Catalan virgin olive oil Protected Designations of Origin. Physicochemical and major sensory attributes

Stefania Vichi a,*, Alba Tres a, Beatriz Quintanilla-Casas a, Julen Bustamante a, Francesc Guardiola a, Esteve Martí b, Juan F. Hermoso b, Antonia Ninot b, Agustí Romero b

a Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, XaRTA-INSA, Universitat de Barcelona, Campus de l’Alimentació de Torribera, Av. Prat de la Riba, 171. 08921, Santa Coloma de Gramenet, Spain.

b IRTA-Mas Bové, Ctra. Reus-El Morell km 3,8 E43120-Constantí Tarragona, Spain.

Published in: European Journal of Lipid Science and Technology (2019) 121: 1800130

https://doi.org/10.1002/ejlt.201800130

*Corresponding author

Phone: +34 93 4033794; Fax: +34 93 4035931; e-mail: stefaniavichi@ub.edu

Running Title: Virgin olive oils from North-Eastern Spain: Catalan PDO

Keywords: Virgin olive oil; Catalan PDOs; Sensory; Quality
ABSTRACT

Catalonia, located in the northeast of Spain, comprises five extra virgin olive oil (EVOO) protected designations of origin (PDOs). Despite the proximity between them, these PDOs represent unique pedoclimatic conditions and traditional olive cultivars that are briefly reviewed in the present manuscript. In addition to the compliance with quality standards fixed by product specifications, EVOOs show singular and distinctive composition and sensory profiles. With the aim to describe the characteristics of Catalan EVOOs, their sensory and analytical traits have been reviewed with the support of data collected between 2009-2017 in more than 42 milling facilities from the five Catalan PDOs, within the frame of official surveys launched by the Catalan Government.
Introduction

Catalonia encompasses a region located in the northeast of Spain, and like other European regions, it has a wide diversity of agri-food products, as a result of its environment and traditionally used processing methods. Currently, this area comprises five protected designations of origin (PDOs) of virgin olive oil (VOO). "Les Garrigues” (LG), which was first created as a designation of origin under the name "Borges Blanques" in 1975 \[1\] and regulated in 1977,\[2\] was the first ever Catalan PDO of VOO. Its final name “Les Garrigues” was adopted in 1993.\[3\] “Siurana” (S) was the second PDO to be recognized in 1977.\[4\] In 1996, both PDOs were registered\[5\] pursuant to Article 17 of Regulation (EEC) No 2081/92,\[6\] and successively amended.\[7-8\] In 2005 and 2008, the European Union recognized the designations “Oli de Terra Alta” (TA)\[9\] (amended in 2016),\[10-11\] and “Oli del Baix Ebre-Montsià” (BEM),\[12\] respectively. The last Catalan PDO to be recognized in 2015 was “Oli de l’Empordà” (E).\[13\] S and LG PDOs represent the higher production of VOO, ranging between 4.000 and 7.000 tonnes/year, and 1.000 and 5.000 tonnes/year, respectively; while the production of the rest of the Catalan PDOs is in general lower than 300 tonnes/year\[14\] (Figure 1).

Olive cultivars

As in other Mediterranean countries, the olive groves in North-Eastern Spain have a high genetic diversity, including more than 50 varieties,\[15\] which concentrate close to their area of origin and show a limited geographical dispersion. However, more than 85% of the Catalan production is concentrated in four autochthonous olive cultivars: 'Arbequina' (representing about 50% of the cultivated area), ‘Morrut’, ‘Sevillanca’ and ‘Empeltre’. Secondary cultivars,
such as ‘Farga’, ‘Argudell’, ‘Verdiell’ and ‘Rojal’, account for around 12.5% of the olive groves.[15] ‘Arbequina’ is concentrated in LG and S PDOs, and represents the main cultivar in their VOOS (Table 1). ‘Morrut’ and ‘Sevillenca’ are prevalent in BEM PDO, where they are cultivated together with ‘Farga’. In traditional orchards of BEM, there is not a predominance between ‘Morrut’, ‘Sevillenca’ or ‘Farga’, and it is reflected by the varietal composition of the corresponding PDO VOOS (Table 1). ‘Empeltre’ is the main cultivar in TA PDO, while ‘Argudell’ is the predominant cultivar in E PDO.

