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1. Introduction

In [1], Berndtsson and one of us identified Beurling-type density conditions for
sampling and interpolation in certain generalized Fock spaces. The purpose of the
present work is to solve an essential problem left open in that paper.

The setting is as follows. Let a subharmonic function φ be given, whose Laplacian
satisfies 0 < m ≤ ∆φ(z) ≤ M (m,M positive constants) for all z ∈ C. We denote
by Fp

φ (1 ≤ p ≤ ∞) the set of all entire functions f for which fe−φ belongs to Lp(C).

Our objective is to prove that the density conditions which in [1] were shown to
be sufficient, are also necessary, for a sequence to be sampling or interpolating for
Fp
φ. (We defer the definitions of sampling and interpolating sequences to the next

section.)
The arguments which have previously allowed such strict density theorems (see

[12,13,9]), all rest on a scheme developed by Beurling in his study of sampling
and interpolation of bandlimited functions [2]. Some of these arguments seem
indispensable and will be used again. We shall need some additional new tricks,
but the main novelty of this paper is probably our way of adapting Beurling’s
approach to a setting seemingly different from the previous cases, which all involved
holomorphic spaces with a suitable shift invariance. A prime example is the classical
Fock space, which we obtain by setting φ(z) = α|z|2 (α > 0). In [12], a key role
was played by the translation operator Tζ , defined for every ζ ∈ C by

(Tζf)(z) = (Tαζ f)(z) = eα2ζz−α|ζ|
2

f(z − ζ).

A crucial property of Tζ used in Beurling’s scheme is that it acts isometrically in
Fp
α|z|2 .

Clearly, the spaces Fp
φ do not enjoy this sort of group invariance, but we have

found that the translation group can be brought into action in much the same way.
Namely, we define a translation operator Tζ for every ζ ∈ C acting isometrically
from Fp

φ to a different space Fp
φζ
. The two functions φ and φζ are related by the

equation
∆z(φ(z − ζ)− φζ(z)) = 0,
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2 JOAQUIM ORTEGA-CERDÀ AND KRISTIAN SEIP

and we have uniform bounds on the growth of the functions φζ . In the classical
case, it so happens that we may choose φ = φζ for every ζ. This “translation
invariance” is what allows us to adapt Beurling’s scheme (as modified in [12]) to
the present setting.

By giving a complete description of sampling and interpolation in Fp
φ in terms

of densities only, our paper completes a line of research which was started in [12]
and [14], and continued in [9] and [1]. However, it leaves us with the problem
of understanding why some Banach spaces of entire functions allow strict density
theorems, and others do not, like certain spaces of Paley-Wiener-type (see [10] and
also [3] and [8]). This is a question which awaits a careful study, although the two
papers [9] and [10] shed some light on it.

Acknowledgement. We are grateful to Yurii Lyubarskii for pertinent criticism of an
early version of this paper.

2. Definitions and main results

We set ∆ = ∂2/∂z∂z̄, which differs from the standard convention for the Laplace
operator ∆ by a factor 4. We write f . g whenever there is a constant K such that
f ≤ Kg, and f ≃ g if both f . g and g . f . Throughout this paper, we assume a
subharmonic function φ is fixed, satisfying

0 < m ≤ ∆φ(z) ≤M (1)

for all z ∈ C, where m and M are positive constants.
Let dσ denote Lebesgue area measure on C. We define

‖f‖pφ,p =

∫

C

|f |pe−pφ dσ

for p < ∞, and ‖f‖φ,∞ = supz |f(z)|e
−φ(z). If Γ = {γn} is a sequence of distinct

points from C, we set

‖f |Γ‖pφ,p =
∑

n

|f(γn)|
pe−pφ(γn)

for p <∞, and ‖f |Γ‖φ,∞ = supn |f(γn)|e
−φ(γn), where we permit f to be a function

defined on some set containing Γ. We say that the sequence Γ is sampling for Fp
φ

if we have

‖f |Γ‖φ,p ≃ ‖f‖φ,p

for f ∈ Fp
φ. We say that Γ is interpolating for Fp

φ if, for every sequence of values

a(γn) = an such that ‖a|Γ‖φ,p < +∞, there exists a solution f ∈ Fp
φ to the

interpolation problem f(γn) = an for every γn ∈ Γ. The space of sequences a such
that ‖a|Γ‖φ,p <∞ will sometimes be denoted by ℓpφ.

In order to describe sampling and interpolating sequences, we introduce lower
and upper uniform densities. A sequence is called uniformly separated if the infi-
mum of the distances between distinct points is strictly positive. For a fixed Γ, we
denote by n(z, r) the number of points of the sequence Γ in D(z, r), which is the
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disc of center z and radius r. The lower uniform density of Γ with respect to φ is
defined as

D−
φ (Γ) = lim inf

r→∞
inf
z∈C

n(z, r)∫
D(z,r)

∆φ
,

and the upper uniform density of Γ with respect to φ is

D+
φ (Γ) = lim sup

r→∞
sup
z∈C

n(z, r)∫
D(z,r)

∆φ
.

The purpose of the present paper is to prove the necessity of the following two
density conditions.

Theorem 1. A sequence Γ is sampling for Fp
φ if and only if it contains a uniformly

separated subsequence Γ′ satisfying D−
φ (Γ

′) > 2/π and in addition, when 1 ≤ p <
∞, it is a finite union of uniformly separated sequences.

Theorem 2. A sequence Γ is interpolating for Fp
φ if and only if it is uniformly

separated and satisfies D+
φ (Γ) < 2/π.

