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Abstract 
 

Using a relativistic all-electron description and numerical atomic centered orbital basis set 

the performance of the G0W0 method on the electronic band gap of (TiO2)n nanoparticles (n=1-20) 

is investigated. Results are presented for G0W0 on top of hybrid (PBE0 and a modified version with 

12.5% of Fock exchange) functionals. The underestimation of the electronic band gap from Kohn-

Sham orbital energies is corrected by the quasiparticle energies from G0W0 method which are 

consistent with the variational ΔSCF approach. A clear correlation between both methods exists 

regardless of the hybrid functional employed. In addition, the vertical ionization potential and 

electron affinity from quasiparticle energies show a systematic correlation with the ΔSCF calculated 

values. On the other hand, the shape of the nanoparticles promotes some deviations on the 

electronic band gap. In conclusion, this study shows (i) a systematic correlation exists between band 

gaps, ionization potentials and electron affinities of TiO2 nanoparticles as predicted from variational 

ΔSCF and G0W0 methods, (ii) that the G0W0 approach can be successfully used to study the 

electronic band gap of realistic size nanoparticles at an affordable computational cost with a ΔSCF 

accuracy giving results that are directly related with those from photoemission spectroscopy, (iii) 

the quasiparticle energies are explicitly required to shed light on the photocatalytic properties of 

TiO2 and (iv) that G0W0 approach emerges as an accurate method to investigate the photocatalytic 

properties of both nanoparticles and extended semiconductor. 
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Introduction 
 

Nanoparticles and nanoclusters have been widely investigated due to the broad variety of 

applications in biomedical, optical and electronic fields.1,2 In general, nanoparticles show 

remarkably high catalytic performance compared with the bulk phase due to their large surface area 

and quantum confinement effect.3 Particularly, semiconductor nanoparticles display specific 

electronic properties such as the lowest excitation ¾often referred to as band gap as in the 

corresponding bulk material¾ that make them especially attractive for applications in 

photocatalysis.4 For instance, to use sunlight for photocatalytic water splitting, leading to an almost 

inexhaustible sustainable energy source, requires materials with band gaps in the UV-VIS range.  

Not surprisingly, the size and morphology of the nanoparticles are important factors in 

determining their electronic structure and, hence, their potential photocatalytic activity.5 

Experimentally it is difficult to discern between the effect of size and shape on the electronic 

properties of nanoparticles. On the other hand, computational modeling provides an unbiased 

approach to analyze the influence of these factors on the electronic properties. Using appropriate 

models, it is possible to represent different morphologies for a given composition or to vary the 

composition for a given morphology. The effect of shape and size of nanoparticle in defining the 

corresponding band gap and concomitant photoactivity has been illustrated in recent work on 

bottom-up6,7 and top-down8 models of TiO2 nanoparticles including explicitly over one thousand 

atoms. In these works, the band gap of the nanoparticles has been studied using density functional 

theory (DFT) methods. In particular, the electronic (or fundamental, Egap) and the optical (Ogap) 

band gap9 have been considered. The former can be measured from photoemission techniques 

whereas the latter is accessible through optical spectroscopy. The charged states either of cationic 

(free extra hole, h+) or anionic (free extra electron, e-) nanoparticles are associated to Egap whereas 

the generation of an excited electron–hole (e--h+) pair corresponds to Ogap (more details can be 

found in Ref. [6] and references therein). Note that, in absence of excitons, Ogap and Egap of a bulk 

solid coincide. Precisely, the difference between these two quantities, usually referred to as the 

exciton binding energy (DEex), has been used to measure the bulk like character of TiO2 

nanoparticles of different size.6-8 

In the framework of DFT, the use of the Kohn-Sham (KS) one-electron energies to approach 

either Egap or Ogap is a common practice, even although values predicted from Generalized Gradient 

Approximation (GGA) exchange correlation potentials are too small,10 even incorrectly describing 

antiferromagnetic insulators such as NiO as metals.11,12 In the case of nanoparticles, the band gap is 

calculated as the difference between the highest occupied molecular orbital (HOMO) and the lowest 
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unoccupied molecular orbital (LUMO) KS energies (ΔEH-L) and it is also strongly underestimated 

(up to 50%) at the standard GGA level. The use of hybrid approaches leads to values closer to 

experiment13 although the amount of Fock exchange or the choice of the parameters defining more 

sophisticated range-separated hybrid functionals appear to constitute serious issues.14,15 In fact, a 

12.5% of Fock exchange has been found to reproduce the band gap of anatase and rutile 

polymorphs of TiO2 whereas a 25%, as in PBE0, nicely reproduces the experimental gap in ZnO 

bulk structure.16 Recently, Perdew et al.17 provided a theoretical basis to the well-known empiric 

fact that hybrid functionals as PBE0 yield realistic generalized KS gaps for semiconductor 

materials. In the case of the Egap, a more reliable method which is directly applicable to 

nanoparticles, is to use a ΔSCF approach which implies taking differences of total energy of a given 

N electron system and that of the system with N+1 or N-1 electronic system. This difference is the 

total energy upon adding (or removing) an electron, and is therefore the electron affinity (or 

ionization energy). However, this approach is not directly applicable to extended solids since it 

results in charged unit cells requiring some to introduce some charge compensation technique. 