All these Catalan olive cultivars present different pomological and agronomical characteristics (Table 2). They comprise early maturation cultivars such as ‘Empeltre’, ‘Sevillenca’ and ‘Farga’ and late maturation ones, such as ‘Morrut’ and ‘Argudell’. Also VOOS obtained from these cultivars, even if influenced by agronomical and technological conditions, harvest year and date, present some typical compositional traits (Table 2). ‘Morrut’, ‘Empeltre’ and ‘Rojal’ oils are usually characterized by medium polyphenol content, bitter index and higher oxidative stability, in contrast to oils from ‘Arbequina’, ‘Argudell’, ‘Sevillenca’ and ‘Farga’ that are lower in all those parameters. Moreover, oils obtained from ‘Farga’ olives usually have higher oleic acid and lower linoleic acid content than the rest.[23-24]

\textbf{Pedoclimatic conditions}

Genetic factors linked to the traditional olive cultivars have a relevant effect on the characteristics of PDO for VOOS. There is a large consensus about the role played by soil and climate characteristics on gene expression and, finally, on VOO’s characteristics. On top of this, distinctive pedoclimatic conditions of each PDO region influence the olive groves.
production to such an extent that VOOs produced from the variety ‘Arbequina’ feature
different sensory and compositional profiles depending on them being produced in LG or S
PDO. Despite the proximity of the geographical areas covered by the Catalan PDOs,
particularly those in the South, their pedoclimatic conditions show relevant differences.
Geographical differences in soil type, as related to geological, climatic and topographic
factors according to the World Reference Base soil classification are listed in Table 3. LG and
TA areas are dominated by Calcisols (soils with significant accumulation of secondary calcium
carbonates, and generally developed in dry areas); while S, BEM and E territories have a
higher soil diversity, also including Leptosols (shallow soils over hard rock or gravelly or
highly calcareous material), Fluvisols (young soils in alluvial, lacustrine and marine deposits
showing layering of the sediments), and Regosols (weakly developed mineral soil in
unconsolidated materials). [25]

Regarding the climate, latitude, altitude and mean temperature have been pointed out to be
highly correlated with some VOO compositional features, such as fatty acids and total
polyphenol content. [26] Catalan PDO regions present differences in altitude, rainfall and
temperature (Table 3). Inland regions such as LG and TA present higher mean altitude and
temperature span (as the difference between mean temperature during the warmest and
the coldest months) and lower mean temperature. On the other hand, in coastal areas mean
temperatures are slightly higher and, particularly in BEM and E, altitude and temperature
spans are lower. [27-28] Likewise, annual rainfall is scarce in LG and progressively more
abundant in BEM, S, TA and E, respectively. [27]

Characteristics of Catalan PDOs EVOOs according to product specifications
Both the production process and EVOO characteristics of each PDO must comply with the corresponding product specifications. Table 1 summarizes the main characteristics of each PDO production. The olive cultivars used in each PDO that reflect the composition of the traditional olive groves, together with the processing operations determine the quality and the uniqueness of each EVOO. In many cases, the quality level required to be considered within a PDO designation is slightly higher than that fixed by EU Regulation for EVOOs, as occurs for free acidity, peroxide value or absorption at 270 or 232 nm. The most recent PDOS include a more detailed list of characteristics to define their VOOs, comprising fatty acid composition and numerical sensory scores, and all the PDOS define some typical secondary attributes (Table 1). However, and despite the mentioned specifications guaranteeing certain quality and typical traits of PDO EVOOs, these attributes on their own do not allow the description of the features these products have.