The positive part of Theorems 1 and 2 was proved by Berndtsson and the first
named author in [1]. (Strictly speaking, only the cases p = 2 and p = ∞ were
explicitly covered there, but the sufficiency for general p are easy consequences of
these special cases.) Similar conditions for interpolation have also been considered
by Grishin and Russakovskii in a related work [6].

Before turning to the proofs, a few remarks are in order.
We could have allowed a slightly more general function φ, satisfying instead of

(1) that there is an R > 0 such that infz∈C

∫
D(z,R)

∆φ > 0, and that the Laplacian

∆φ has bounded local logarithmic potential, i.e.

sup
z∈C

∫

D(z,1)

log
1

|z − ζ|
∆φ(ζ) < +∞.

The second condition ensures that if we pick ψ(z) = 1/(πR2)
∫
D(z,R)

φdσ, then

|φ − ψ| ≤ C. Thus, the spaces Fp
φ and Fp

ψ are the same. Moreover the first and
second condition imply that 0 < m ≤ ∆ψ ≤M , and so there is no loss of generality
in making the a priori assumption (1).

On the other hand, we may assume that ∆φ is not just a bounded function, but
also uniformly Lipschitz. If it were not, we could take as before

ψ(z) =
1

πR2

∫

D(z,R)

φdσ.

Now, ∆ψ is uniformly Lipschitz since ∆φ is bounded and Fp
φ = Fp

ψ. The density
conditions of Theorems 1 and 2 are not affected by replacing φ by ψ. Thus from
now on, we will assume that ∆φ is uniformly Lipschitz.

In our definition of D−
φ (Γ) and D

+
φ (Γ), we have confined ourselves to a count of

points from Γ in all possible discs. It follows from considerations due to Landau
[7] that these limits are unchanged if we replace the discs D(z,R) by dilations and
translations of an arbitrary compact set whose boundary has measure 0.
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We end this section by sketching the plan of the proofs. The next section con-
tains some preliminary results and estimates. In particular, we prove some basic
pointwise estimates corresponding to those associated with the names Phragmén-
Lindelöf and Bernstein in the classical situation, and draw the conclusion that we
may restrict ourselves to considering only uniformly separated sequences. Section
4 develops a tool analogous to that used by Beurling in [2], namely, we extend the
notion of translation invariance, as already indicated, and correspondingly the no-
tion of compactwise limits of sequences. In Section 5, we use a simple and powerful
idea due to Ramanathan and Steger [11] to prove a “comparison lemma”, saying
essentially that an interpolating sequence has density smaller than any sampling
sequence. Then using some specific examples of sampling and interpolating se-
quences, we obtain nonstrict density conditions. Section 6 contains a direct proof
of the strict inequality D+

φ (Γ) < 2/π for interpolation, by means of certain manipu-
lations with Jensen’s formula. Finally, in Section 7, a combination of Beurling-type
arguments and the nonexistence of sequences being both sampling and interpolat-
ing (as follows from Sections 5 and 6) leads to the strict inequality for sampling as
well.

3. Preliminary results and basic properties of Fp
φ

Our assumption about φ does not imply any restriction on the growth of the
functions in Fp

φ. However, we may assume that functions in Fp
φ are of order 2. To

see this, consider

φ0(z) =
2

π

∫

C

{log |1−
z

w
|+Re[

z

w
+

1

2

z2

w2
]Ω(w)}∆φ(w)dσ(w),

where

Ω(z) =

{
1, |z| ≥ 1

0, |z| < 1.

We have ∆φ = ∆φ0, and so the difference between φ and φ0 is a harmonic func-
tion, whence there exists an entire function h such that f 7→ f exph maps Fp

φ

isometrically onto Fp
φ0
. From the representation of φ0 we obtain the estimate

|φ0(z)| . 1 + |z|2 log+ |z|,

and this along with Lemma 1 below yields the order 2 condition on functions in
Fp
φ0
.

In the proof of Theorem 1, we will need the following estimate for ∂̄ due to Christ
[4]:

Theorem A. If φ satisfies the condition m ≤ ∆φ ≤ M , then for any 1 ≤ p ≤ ∞
the equation ∂̄u = f has a solution u in C such that

‖ue−φ‖Lp(C) . ‖fe−φ‖Lp(C).

We will also need an estimate of the decay far from the diagonal of the Bergman
kernel in the spaces F2. This estimate is also obtained by Christ in [4]:
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Theorem B. Let K(z, ζ) denote the Bergman kernel of the space F2
φ, i.e. for any

f ∈ F 2
φ ,

f(z) =

∫

C

K(z, ζ)f(ζ)e−2φ(ζ) dσ(ζ).

Then there is an ε > 0 such that K satisfies

|K(z, ζ)| . eφ(z)+φ(ζ)−ε|ζ−z|.

If we denote by Lpφ the space of all functions f such that fe−φ ∈ Lp(C, dσ), and
define the projection operator as

Pφf(z) =

∫

C

f(ζ)K(z, ζ)e−2φ(ζ) dσ(ζ),

then we get as a corollary of Theorem B:

(1) The operator Pφ projects Lpφ onto Fp
φ for all 1 ≤ p ≤ ∞.

(2) The dual of Fp
φ is Fq

φ for any 1 ≤ p < ∞, where 1/p + 1/q = 1. Moreover

the dual of F∞,0
φ is F1

φ, where F
∞,0
φ is the closed subspace of F∞

φ consisting

of functions f such that |f(z)|e−φ(z) → 0 as z → ∞.

We will need several times the following pointwise estimates, playing the role of
the Phragmén-Lindelöf and Bernstein inequalities in Beurling’s situation:

Lemma 1. If f belongs to Fp
φ, then

|f(z)| . ‖f‖φ,pe
φ(z),

|∇(|f |re−rφ)(z)| . ‖f‖rφ,p

for all r > 0, provided f(z) 6= 0.

