is solved by the function

g(z) = cγB(e1/(2γ)z),

with cγ an appropriate constant satisfying cγ ∼ e
π2γ
2 /2. This means that if

we can prove that g is a minimal norm solution, then it follows that

M(Zγ) ≥ tγ
2
e

π2γ
2 with tγ ∼ 1.(6)

We wish to prove that g is a solution of minimal norm. To this end,
observe that an arbitrary minimal norm solution can expressed as

f = g + hB

with h a bounded analytic function. We may assume that f is real on iR+

because by symmetry we may if necessary replace f by (f(−z) + f(z))/2.
Thus h is also real on iR+. We define

hm(z) =
1
m

m−1∑
k=0

h(e2k/γz),

and choose a convergent subsequence hmk
(z) → h̃(z) such that the limit

function satisfies h̃(e2/γz) = h̃(z), and h̃(iy) ∈ R for real y. Hence f̃ = g+h̃B
is also a minimal norm solution and f̃(e2/γz) = f(z). Finally, note that

ϕ(z) =
1
2
(f̃(z)− f̃(e1/γz)),

is a minimal norm solution as well such that

ϕ(e1/γz) = −ϕ(z).(7)
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Assume now that g is not a minimal norm solution. Then ‖ϕ‖∞ < ‖g‖∞.
Between the points i and ie1/γ , ϕ has a zero iδ because it is real on iR.
Therefore, by the periodicity expressed by (7), ϕ has zeros at iδek/γ , k ∈ Z.
It follows that we may factorize ϕ as

ϕ(z) = B(z/δ)ϕ0(z).

We evaluate ϕ at the point i and get

1 = |ϕ(i)| = |B(i/δ)||ϕ0(i)| ≤
1
cγ
‖ϕ0‖∞ =

‖ϕ‖∞
cγ

=
‖ϕ‖∞
‖g‖∞

< 1,

which is a contradiction. We conclude that g has minimal norm so that (6)
holds.

The next step is to compute cJ(Zγ). Since B(e1/γz) = −B(z), we have
that

|ek/γB′(iek/γ)| = |B′(i)|

for each integer k. Hence

|Bk(iek/γ)| = 2ek/γ |B′(iek/γ)| = 2|B′(i)|.

The derivative B′(i) can be estimated in terms of F ′(i), which gives us

iB′(i)e
π2γ
2 /(2πγ) → 1 as γ → +∞.

Thus

cJ(Zγ) ∼ (4πγ)−1e
π2γ
2 inf

g(i)=1
sup
k∈Z

∑
yj≤yk

u(iyk/yj)(8)

with u denoting as before the least harmonic majorant of |g|. Using the
explicit expression for this majorant, we get

inf
g(i)=1

sup
k∈Z

∑
yj≤yk

u(iyk/yj) = inf
g(i)=1

∑
k≥0

1
π

∫
R

1
1 + t2

|g(ek/γt)| dt.

We interpret the sum on the right as a Riemann sum, so that∑
yj≤yk

u(iyk/yj) ∼
γ

π

∫
R

1
1 + t2

∫ ∞

0
|g(tex)| dx dt

=
γ

π

∫
R

1
1 + t2

∫ ∞

t

|g(u)|
u

du dt.

Integrating by parts, we get∑
yj≤yk

u(iyk/yj) ∼
γ

π

∫
R

arctan t
t

|g(t)| dt.
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We want to minimize the latter integral over all functions g such that (z +
i)−1g ∈ H1 and g(i) = 1. This can be restated as an extremal problem in
the weighted Hardy space with norm

‖h‖2 =
∫

R
|h(t)|2 arctan t

t
dt.

In turn, we can reduce this problem to one for the standard Hardy space
H2, and we find that our original problem is solved by the function

g0(z) =
(

2i
z + i

)2 ψ(z)
ψ(i)

,

where ψ(z) is the outer function whose modulus is t/ arctan t on R. Since∫
R
|g0(t)|

arctan t
t

dt =
∫

R

4
(t2 + 1)

1
|ψ(i)|

=
4π
|ψ(i)|

,

we get

cJ(Zγ) ∼ e
π2γ
2

π|ψ(i)|
(9)

when plugging our extremal function g0 into (8).
We are left with the computation of |ψ(i)|. We first note that

ψ(i) = i exp
(
− i

π

∫
R

( 1
i− t

+
t

t2 + 1

)
log | arctan(t)| dt

)
.

Since

| arctan(t)| = 1
2

∣∣∣log
(1− it

1 + it

)∣∣∣,
the change of variables

eiθ =
1− it

1 + it

brings us to the explicit expression

ψ(i) = 2i exp
(
− 1

2π

∫ π

−π
log | log eiθ| dθ

)
=

2ie
π
.

Combining (6) and (9), we conclude that

cJ(Zγ) ∼ 1
2e
e

π2γ
2 ≤ tγ

e
M(Zγ) with tγ ∼ 1,

which proves the sharpness of (2) of Theorem 1.
The computation of cHJ(Zγ) is straightforward. Indeed,

cHJ(Zγ) ∼ (4πγ)−1e
π2γ
2

∑
k≥0

4e−k/γ

(1 + e−k/γ)
.
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The sum is again regarded as a Riemann sum, i.e.,∑
k≥0

e−k/γ

1 + e−k/γ
∼ γ

∫ ∞

0

e−x

1 + e−x
dx = γ log 2

so that we arrive at the relation

cHJ(Zγ) ∼ log 2
π

e
π2γ
2 ≤ tγ2 log 2

π
M(Zγ) with tγ ∼ 1.

This proves the lower bound for k in Theorem 2.
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