An alternative to ΔSCF methods to calculate the Egap is provided by the many-body 

perturbation theory GW approach suggested long ago by Hedin18 and only applicable in practice 

thanks to the availability of more powerful computational and methodological developments.19 The 

GW acronym stems from the way the self-energy is calculated, as it is given by the product of the 

Green function G and the screened Coulomb interaction W. GW allows one to calculate the 

quasiparticle (qp) energies and their values correspond directly to electron removal or addition 

energies, being ideally matching those calculated using ΔSCF method and requiring the calculation 

of the N electron system only. The simplest level of GW is the so-called G0W0 approximation.20-22 

It yields reasonably accurate qp energies and band gap in good agreement with the experiments for 

extended systems, while an assessment of G0W0 for finite systems is emerging.23-27 In general, the 

evaluation of the qp energies often leads to a good correlation with experimental values for the 

energies of the valence excitation and gaps in several semiconductors21,28-31 and also in molecules.32  

To explore the accuracy of G0W0 method in describing Egap of oxide nanoparticles we focus 

on titanium dioxide (TiO2), a material broadly studied due to its diverse technological applications; 

in particular in photocatalysis.33-37 The present study is in the line of previous work using the G0W0 

approach to interpret photoelectron spectroscopy experiments involving (TiO2)n clusters with up to 

10 units,38 to explore two crystalline phases of dye-sensitized TiO2 clusters,39 and to study the 

properties of rutile TiO2 nanoclusters. 40 In the present work, TiO2 nanoparticles containing up to 20 

units are chosen as models to investigate the trends in Egap as predicted using ΔEH-L from KS orbital 

energies, ΔSCF and G0W0 methods. Using a relativistic, all-electron, description with numerical 
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atomic centered orbital basis set and modified hybrid functional, we show that a systematic 

correlation exists between band gaps, ionization potentials and electron affinities of TiO2 

nanoparticles as predicted from ΔSCF and G0W0 methods, which could open the way for an 

accurate description of the electronic properties of oxide nanoparticles of realistic size at an 

affordable computational cost. 

Models and Computational Details  

All calculations are performed using the first-principles electronic structure theory based on 

DFT explicitly including all electrons. A numerical atom-centered (NAO) orbital basis set is used, 

as implemented in the Fritz Haber Institute ab initio molecular simulations (FHI-aims) program 

package.41 A light grid and tier-1 basis set is used, which has a quality similar to a valence triple-ζ 

plus polarization Gaussian Type Orbitals (GTO) basis.8 Additionally, light grid and tier-2 basis set 

is also used to better assess the accuracy of tier-1 basis set (see Supporting Information). The 

convergence threshold for geometrical relaxation of all nanoparticles is set to 10-4 eV Å-1. The 

presence of a transition element like Ti requires the inclusion of relativistic effects to ensure a 

correct convergence during the relaxation steps, zero atomic order regular approximation 

(ZORA)42,43 is hence used in the calculations. Different hybrid functionals including a fraction of 

non-local Fock exchange are employed. These are PBE0 (25% Fock) and a modification of PBE0 

containing 12.5% Fock and hereafter referred to as PBEx.44 The reason for using PBEx is that it has 

been proven to properly reproduce the main features of the electronic structure of stoichiometric 

and reduced anatase and rutile.39 Moreover, in view of the strong dependence of the G0W0 method 

with respect to the initial density,45 hybrid functionals should provide a better starting point.46 

A set of (TiO2)n nanoparticles with n running from 1 to 20 units (Figure 1) is selected from 

the recent works6,47,48 with the structures determined by global optimization using interatomic 

potentials6 and, in each case, refined at the PBE, PBEx and PBE0 level using the NAO basis set 

commented above. The electronic band gap of the (TiO2)n particles has been estimated from 

different approaches but using always the minimum energy structure (Figure 1) consistent with the 

exchange-correlation potential used. The first one consists simply in taking the difference between 

the HOMO and LUMO orbital energies and will be denoted as ΔEH-L. The second method consist in 

making use of total energy differences and involves the vertical ionization potential (IPv) and 

vertical electron affinity (EAv): Egap = IPv – EAv. This approach is usually referred to as ΔSCF, as it 

requires the variational self-consistent energy of the neutral, cation and anion. For a given DFT 

method, the ΔSCF approach provides the best possible results, as it implies variational energies. 