Proof. We start by decomposing φ in the disc D = D(z, 1) as

φ(w) = φ(z) + u(w) +

∫

D

(G(w, η)−G(z, η))∆φ(η) dσ(η), (2)

where G is the Green function of the disc D(z, 1) and u is a harmonic function in
the disc such that u(z) = 0. Since ∆φ is bounded, we know then that

|φ(w)− φ(z)− u(w)| ≤ K.

Since u is harmonic, there is a holomorphic function h ∈ H(D) such that |eh| = eu,
whence

|f(z)|p = |f(z)e−h(z)|p ≤
1

π

∫

D

|f |pe−pudσ.

Therefore, we obtain

|f(z)|pe−pφ(z) .

∫
|f(w)|pe−pu(w)−pφ(z)dσ .

∫
|f(w)|pe−pφ(w)dσ ≤ ‖f‖pφ,p.
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To prove the inequality for the gradient we begin as follows:

|∇(|f |re−rφ)| =

∣∣∣∣
r

2
|f |r−2f ′f̄ e−rφ − r|f |re−rφ

∂φ

∂z

∣∣∣∣ . ‖f‖r−1
φ,p

∣∣∣∣f
′e−φ − 2fe−φ

∂φ

∂z

∣∣∣∣ .

Moreover, because of (2) we know that |∂φ/∂w − ∂u/∂w| < K. Thus

|∇|f |re−rφ| . ‖f‖rφ,p + ‖f‖r−1
φ,p

∣∣∣∣f
′e−φ − 2fe−φ

∂u

∂w

∣∣∣∣ . (3)

We pick as before h ∈ H(D) such that h(z) = 0 and Re h = u. By the Cauchy
inequalities we get

∣∣∣∣
∂(fe−h)

∂w
(z)

∣∣∣∣ ≤
1

2π

∫

|w−z|=1

|f(w)|e−u(w)|dw| . ‖f‖φ,p.

Since h′ = 2∂u/∂z, we finally obtain

e−φ
∣∣∣∣f

′ − 2f
∂u

∂z

∣∣∣∣ . ‖f‖φ,p,

which along with (3) yields the desired inequality. �

The same proof also gives the following result: If Γ = {γn} is a finite union of
uniformly separated sequences, then

‖f |Γ‖pφ,p .
∑

n

∫

D(γn,1)

|f |pe−pφdσ . ‖f‖pφ,p (4)

for all f ∈ Fp
φ (p <∞), and if Γ = {γn} is a uniformly separated sequence, then

∑

n

|∇(|f |pe−pφ)(γn)| . ‖f‖pφ,p (5)

for all f ∈ Fp
φ (p <∞), and

sup
n

|∇(|f |e−φ)(γn)| . ‖f‖φ,∞

for all f ∈ F∞
φ .

We establish next some basic necessary conditions for sampling and interpola-
tion.

Proposition 1. If p <∞, we have

‖f |Γ‖φ,p . ‖f‖φ,p

for all f ∈ Fp
φ if and only if Γ can be expressed as a finite union of uniformly

separated sequences.

Proof. One of the directions is (4). For the converse implication, assume that the
inequality is true, but that the sequence is not a finite union of uniformly separated
sequences. Then for every n and ε > 0, there will be a point z ∈ C such that there
are n points in an ε neigborhood of z. One can easily construct a function such
that ‖f‖φ,p < C (where C is independent of z) and f(z) = eφ(z). This is so because
a single point is trivially an interpolating sequence for this space (see [1]). But
‖f |Γ‖φ,p will tend to ∞ when n→ ∞ because of the inequality on the gradient in
Lemma 1, which is a contradiction. �

The inequality for the gradient in Lemma 1 also yields the following two propo-
sitions, the first of which is an immediate consequence of that inequality.
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Proposition 2. If Γ is a sampling sequence for Fp
φ, then there exists a uniformly

separated subsequence Γ′ ⊂ Γ which is also sampling for Fp
φ.

Before stating the corresponding result for interpolating sequences, recall that,
by the closed graph theorem, there is a constant M such that for every {an} un-
der the compatibility condition, the interpolating function f can be chosen so that
‖f‖pφ,p ≤ Mp

∑
|an|

pe−pφ(γn). The smallest such constant M is called the interpo-

lation constant of Γ and will be denoted by MΓ.

Proposition 3. If Γ = {γn} is an interpolating sequence for Fp
φ, then Γ is uni-

formly separated.

Proof. We know that

∣∣∣|f(z)|e−φ(z) − |f(w)|e−φ(w)
∣∣∣ . ‖f‖φ,p|z − w|.

Moreover, for any two distinct points γn and γm of Γ we can find a function f ∈ Fp
φ

such that ‖f‖φ,p < MΓ, f(γn) = eφ(γn) and f(γm) = 0. Consequently, we get
1 .MΓ|γn − γm|. �

So from now on, we may assume that all sequences Γ are uniformly separated.

4. A translation operator and the concept of compactwise limits

Suppose φ is a subharmonic function such that ∆φ < M and ∆φ satisfies a
uniform Lipschitz condition. For every ζ ∈ C we define

φζ(z) =
2

π

∫

C

{log |1−
z

w
|+Re[

z

w
+

1

2

z2

w2
]Ω(w)}∆φ(w − ζ)dσ(w),

where as above

Ω(z) =

{
1, |z| ≥ 1

0, |z| < 1.