With the aim to describe the characteristics of Catalan EVOOs, sensory and analytical traits of these EVOOs have been reviewed below. Data were collected in the period 2009-2017 within the frame of official surveys launched by the Catalan Government and implemented by the Institut de Recerca i Tecnologia Agroalimentària (IRTA). Controls and sampling were carried out in technical visits to more than 42 milling facilities from the five Catalan PDOs, allowing the characterization of up to 98 samples from BEM, 179 from E, 494 from LG, 302 from S and 87 from TA geographical regions. Physicochemical indices, fatty acid composition, colour and sensory profile were the parameters monitored in Catalan VOOs.

Physicochemical and sensory characteristics of EVOOs produced in Catalan PDO regions
Figure 2 shows the evolution of physicochemical quality indices EVOOs produced in four PDO geographical areas in Catalonia during the period 2009-2017. Although some fluctuation occurs depending on the crop year, these indices are usually far below the maximum value established for EVOO by EU Regulation,[29] particularly concerning the peroxide value and free acidity. The slightly higher acidity values for BEM and E could be related to the higher prevalence of olive fly and anthracnose in these areas.

Regarding EVOO sensory attributes, geographical area and harvesting year have a relevant influence on both gustative/tactile attributes, such as bitter, pungent and astringent (mouthfeel associated to the presence of polar phenolic compounds[36]) ; and aroma notes, such as fruity and green (Figure 3). As expected, bitter, pungent and astringent attributes - which are all linked to the presence of phenolic compounds - show similar trends as related to the harvesting year. The influence of water availability on phenolic content in plant tissues is well known, and the negative effect of accumulated rainfall on EVOO phenols’ concentration has been specifically described in LG EVOOs.[37-38] According to Romero et al.,[37] secoiridoid compounds in LG may range between 100 and 270 mg kg$^{-1}$ and between 80 and 215 mg kg$^{-1}$ depending on the crop season in early harvest and late harvest oils, respectively. According to this, the highest values of bitter, pungent and astringent attributes in LG, S, TA and BEM EVOOs correspond to seasons 2009, 2016 and 2017 (Figure 3), characterized by scarce rainfall and higher annual temperatures. [27] EVOOs produced in seasons 2010, 2013 and 2014 (with more rains and lower mean temperatures)[27] showed the lowest intensities of these attributes. The evolution of these parameters is different in
oils from E, probably due to the singular pluviometry pattern of this geographical area, which presented a higher accumulated rainfall in 2010 and 2011 seasons.\cite{27}

The intensity of fruity attribute ranges usually between 4 and 6, and in LG and S it seems to be less influenced by the crop season than in BEM and E (Figure 3). In some cases, the fruity note in EVOOs shows the same trend than the bitter attribute. Fruity notes are mainly given by volatile compounds produced by the lipoxygenase pathway during the oil extraction, which are related to cultivar, pedoclimatic and technological conditions.\cite{39,40}

The official panel of Catalonia has developed an algorithm that allows calculating a global sensory score based on the panel output.\cite{30,31} This global sensory score, based on the median intensities of VOO sensory attributes, and expressed on a scale from 0 to 9, is included in BEM PDO specifications (Table 1). The global sensory score evaluated in PDO EVOOs produced in the period 2009-2017 tends to be quite constant around 7 points, regardless the crop season.

Secondary sensory notes contribute to define PDO EVOO characteristic traits. The official tasting panel from Catalonia includes an open descriptor called “other positive attributes” in the profile sheet, where sensory descriptors identified by more than 33% of the sensory assessors are listed.\cite{35} Aroma attributes such as ripe and green fruity are usually present in EVOOs of all the PDO under evaluation, with a prevalence of the green (detected by over 70% of the assessors) over the ripe note (detected by less than 33% to 50% of the assessors), in particular in BEM oils (Figure 4). Likewise, the median of the assessors detecting the ‘grass’ attribute is usually over 33% in all the PDOs, in particular in BEM and E EVOOs, while BEM oils present more frequently the ‘artichoke’ attribute. These results might be due to the main
cultivars used in these regions. Two of the three main cultivars from BEM (‘Morrut’ and
‘Farga’) are described as greener in aroma than the third (‘Sevillenca’), whereas ‘Arbequina’,
the main olive cultivar in S, is described as less green.\[41\]