The third approach explored and benchmarked with respect to the ΔSCF results is the G0W0 
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approach. This makes use of a perturbative expansion to include the many-body effects through the 

many-body self-energy Σ. In the GW approximation49 the self-energy is calculated as:  

 

∑ (𝑟, 𝑟%, 𝜔) = )
*+ ∫ 𝑑𝜔′𝐺(𝑟, 𝑟

%, 𝜔′)𝑊(𝑟, 𝑟%, 𝜔% + 𝜔)23                                        (1)  

 

where 𝐺(𝑟, 𝑟%, 𝜔′)	is the one-particle Green´s function and 𝑊(𝑟, 𝑟%, 𝜔) is the screened Coulomb 

interaction. The GW self-energy can be used to perturbatively correct the KS eigenvalues by means 

of the linearized quasiparticle equation: 

 

𝜖)
67 = 𝜖)89 − 〈𝜓)89|𝑉?@A89 − Σ?23C𝜖)

67D|𝜓)89〉       (2). 

 

In the G0W0 or one-shot GW, the self-energy is calculated only once, whereas a more rigorous 

approach would require a fully self-consistent evaluation of Σ. Since the 𝜖)
67 quasiparticle (qp) 

energies in Eq. (2) are evaluated perturbatively on top of a preliminary single-particle calculation, 

the G0W0 approach strongly depends on the starting point;19,40,41 an issue that has been studied in 

detail in recent articles50 with the general conclusions that hybrid functional provide better results.  

In the following we refer to G0W0 based on PBEx and PBE0 as G0W0@PBEx and G0W0@PBE0, 

respectively. For a detailed account of the all-electron implementation of GW in FHI-aims we refer 

the interested reader to the original article of Ren et al.51 It must be mentioned that performing GW 

calculations in an all-electron code such as FHI-aims has the advantage that possible 

pseudopotential errors are avoided, and eventually it can be used in periodic systems where the use 

of the variational ΔSCF approach requires additional approximations. As discussed extensively in 

the literature, the pseudopotential derived errors do not affect ground-state DFT energy but may 

become significant in GW calculations if there is significant spatial overlap between core and 

valence wave-functions.52 This issue was recently solved by Maggio et al.53 reporting a careful 

comparison of GW qp energies obtained using Gaussian type orbitals and plane waves. In addition, 

the compact and inherently local nature of the NAO basis functions leads to a more rapid 

convergence with the number of basis functions.54  

Results and Discussion 

We first focus on the trend of the Egap as a function of the number of TiO2 units as predicted 

by the ΔEH-L, ΔSCF and G0W0 approaches. The vertical ionization potentials and electron affinities 

obtained from ΔSCF and G0W0 methods are also discussed and compared with other theoretical and 

experimental works. Finally, the effect of the nanoparticle shape will be also investigated for the 



6 

case of larger TiO2 nanoparticles, in this work containing 18 to 20 units. It must be noted that light 

grid and tier-2 basis set is used to evaluate the basis set convergence at G0W0@PBE0 level in 

(TiO2)n nanoparticles with n= 1-11 units, obtaining similar results than those obtained using light 

grid and tier-1 basis set (further details are given in Supporting Information). 

 

Electronic band gap. 

Figure 2 shows the Egap calculated following G0W0, ΔSCF and ΔEH-L procedures and using 

the PBEx and PBE0 hybrid functionals. Overall, the trends are systematically consistent for each 

method, with values from PBE0 being larger than those obtained from PBEx, although the effect is 

quite large for ΔEH-L (Figure 2c) and much less for G0W0 and ΔSCF, already indicating the higher 

accuracy of the latter approaches. More in detail, relative to G0W0 and ΔSCF, Egap associated to 

ΔEH-L is systematically underestimated and particularly sensitive to the exact exchange energy 

contribution associated to the hybrid functional (see Figure 2c). The percent of exact exchange 

energy contribution induces a significant increase of the band gap according to 

Egap(PBE0)/Egap(PBEx) ≈ 0.6 ratio. Note that, for a given functional, much larger particles are 

required to reach the bulk value depending on the method of calculation of the DFT energy.8 The 

ΔSCF method is more reliable and, actually, for a given DFT method provides the best possible 

estimate since all energy values used to estimate ionization potential and the electron affinity are 

variationally obtained ¾ i.e. from separate well-converged self-consistent calculations. Therefore, 

for either PBE0 or PBEx, the ΔSCF values are taken as the appropriate approach for the DFT level.  

Let us now focus on the performance of the many body perturbation theory (MBPT) based 

on G0W0 method. Here, the Egap values are fully consistent with those arising from ΔSCF 

calculation to the point that a systematic correlation between both methods exist (see Figure 3a). 