As explained at the beginning of Section 3, we may assume without loss of generality
that φ = φ0. We observe that φζ satisfies

∆zφζ(z) = ∆zφ(z − ζ)

for all z ∈ C, and
|φζ(z)| ≤ C(1 + |z|2 log+ |z|),

with C independent of ζ. These two conditions along with the assumption that ∆φ
is uniformly Lipschitz imply that φζ and ∆φζ are a normal family in the topology
of uniform convergence over compacts. Moreover, the operator Tζ defined as

(Tζf)(z) = eq(z,ζ)f(z − ζ),

satisfies ‖Tζf‖φζ ,p = ‖f‖φ,p for some polynomial q(z, ζ) of degree 2 in z. This
relation shows in particular that if a sequence Γ is sampling for Fp

φ, then Γ − ζ is

sampling for Fp , with the same constants in the sampling inequalities.
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A sequence Qj of closed sets converges strongly to Q, denoted Qj → Q, if
[Q,Qj ] → 0; here [Q,R] denotes the Fréchet distance between two closed sets Q
and R, i.e., [Q,R, ] is the smallest number t such that Q ⊂ {z : d(z,R) ≤ t} and
R ⊂ {z : d(z,Q) ≤ t}, where d(·, ·) denotes Euclidean distance in C. Qj converges
compactwise to Q, denoted Qj ⇀ Q, if for every compact set D (Qj ∩D) ∪ ∂D →
(Q ∩D) ∪ ∂D.

Suppose that associated with a sequence of sets Γj there is a sequence of subhar-
monic functions φj . If Γj ⇀ Λ, ψ = limj→∞ φj , and ∆ψ = limj→∞ ∆φj (uniformly
on compacts), we write (Γj , φj)⇀ (Λ, ψ) and say that (Γj , φj) converges compact-

wise to (Λ, ψ). For a closed set Γ and subharmonic function φ satisfying (1), we let
W (Γ, φ) denote the collection of pairs (Λ, ψ) such that (Γ − aj , φaj ) ⇀ (Λ, ψ) for
some sequence aj . By the Arzela-Ascoli theorem, W (Γ, φ) is compact in the sense
that every sequence of elements (Γj , φj) ∈ W (Γ, φ) has a subsequence converging
compactwise to some element in W (Γ, φ).

Lemma 3. If Γ is a uniformly separated sampling sequence for Fp
φ and (Γ −

aj , φaj )⇀ (Λ, ψ), then Λ is a sampling sequence for Fp
ψ.

Proof. Consider first the case 1 ≤ p < ∞, and suppose the lemma is false. This
assumption implies that for every ε > 0 we can find an f ∈ Fp

ψ such that ‖f‖ψ,p = 1

and ‖f |Λ‖ψ,p ≤ ε. We intend to prove the lemma by finding a j and produce
another function, say fj , with the same properties with respect to φaj and the
sequence Γ− aj . This we do as follows:

Choose an R > 0 so large that
∫
|z|>(R−3)

|f |pe−pψdσ < εp. Take a cutoff function

χ, such that 0 ≤ χ ≤ 1, χ(z) = 1 if |z| < R−1, χ(z) = 0 if |z| > R and |∇χ(z)| ≤ 2.
Set h = χf , and choose a j such that ‖h|(Γ− aj)‖φaj

,p ≤ 2ε, ‖h‖φaj
,p ≥ 1/2, and

e−φaj
(z) ≤ 2e−ψ(z)

for |z| < R. Then h has the desired properties, but it is not holomorphic. We may,
however, correct it by solving the ∂̄ equation ∂̄u = f∂̄χ. Because

∫

C

|f∂̄χ|pe−pφaj dσ ≤ (4ε)p,

we may apply Theorem A, and so there is a solution u with ‖u‖φaj
,p . ε. We split

Γ − aj into two sequences β and β′, where β consists of the points from Γ − aj
which lie in the corona R − 2 < |z| < R + 1, and β′ = (Γ − aj) \ β. Since u is
holomorphic outside R − 1 < |z| < R, we may apply the first inequality of (4) to

obtain ‖u|β′‖φaj,p
. ε. On the other hand,

∫
R−3<|z|<R+2

|h − u|pe−pφaj dσ . ε,

and since h− u is holomorphic, we may again apply the first inequality of (4), now
to h − u in the corona R − 2 < |z| < R + 1. Using also that ‖h|β‖φaj

,p . ε, we

obtain ‖h− u|(Γ− aj)‖φaj
,p . ε. It follows that fj = h− u is the desired function.

Consider now the case p = ∞. A sequence Λ is a sampling sequence for F∞
ψ

if and only if the same sequence Λ is sampling for F∞,0
ψ . In fact, Λ is a sampling

sequence for F∞
ψ if the restriction operator R : F∞

ψ → ℓ∞ψ is injective and with

closed range. Equivalently, that means that the operator R∗ : ℓ1ψ → F1
ψ defined

as R∗({an}) =
∑
anK(z, λn)e

−2ψ(λn) is surjective, and again by duality, this is
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equivalent to saying that R∗∗ : F∞,0
ψ → ℓ∞,0

ψ is injective and of closed range, which

in turn amounts to saying that Λ is a sampling sequence for F∞,0
ψ .

Therefore, if the lemma is false for p = ∞, then for every ε > 0 there exists a
function f ∈ F∞,0

ψ such that ‖f‖ψ,∞ = 1 and ‖f |Λ‖ψ,∞ ≤ ε. We then repeat the
construction of the function fj , which was done above. The point at which we use

that f ∈ F∞,0
ψ instead of F∞

ψ , is at the beginning of the construction, when we

need to assure the existence of a big R > 0 such that sup|z|>R−1 |f |e
−ψ ≤ ε. �

Lemma 3 yields the following characterization of sampling sequences for F∞
φ .