In most of the cases, the production of EVOO takes place from October to January, and the
harvest date can play a relevant role on some of the oil characteristics. In particular, the date
of production in each geographical area can influence EVOO sensory profile (Figure 5). The
intensity of fruity and green notes show slightly decreasing trends in EVOO produced in LG
and S regions, as related to the harvest date, in favour of ripe fruity note. As well, bitter
intensity tends to decrease throughout the crop season and with the increase of the olive
fruit ripeness, as previously reported. \[42\]

EVOO colour, resulting from the composition in chlorophylls and carotenoids, also depends
on olive cultivar and pedoclimatic conditions, and it is expected to vary according to the PDO.
Colour characteristics were determined by applying the CIELAB colorimetric system.\[43\] S and
BEM oils are characterized by lower values of a (-10.26 and -10.53, respectively), indicating
a stronger green colour and higher levels of chlorophylls,\[44\] in contrast to LG and E (-8.92and
-7.27, respectively) (Figure 6). The highest and lower medians of b, related to the yellow
colour given by carotenoids,\[44\] were found in BEM (106.04) and E (110.03), and in TA (63.03)
EVOOs, respectively. The latter are characterized by a higher luminosity (L) (94.62), probably
due to a lower total pigment content. Reported values of total chlorophylls and carotenoids
in LG EVOOs range between 0.8-9.2 mg kg$^{-1}$ and 2.3-9.6 mg kg$^{-1}$, respectively. These values
are similar to those reported for other Spanish VOOs, depending on the maturity index of
olive fruits.\[45,46\]
Geographical factors not only affect physicochemical parameters and sensory profile, but they can also have an impact on EVOO major compounds. This can be observed as fatty acid composition of EVOOs produced in the different PDO regions differ in most of the cases (Table 4). In particular, it can be stressed that even EVOOs produced from the same ‘Arbequina’ cultivar in the neighbour regions LG and S present significant differences.

Physical, chemical, and sensory features in particular are factors conditioning consumer preferences, and allow distinguishing EVOOs produced in specific PDOs. Although EVOO traits may vary with the crop year and the fruit ripening, the genetic, pedoclimatic and processing factors are crucial in the definition of strict EVOO characteristics. Catalan PDO oils -obtained from six main olive cultivars grown under specific and distinctive pedoclimatic conditions- present typical composition and sensory profiles that allow their differentiation. A more detailed knowledge of the characteristics of differentiated-quality productions would favour their valorisation and protection, improving their image and increasing the consumer confidence. For this reason, further studies to objectively define the characteristics of PDO oils would be desirable.

Acknowledgment

This study has been supported by DARP-Generalitat de Catalunya, by ACCIÓ-Generalitat de Catalunya and the EU through the Programa Operatiu FEDER Catalunya 2014-2020 in the framework of the project Autenfood (Ref COMRDI-15-1-0035); by the Spanish MICINN
through JCI post-doctoral program (JCI-2012_13412) and FPU pre-doctoral program (FPU16/01744) from Spanish MECD. The authors have declared no conflict of interest.
References

Figure legend

Figure 1. Annual production of VOO with PDO (tonnes VOO/year) 2009-2016. Data provided by Generalitat de Catalunya.[14]

Figure 2. Physicochemical quality indices of EVOOs produced in four PDO geographical areas in Catalonia during the period 2009-2017. Median values for each geographical zone and significance of the differences between them calculated by Kruskal-Wallis test (different letters indicate significant differences according to pairwise comparisons). The statistical significance of the differences according to the crop year within each zone is also indicated (p values). LG: “Les Garrigues”; S: “Siurana”; BEM: “Oli del Baix Ebre-Montsià”; E: “Oli de l’Empordà”. The upper line in the graphics indicates the maximum value established for EVOO by EU Regulation.[28]

Figure 3. Principal sensory attributes of EVOOs produced in four PDO geographical areas in Catalonia during the period 2009-2017. Median values of sensory scores for EVOOs of each geographical zone and significance of the differences between them calculated by Kruskal-Wallis test (different letters indicate significant differences according to pairwise comparisons). The statistical significance of the differences according to the crop year within each zone is also indicated (p values). LG: “Les Garrigues”; S: “Siurana”; BEM: “Oli del Baix Ebre-Montsià”; E: “Oli de l’Empordà”.