Theorem 3. A sequence Γ is sampling for F∞
φ if and only if every pair (Λ, ψ) ∈

W (Γ, φ) has the property that Λ is set of uniqueness for F∞
ψ .

Proof. One of the directions is just Lemma 3 since any sampling sequence is a
uniqueness set. The other direction follows by the same argument as in the proof
of Theorem 3 in [2], p. 345. �

5. A comparison lemma of Ramanathan and Steger, and

nonstrict density conditions for sampling and interpolation

We begin by stating the Ramanathan-Steger comparison lemma [11] for our
spaces.

Lemma 4. Let I be an interpolating sequence for F2
φ and S a uniformly separated

sampling sequence. Then D+
φ (I) ≤ D+

φ (S) and D
−
φ (I) ≤ D−

φ (S).

Proof. If S is a sampling sequence, then {k(z, s) = K(z, s)e−φ(s)}s∈S is a frame in
F2
φ, where K is the Bergman kernel. This means that we have

‖f‖2 ≃
∑

s∈S

|〈k(z, s), f(z)〉|2

for f ∈ F2
φ. A consequence is that any f ∈ F2

φ can be written in at least one

way as f =
∑
s∈S csk(z, s), with square-summable coefficients cs. The unique

representation minimizing the ℓ2-norm of the coefficients is given by

f(z) =
∑

s∈S

〈k̃(w, s), f(w)〉k(z, s),

where k̃(z, s) is the dual frame of k(z, s). It follows that the dual frame of k̃(z, s)
is k(z, s), so that

f(z) =
∑

s∈S

〈k(w, s), f(w)〉k̃(z, s) =
∑

s∈S

f(s)e−φ(s)k̃(z, s).

We refer to [5] for proofs and more information about frames.
On the other hand, if we denote byH the closed linear span in F2

φ of the functions

k(z, i) = K(z, i)e−φ(i), i ∈ I, then I is an interpolating sequence if and only if the
system {k(z, i)}, i ∈ I is a Riesz basis for H.

Now, for any given z ∈ C and R, ρ > 0, we introduce the following two finite
dimensional subspaces of F2

φ. Denote by WS the subspace generated by the func-

tions k̃(w, s), s ∈ D(z,R+ρ)∩S, and byWI the subspace generated by the k(w, i),
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i ∈ D(z,R)∩ I. (One should think of R as much bigger than ρ.) We define PS and
PI to be the orthogonal projections of F2

φ onto WS and WI , respectively. Consider
the operator T = PIPS defined from WI to WI . We are going to estimate the trace
of this operator in two different ways.

To begin with,

tr (T ) ≤ rankWS ≤ #{D(z,R+ ρ) ∩ S}.

On the other hand,

tr (T ) =
∑

i∈I∩D(z,R)

〈T (k(w, i)), PIk
∗(w, i)〉,

where {k∗(w, i)} is the dual basis of k(w, i) in H. Since T = PIPS , then for any
i ∈ I ∩D(z,R),

〈T (k(w, i)), PIk
∗(w, i)〉 = 〈k(w, i), k∗(w, i)〉+ 〈PS(k(w, i))− k(w, i), PIk

∗(w, i)〉,

whence

tr (T ) ≥ #{i ∈ I ∩D(z,R)}(1− sup
i

|〈PS(k(w, i))− k(w, i), k∗(w, i)〉|).

Recall that we normalized k(w, i) so that ‖k(w, i)‖ ≃ 1. Therefore ‖k∗(w, i)‖ ≃ 1
too. Thus if we can show that ‖PS(k(w, i)) − k(w, i)‖ ≤ ε for a sufficiently big ρ,
we have proved that for every ε > 0 there exists a ρ such that for all large R, the
following inequality holds

(1− ε)#{I ∩D(z,R)} ≤ #{S ∩D(z,R+ ρ)}.

This estimate implies the desired inequalities for the densities.
It remains to be shown that ‖PS(k(w, i)) − k(w, i)‖ ≤ ε. To this end, we note

that since S is a sampling sequence, k(w, i) =
∑
s∈S k(s, i)k̃(w, s)e

−φ(s). Therefore,

‖PS(k(w, i))− k(w, i)‖ ≤
∑

|s−i|>ρ

e−φ(s)|k(s, i)|‖k̃(w, s)‖ ≤
∑

|s−i|>ρ

e−ε|i−s|,

where the last inequality follows from Theorem B. The sum on the right side of
this inequality is smaller than ε if ρ is big enough, since S is a uniformly separated
sequence. �

We obtain now nonstrict density conditions for sampling and interpolation. The
inequality in the interpolation case will not be used later, because we will give a
direct proof of the strict inequality in the next section. But the proof is the same,
and it comes for free.

Corollary 1. If Γ is a uniformly separated sampling sequence for F2
φ, then D

−
φ (Γ) ≥

2/π. If Γ is an interpolating sequence for F2
φ. Then D+

φ (Γ) ≤ 2/π.

Proof. Assume that Γ is a sampling sequence for F2
φ. For every ε > 0, we may

construct a sequence Λ with D+(Λ) = D−(Λ) = 2/(π + ε) as follows. Partition



BEURLING-TYPE DENSITY THEOREMS 11

the plane C into strips of the form k − 1 < Re z ≤ k, k ∈ Z. Each of the strips
can be partitioned into rectangles Rj such that

∫
Rj

∆φ = (π + ε)/2. The sides of

the rectangles Rj will be bounded above and below by some constants since ∆φ is
bounded above and below. Thus if we take as Λ a uniformly separated sequence
consisting of one point from each of these rectangles, it is easy to check that it has
the desired density. Now Λ is an interpolating sequence because D−

φ (Λ) < 2/π.

(This is Theorem 2b of [1].) Thus by the comparison lemma, we have just proved
that D−

φ (Γ) ≥ D+
φ (Λ) = 2/(π + ε). Since ε was arbitrary, we have the nonstrict

inequality.
For Γ an interpolating sequence, we proceed analogously. This time we use

Theorem 2a of [1] saying that Λ is interpolating for F2
φ whenever D+

φ (Λ) < 2/π. �

Proposition 4. If Γ is a sampling sequence for Fp
φ (1 ≤ p ≤ ∞), then Γ is

sampling for F2
φ−ε|z|2 for all sufficiently small ε > 0.

Proof. If Γ is a sampling sequence for F∞
φ , then there is a sequence of functions

{g(z, γ)}γ∈Γ such that for every ε > 0 and f ∈ F∞,0
φ ,

e−φ(z)f(z) =
∑

γ∈Γ

f(γ)g(z, γ)e−φ(γ),

and
∑

|g(z, γ)| ≤ K uniformly in z. This is so by a duality argument, because

{f(γ)}γ∈Γ 7→ f(z)e−φ(z), with f ∈ F∞,0
φ , is a bounded linear functional on a closed

subspace of ℓ∞,0
φ , whose norm we can bound independently of z. (We repeat here an

argument from [13], p. 36.) We apply this representation formula to the function

f(w)e2εwz̄−2ε|z|2 , and get

e−φ(z)f(z) =
∑

γ∈Γ

f(γ)e−φ(γ)−2ε|z|2+2εγz̄g(z, γ)

for every f ∈ F2
φ−ε|z|2 . By the Cauchy-Schwarz inequality, we obtain

|f(z)|2e−2φ(z) ≤ K
∑

γ∈Γ

|f(γ)|2e−2φ(γ)−4ε|z|2+4εRe(γz̄)|g(z, γ)|.

Integrating against e2ε|z|
2

, we obtain the sampling inequality
∫

C

|f |2e−2φ+2ε|z|2dσ .
∑

γ∈Γ

|f(γ)|2e−2φ(γ)+2ε|γ|2 .

Finally, suppose that Γ is a sampling sequence for Fp
φ (1 ≤ p <∞). This implies,

by an argument similar to that leading to Lemma 3, that if (Γ− aj , φaj )⇀ (Λ, ψ),
then (Λ, ψ) is also a sampling sequence for Fp

ψ. Since F
∞
ψ−ε|z|2 ⊂ Fp

ψ, it follows that

Λ is a uniqueness set for F∞
ψ−ε|z|2 , and thus by Theorem 3, it follows that Γ is a

sampling sequence for F∞
φ−ε|z|2 . As we have just seen, this means that it is then a

sampling sequence for F2
φ−ε′|z|2 for any ε′ > ε. �

Joining Corollary 1 and Proposition 4, we obtain the following corollary.

Corollary 2. If Γ is a uniformly separated sampling sequence for Fp
φ (1 ≤ p ≤ ∞),

then D−
φ (Γ) ≥ 2/π.

We could have made a similar transition to general 1 ≤ p ≤ ∞ in the interpola-
tion case, but this is not needed in view of the next section.
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6. Strict necessary conditions for interpolation

In order to get necessary conditions for interpolation, we will use Jensen’s formula
to control the number of points of an interpolating sequence contained in some disc.
If we want to improve the inequality obtained by this procedure to get a strict
inequality for the density, we can proceed in the following way. We perturb the
original sequence by fitting into the disc under consideration more points than were
present from the original sequence. If we know that the perturbed sequence is still
an interpolating sequence with controlled interpolation constant, we apply Jensen’s
formula again and get better estimates.

Thus we begin with a stability result. Unfortunately, we cannot prove directly
that the perturbed sequence is interpolating, except in the L2 setting. We must
increase slightly the function space, but this will do.

We say that Γ is a linear interpolating sequence for Fp
φ if it is an interpolating

sequence and moreover there is a bounded linear operator solving the interpolation
problem. (It will follow from Theorem 2 that all interpolating sequences are in fact
linear interpolating sequences.) We shall proceed in two steps, the first of which is
the following lemma.

Lemma 5. If Γ is an interpolating sequence for Fp
φ with interpolation constantMΓ,

then for all ε > 0, Γ is a linear interpolating sequence for Fp
φ+ε|z|2 with interpolation

constant bounded by K/εα, where K and α are positive constants depending only
on MΓ and p.

Proof. We begin by proving that Γ is an interpolating sequence for F∞
φ+ε|z|2 with

interpolation constant bounded by MΓ/ε
2.

For every γm ∈ Γ there is a function fm ∈ Fp
φ such that fm(γm) = 1, fm(γ) = 0,

for all γ ∈ Γ, γ 6= γm) and with controlled norm ‖fm‖φ,p ≤ MΓe
−φ(γm). Thus

by Lemma 1, |fm(z)| ≤ MΓe
−φ(γm)+φ(z). Now, for any sequence of values bm

such that bm ≤ eφ(γm)+ε|γm|2 , consider the function g =
∑
bmgm, where gm =

fme
2ε(γ̄mz−|γm|2). The function g satisfies g(γm) = bm and moreover

|g(z)| ≤MΓe
φ(z)+ε|z|2

∑
e2εℜ(γ̄mz)−ε|γm|2−ε|z|2 .