Figure 4. Secondary sensory attributes of EVOOs produced in four PDO geographical areas in Catalonia during the period 2009-2017, expressed as the percent of sensory assessors able to perceive the note. The statistical significance of the differences (p values) according to the geographical zone calculated by Kruskal-Wallis test is also indicated (different letters indicate
significant differences according to pairwise comparisons). The line in the graphics indicates
the 33% of assessors perceiving the sensory note. LG: “Les Garrigues”; S: “Siurana”; BEM:

Figure 5. Values of fruity, green, bitter (as median of the intensity), ripe fruity (as the percent
of sensory assessors able to perceive the note) according to the harvesting period (EVOO
produced in four PDO geographical areas in 2009-2017). The statistical significance of the
differences (p values) according to the harvesting month calculated by Kruskal-Wallis test is
also indicated (different letters indicate significant differences according to pairwise
l’Empordà”.

Figure 6. Chromatic ordinates of EVOO produced in Catalan PDO geographical areas in 2014-2015).
Values of a^*, b^* and L for EVOOs of each geographical zone and significance of the
differences between them calculated by Kruskal-Wallis test (different letters indicate
significant differences according to pairwise comparisons). The statistical significance of the
differences according to the geographical zone is also indicated (p values). LG: “Les
Table 1. Characteristics of EVOOs produced in Catalan PDOs and some production conditions as reported by the product specifications [12-17]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive cultivar</td>
<td>‘Arbequina’ ≥ 90% 'Verdiell’</td>
<td>‘Arbequina’ ≥ 90% ‘Rojal’</td>
<td>‘Empeltre’ (main cultivar)</td>
<td>‘Morrut’ ‘Argudell’ ≥ 51%</td>
</tr>
<tr>
<td></td>
<td>‘Arbequina’ ≥ 90% ‘Rojal’</td>
<td>‘Arbequina’ ‘Morrut’ ‘Farga’</td>
<td></td>
<td>‘Argudell’+ ‘Arbequina’ ≥95%</td>
</tr>
<tr>
<td>Orchard density</td>
<td>100-120 trees/Ha</td>
<td>125-300 trees/Ha</td>
<td>Partially irrigated</td>
<td>70-200 trees/Ha</td>
</tr>
<tr>
<td>Irrigation</td>
<td>-</td>
<td>-</td>
<td>Mainly rain-fed</td>
<td>Mainly rain-fed</td>
</tr>
<tr>
<td>Harvesting system</td>
<td>Hand-picked olives; trunk shakers; inverted umbrella</td>
<td>Hand-picked olives; trunk shakers</td>
<td>Hand-picked olives; trunk shakers; inverted umbrella</td>
<td>Stick shaker; harvesting net; trunk shakers</td>
</tr>
<tr>
<td>Fruit crushing</td>
<td>Within 48 h</td>
<td>Within 48 h</td>
<td>Within 48 h</td>
<td>Within 48 h</td>
</tr>
<tr>
<td>Acidity (% oleic acid)</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>≤ 0.5</td>
<td>≤ 0.8</td>
</tr>
<tr>
<td>Peroxide value (mEq O₂/kg)</td>
<td>≤ 15</td>
<td>≤ 15</td>
<td>≤ 18</td>
<td>≤ 18</td>
</tr>
<tr>
<td>K270</td>
<td>≤ 0.15</td>
<td>≤ 0.15</td>
<td>≤ 0.20</td>
<td>≤ 0.20</td>
</tr>
<tr>
<td>K232</td>
<td>-</td>
<td>-</td>
<td>≤ 2.50</td>
<td>≤ 2.00</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>≤ 0.1</td>
<td>≤ 0.1</td>
<td>-</td>
<td>≤ 0.2</td>
</tr>
<tr>
<td>Impurities (%)</td>
<td>≤ 0.1</td>
<td>≤ 0.1</td>
<td>-</td>
<td>≤ 0.1</td>
</tr>
<tr>
<td>Stability-Rancimat 120ºC (h)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≥ 6; mean: 9</td>
</tr>
<tr>
<td>Oleic acid (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Mean: 67 (Range: 60-75)</td>
</tr>
<tr>
<td>Linoleic acid (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Mean: 13 (Range: 8-18)</td>
</tr>
<tr>
<td>Palmitic acid (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Mean: 14 (Range: 11-18)</td>
</tr>
<tr>
<td>Global sensory scorea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
</tr>
<tr>
<td>Fruity</td>
<td>Fruity (INSb)</td>
<td>Fruity (INS)</td>
<td>≥ 2.5 (median of intensity)</td>
<td>Fruity (INS)</td>
</tr>
<tr>
<td>Bitter</td>
<td>Bitter (INS); Sweet (LHO c)</td>
<td>Bitter (INS); Sweet (LHO)</td>
<td>≤ 6 (median of intensity)</td>
<td>medium intensity c</td>
</tr>
<tr>
<td>Pungent</td>
<td>-</td>
<td>-</td>
<td>≤ 6 (median of intensity)</td>
<td>medium intensity c</td>
</tr>
<tr>
<td>Astringency</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>medium intensity c</td>
</tr>
<tr>
<td>Balance e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Well balanced f</td>
</tr>
<tr>
<td>Secondary attributes e</td>
<td>Almond (EHO f)</td>
<td>Almond (EHO)</td>
<td>Almond; walnut</td>
<td>Rich in green secondary attributes (not specified)</td>
</tr>
</tbody>
</table>