Thus |g(z)| .MΓ/ε
2eφ(z)+ε|z|

2

.
Now we will assume that Γ is interpolating for F∞

φ and check that in such a

case it is a linear interpolating sequence for Fp
φ+ε|z|2 . As before we know that there

are functions fm such that fm(γn) = δmn and |fm| ≤ MΓe
−φ(γm)+φ(z). We take

gm = fme
2ε(γ̄mz−|γm|2) and for any bm that verify

∑
|bm|pe−pφ(γm)−pε|γm|2 ≤ 1, we

consider g =
∑
bmgm. Then

∫

C

|g|pe−pφ−pε|z|
2

dσ ≤Mp
Γ

∫

C

∣∣∣
∑

|bm|e−φ(γm)−ε|γm|2e−ε|z−γm|2
∣∣∣
p

dσ(z) ≤

≤

∫

C

(∑
|bm|pe−pφ(γm)−pε|γm|2−ε|z−γm|2

)(∑
e−ε|z−γm|2

)p−1

dσ(z) ≤

≤ K ′/εα
∑

|bm|pe−pφ(γm)−pε|γm|2 . �

The second step is to prove that a small perturbation of an interpolating sequence
is still interpolating.
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Lemma 6. If Γ = {γn} is a linear interpolating sequence for Fp
φ, then there is

a δ > 0 such that any other sequence Γ′ = {γn
′} which is δp-close to Γ (i.e.

|γn − γn
′| < δp for all n) is interpolating with MΓ′ ≤ MΓ

1−δMΓ

.

Proof. Using (5) we prove that if Γ and Γ′ are δp-close (with δp smaller than the
separation constant of Γ), then

∞∑

n=0

∣∣∣|f(γn)|pe−pφ(γn) − |f(γn
′)|pe−pφ(γn

′)
∣∣∣ . δp‖f‖pφ,p.

In order to prove that Γ′ is interpolating, we pick an arbitrary sequence of val-
ues {a′n} such that

∑
|a′n|

pe−pφ(γ
′

n) < 1. We must construct a function f such
that f(γn

′) = a′n and ‖f‖φ,p ≤ K. We know that there exist gn such that

gn(γn) = e+φ(γn)a′ne
−φ(γ′

n), gn(γm) = 0 for n 6= m and the function g =
∑
gn

verifies ‖g‖φ,p ≤MΓ. Moreover, we have that

∞∑

n=0

∣∣∣|a′n|pe−pφ(γ
′

n) − |g(γn
′)|pe−pφ(γn

′)
∣∣∣ . δpMp

Γ.

Hence we can pick λn of modulus 1 in such a way that if we define f1 =
∑
λngn,

it still verifies ‖f1‖φ,p ≤MΓ, and moreover

∞∑

n=0

|a′n − f1(γn
′)|pe−pφ(γn

′) . δpMp
Γ.

If we pick δ very small (|δpMp
Γ| < 1), we have almost interpolated the sequence a′n at

the points γ′n. We can iterate the process and make a new correction. Take as new
values a′n2 = a′n−f1(γ

′
n), and construct a function f2 such that ‖f2‖φ,p .MΓ(δMΓ)

and
∞∑

n=0

|a′n2 − f2(γn
′)|pe−pφ(γn

′) . (δpMp
Γ)

2.

Continuing this process inductively, we obtain a sequence {fn} such the function
f =

∑
n fn interpolates the desired values a′n at the points γ′n and its norm is

bounded by

‖f‖φ,p .MΓ

∑

n≥1

(δMΓ)
n−1 =

MΓ

1− δMγ
. �

We proceed to check what happens when we add a point to the sequence. We
already know that if we place the new point very close to the original sequence, the
interpolating constant must be very big. Even if we keep the new point far from
the original sequence, it is not obvious that the new sequence is interpolating or
whether we have a uniform control on the interpolation constant. The next lemma
addresses this point. We get a uniform control on the interpolation constant if we
allow a slight change of the function space. This is enough for our purpose.
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Lemma 7. If Γ is an interpolating sequence and γ ∈ C verifies d(γ, γn) > δ > 0
for all points γn ∈ Γ, then the sequence Γ′ = Γ ∪ {γ} is interpolating for Fp

ψ

(ψ = φ+ε|z−γ|2) with interpolation constant smaller than K/εα, where K depends
only on Γ and δ.

Proof. We shall prove that for any γ under the hypothesis of the lemma there is a
function f such that f(γ) = eφ(γ), f(γn) = 0 for all γn ∈ Γ and ‖f‖ψ,p ≤ K/εα. To

begin with, we take a function g such that ‖g‖φ,p ≤ K, g(γ) = eφ(γ). This function
does not vanish on Γ, but because Γ is an interpolating sequence, we may construct
a function h ∈ Fp

φ such that h(γn) = g(γn)/(γ − γn). We apply (4) to get

∑
e−pφ(γn)|g(γn)|

p/|γ − γn|
p . ‖g‖pφ,p/δ

p,

and so ‖h‖φ,p . ‖g‖φ,p. We take then

f(z) = g(z) + (z − γ)h(z),

and since |z − a|pe−ε|z−a|
2

< ε−p/2, we get the desired estimate. �

Now we have all the elements needed for a good estimate of the density. We are
going to prove the following inequality:

∫ R

2

n(z, s)

s
ds ≤ (1− δ/R)

2

π

∫ R

0

∫
D(z,s)

(∆φ+ ε)

s
ds+K log

1

ε
, (6)

where δ and K are fixed constants, R is arbitrarily big and ε arbitrarily small.
We consider two different cases. To begin with, assume that z is close to the

original sequence Γ. By Lemma 5 and 6, we may replace one of the points of the
sequence by z to obtain a new interpolating sequence, which we again denote by Γ.
We may construct a function f ∈ Fp

ψ (ψ(ζ) = φ(ζ) + ε|ζ|2) such that f(z) = eψ(z),

f(λ) = 0 for λ ∈ Γ, λ 6= z and ‖f‖ψ,p ≤ K/εα. If we apply Jensen’s formula to f ,
we get ∫ R

1

n(z, s)

s
ds ≤

1

2π

∫ 2π

0

log |f(z +Reiθ)| dθ − ψ(z).

Since log |f(z +Reiθ)| ≤ ψ(z +Reiθ) +K log 1/ε, we obtain

∫ R

1

n(z, s)

s
ds ≤

2

π

∫ R

0

∫
D(z,s)

(∆φ+ ε)

s
ds+K log

1

ε
,

where K depends on the interpolation and separation constants. We want to obtain
a strict inequality and up to now we only have an inequality for the density. But
we have only used that we could move the point z and still get an interpolating
sequence. We know more: We may move all the points of the sequence Γ and
still get an interpolating sequence with control on the interpolation constant. In
particular, we may move the points towards the point z a small distance δ and still
get ∫ R n(z, s+ δ)

s
ds ≤

2

π

∫ R
∫
D(z,s)

(∆φ+ ε)

s
ds+K log

1

ε
.
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If we change variables s+ δ = t, we obtain

∫ R

2

n(z, t)

t
dt ≤

2

π

∫ R

0

(1− δ/R)

∫
D(z,s)

(∆φ+ ε)

s
ds+K log

1

ε
.

We deal next with discs with centers far from the original sequence. If z is such
a point, consider the function f ∈ F2

ψ (ψ(w) = φ(w)+ ε|z−w|2) given by Lemma 7

such that f(z) = eφ(z) and f(γn) = 0 for all γn ∈ Γ and ‖f‖ψ,p ≤ C/εα. We apply
again Jensen’s formula to this particular function and obtain

∫ R

1

n(z, s)

s
ds ≤

2

π

∫ R

0

∫
D(z,s)

(∆φ+ ε)

s
ds+K log

1

ε
.

Now we may, as before, perturb the original sequence Γ and move the points towards
z to obtain (6).

We may pick ε > 0 very small. Take for instance ε = 1/R2. Now we use that
∆φ > m and get

∫ R

2

n(z, s)

s
ds ≤

2

π

∫ R

0

∫
D(z,s)

∆φ

s
ds+ (2K + 1) logR− δmR.

Consequently there is a very big r and a positive τ such that

∫ r

2

n(z, s)

s
ds ≤

2

π

∫ r

0

∫
D(z,s)

∆φ

s
ds− τ,

for all z ∈ C. If we make a convolution of this last inequality with the characteristic
function of a very large disk, we get

n(z,R)/R2 ≤
2
∫
D(z,R)

∆φ

πR2
− τ ′

for all z and for all sufficiently large R. This inequality implies the strict density
condition D+

φ (Γ) < 2/π.

7. Strict necessary conditions for sampling

We begin with the case p = ∞, which can be dealt with in the same way as in
[12]. The following lemma is crucial.

Lemma 8. If Γ is a sampling sequence for F∞
φ , then for all sufficently small ε > 0

Γ is sampling for F∞
φ+ε|z|2 .

Proof. Suppose the lemma is false. Then we can find a sequence εj → 0 and
corresponding sequences zj and fj ∈ F∞

φ+εj |z|2
such that ‖fj‖φ+εj |z|2,∞ = 1,

|fj(zj)|e
−φ(zj)−εj |zj |

2

≥ 1/2, and ‖fj |Γ‖φ+εj |z|2,∞ ≤ εj . It is clear that a subse-

quence of (Γ− zj , φzj + εj |z|
2) will converge compactwise to some element (Λ, ψ) ∈

W (Γ, φ), and correspondingly that a subsequence of Tzjfj will converge uniformly
on compacts to a nontrivial function f ∈ F∞

ψ vanishing on Λ. This contradicts
Theorem 3, and so we have proved the lemma. �
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Lemma 8 and Corollary 2 now combine to prove the necessity for p = ∞.
For 1 ≤ p < ∞, we use that the removal of a point from a sampling sequence

yields either a sampling sequence or a sequence which is not a set of uniqueness, as
follows from the open mapping theorem. If the latter alternative holds when one
point is removed from Γ, it is clear that it holds when any other point is removed.
But this is impossible, because it would have implied that the sampling sequence Γ
were also interpolating, contradicting Theorem 2 and Corollary 2. So the removal
of a point from a sampling sequence yields another sampling sequence.

Suppose now that Γ is sampling for Fp
φ, 1 ≤ p < ∞. Then by Lemma 3, for

every (Λ, ψ) ∈ W (Γ, φ), Λ is sampling for Fp
ψ. By what was just observed, there

can be no function from F∞
ψ vanishing on Λ. For if a function f has this property

and λ1, λ2, λ3 ∈ Λ, then

f(z)

(z − λ1)(z − λ2)(z − λ3)
∈ Fp

ψ,

contradicting the fact that Λ \ {λ1, λ2, λ3} is sampling for Fp
ψ. So we have proved

that Γ is sampling for F∞
φ by virtue of Theorem 3. This completes the proof.

8. Final remarks

It may be observed that all of the above arguments work also for 0 < p < 1,
except the proof of Lemma 3. It seems more than likely, though, that both Theorem
1 and 2 hold for 0 < p < 1.

It should also be noted that Theorems 1 and 2 have counterparts in the unit
disc for weighted Bergman spaces of the type treated in [1]; see [13] for the case
of standard radial weights. The same methods apply, but the arguments are easier
at some places: One does not need the manipulations with Jensen’s formula as in
Section 6; the Ramanathan-Steger comparison lemma does not apply, but one can
instead make a simple direct use of Blaschke products as in [13] .
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