a. Rich in green secondary attributes (not specified)

b. c. d. f. g.
| Colour | greenish (EHO) to yellow (LHO) | greenish (EHO) to yellow (LHO) | Green or greenish yellow (EHO) to pale yellow or old gold (LHO) | Greenish yellow (EHO) to golden yellow (LHO) | - |

a: global sensory score, on a 0-9 scale, estimated by the official panel of Catalonia by means of an algorithm based on the panel's outputs, according to Romero et al.;[30,31]
b: intensity not specified;
c: according to EU Regulation 2016/1227;[32]
d: late harvest oils;
e: according to IOC document COI/T.20/Doc. no. 22, 2005;
f: early harvest oils
Table 2. Agronomical and pomological characteristics of the principal olive cultivars in Northeastern Spain and some compositional characteristics of the corresponding VOOs. [22-24]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit maturation</td>
<td>Medium</td>
<td>Late</td>
<td>Early</td>
<td>Very early</td>
<td>Early</td>
<td>Medium-late</td>
<td>Medium</td>
</tr>
<tr>
<td>Fruit size (g)</td>
<td>1.2</td>
<td>3.0</td>
<td>2.9</td>
<td>3.1</td>
<td>2.0</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Pulp/stone ratio</td>
<td>3.4</td>
<td>3.7</td>
<td>4.6</td>
<td>5.5</td>
<td>3.0</td>
<td>5.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Total polyphenols</td>
<td>228</td>
<td>348</td>
<td>182</td>
<td>339</td>
<td>202</td>
<td>301</td>
<td>290</td>
</tr>
<tr>
<td>(mg/kg of caffeic acid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitter index (K225)</td>
<td>0.185</td>
<td>0.251</td>
<td>0.158</td>
<td>0.399</td>
<td>0.147</td>
<td>0.312</td>
<td>0.227</td>
</tr>
<tr>
<td>Stability-Rancimat 120ºC (h)</td>
<td>7.2</td>
<td>6.7</td>
<td>4.5</td>
<td>10.3</td>
<td>17.5</td>
<td>9.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Table 3. Some pedoclimatic characteristics of Catalan PDO regions.

<table>
<thead>
<tr>
<th></th>
<th>Les Garrigues (LG)</th>
<th>Siurana (S)</th>
<th>Oli de Terra Alta (TA)</th>
<th>Oli del Baix Ebre-Montsià (BEM)</th>
<th>Oli de l’Empordà (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean altitude (m) [27]</td>
<td>405</td>
<td>190</td>
<td>515</td>
<td>91</td>
<td>76</td>
</tr>
<tr>
<td>Annual rainfall (2009-2017) (mm) [27]</td>
<td>367</td>
<td>455</td>
<td>521</td>
<td>430</td>
<td>623</td>
</tr>
<tr>
<td>Annual mean T (2009-2017) (°C) [27]</td>
<td>14.1</td>
<td>15.7</td>
<td>14.5</td>
<td>16.3</td>
<td>15.6</td>
</tr>
<tr>
<td>Mean minimum T (2009-2017) (°C) [27]</td>
<td>8.6</td>
<td>10.4</td>
<td>9.4</td>
<td>12.3</td>
<td>10.2</td>
</tr>
<tr>
<td>T span (°C) [28]</td>
<td>19-20</td>
<td>14-18</td>
<td>16-18</td>
<td>13-16</td>
<td>13-16</td>
</tr>
</tbody>
</table>
Table 4. Fatty acid composition (%) of EVOOs produced in Catalan PDO geographical areas, during the period 2000-2011. Significance of the differences between geographical regions calculated by Kruskal-Wallis test (different letters indicate significant differences according to pairwise comparisons).

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Les Garrigues (LG) (n=35)</th>
<th>Siurana (S) (n=29)</th>
<th>Mean % ± SD</th>
<th>Oli de Terra Alta (TA) (n=87)</th>
<th>Oli del Baix Ebre-Montsià (BEM) (n=43)</th>
<th>Oli de l’Empordà (E) (n=19)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16:0</td>
<td>12.6±0.88 b</td>
<td>14.7±1.57 c</td>
<td>11.8±0.94 a</td>
<td>13.1±1.78 b</td>
<td>13.9±2.44 bc</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C16:1</td>
<td>1.0±0.11 b</td>
<td>1.4±0.36 a</td>
<td>1.0±0.14 b</td>
<td>1.2±0.72 b</td>
<td>1.6±0.56 a</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C17:0</td>
<td>0.1±0.02 b</td>
<td>0.1±0.00 b</td>
<td>0.1±0.02 b</td>
<td>0.1±0.07 b</td>
<td>0.2±0.06 a</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C17:1</td>
<td>0.2±0.04 c</td>
<td>0.2±0.00 c</td>
<td>0.2±0.04 b</td>
<td>0.3±0.12 b</td>
<td>0.4±0.07 a</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C18:0</td>
<td>20.±0.13 b</td>
<td>1.9±0.17 b</td>
<td>1.6±0.16 a</td>
<td>2.0±0.43 b</td>
<td>1.8±0.47 ab</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C18:1</td>
<td>74.0±1.60 a</td>
<td>70.4±2.89 b</td>
<td>74.0±2.18 a</td>
<td>67.8±6.35 b</td>
<td>67.4±4.17 a</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C18:2</td>
<td>9.0±0.67 c</td>
<td>9.8±1.32 bc</td>
<td>9.9±1.60 b</td>
<td>13.9±4.61 a</td>
<td>12.8±3.01 ab</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C18:3</td>
<td>0.5±0.02 c</td>
<td>0.6±0.05 c</td>
<td>0.6±0.07 b</td>
<td>0.9±0.20 a</td>
<td>1.3±0.43 a</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C20:0</td>
<td>0.4±0.04 a</td>
<td>0.4±0.04 a</td>
<td>0.3±0.04 c</td>
<td>0.3±0.06 b</td>
<td>0.3±0.07 bc</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>C20:1</td>
<td>0.3±0.03</td>
<td>0.3±0.02</td>
<td>0.3±0.04</td>
<td>0.3±0.06</td>
<td>0.3±0.08</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>C22:0</td>
<td>0.1±0.00</td>
<td>0.1±0.00</td>
<td>0.1±0.01</td>
<td>0.1±0.05</td>
<td>0.1±0.05</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2
Figure 3

Zone: $p < 0.05$

Zone: $p > 0.05$
Figure 4
Figure 5