This result opens the possibility to use G0W0 for larger systems like extended solids where the 

variational ΔSCF is not suitable. G0W0 approach emerges as the appropriate computational 

technique to describe the electronic properties of semiconductors. This is consistent with previous 

works using GW techniques to approach the properties of bulk TiO2.55 In the case of bulk TiO2, 

however, in Ref. 49 the accuracy of G0W0 was established by comparing to the experimental value 

only whereas here the comparison between G0W0 and ΔSCF for a significant number of cases 

provides a more solid basis. This is further evidenced by the linear fit shown in Figure 3. It is noted 

that the oscillations observed in the smallest nanoparticles (n= 1–3) are related to the nanoparticle 

structure; similar oscillations have been previously reported.42 Although the Egap goes down, it is far 

from bulk values (see Figure 2). This is not surprising, since TiO2 nanoparticles of ~20 nm diameter 

composed by more than 10000 units are required to reach the bulk behavior.8 
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Comparing the electronic band gaps obtained by G0W0 to those obtained from ΔSCF and 

ΔEH-L leads again to systematic correlation, as displayed in Figure 3. The straight line is particularly 

noted for the case of Egap(G0W0) versus Egap(ΔSCF) in Figure 3a, where the Egap values calculated at 

PBEx and PBE0 levels are grouped in the same fitting, showing that the functional (exact exchange 

energy contribution) affects equally in both methods. As it has been discussed above, the effect of 

the functional is much more pronounced when Egap is calculated via ΔEH-L. This is the reason why 

two different linear fittings are observed in Figure 3b. Although the functional promotes the shifts 

in the straight line, the deviation between both approaches is systematically consistent for PBEx and 

PBE0, as evidenced by fitting parameters in Figure 3. Similar linear correlations have been 

previously reported for a wide range of materials.56,57  

Up to here, the present analysis provides compelling evidence that the electronic band gap 

calculated using G0W0 is consistent with the ΔSCF approach, thus overcoming the problems arising 

from the use of Kohn-Sham orbital energies which are largely affected by self-interaction errors. 

Nevertheless, one can argue that the success is due to an error cancellation consequence of a 

systematic error in the calculation of vertical ionization potentials and electron affinities. Results in 

the next subsection show that this is not the case. 

 

 Vertical Ionization potential and electron affinity.  

In MBPT it is shown that the energy of the GW eigenvalues, usually referred to as 

quasiparticles (qp) energies, corresponds directly to electron removal or addition energies.19,58 

Therefore, vertical ionization potential (IPv) and electron affinity (EAv) can be obtained directly 

from the qp energies as IPv = -qpHOMO and EAv = -qpLUMO, respectively. Table 1 compiles the IPv 

and EAv values for the set of explored TiO2 nanoparticles as obtained from G0W0 and ΔSCF 

methods. For comparison, the corresponding potentials for periodic TiO2 determined through 

combined experimental-theoretical approaches59,60 are included. Regarding the experimental values 

for (TiO2)n nanoparticles, photoemission data are only available for negatively charged clusters61 

and, therefore, we are not able to directly compare with the results for neutral clusters. However, 

our results are compared to computational analyses reported previously by Chiodo et al.62 for small 

(TiO2)n nanoparticles with n = 3-10 using all-electron calculations with relativistic effects in 

consistency with our results. These authors reported ranges of 7.8–9.5 eV and 2.5–3.2 eV for IPv 

and EAv, respectively. Our results reported in Table 1 are fully consistent with those reported by 

Chiodo et al.56 Additionally, EAv for clusters from 3 to 10 units were experimentally determined to 

be in the range 2.6–3.5 eV.55   
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To further analyze the trends in IPv and EAv values as predicted from ΔSCF and G0W0 

calculations, Figure 4 presents a linear correlation between the two sets of calculated IPv and EAv 

values. The amount of exact exchange energy contribution in the PBE0 and PBEx hybrid functional 

affects the results in the same way which is consistent with results in Figure 3a. In general, G0W0 

predicts IPv and EAv values systematically slightly below those calculated using ΔSCF (see Table 

1). To end this subsection, note that the values of IPv/EAv are significantly higher/lower than the 

corresponding potentials for periodic TiO2 anatase as it was already reported.54 These differences 

are due to the quantum confinement effect in the TiO2 nanoparticles. 

 

Influence of the shape of TiO2 Nanoparticles on band gap.  

For a given (TiO2)n nanoparticle size, distinct isomers exists within a narrow range of energy 

per unit.6 Figure S1 shows the set of isomers investigated and the electronic band gap (ΔEH-L, ΔSCF 

and G0W0) are reported in Tables S3 and S4 at PBEx and PBE0 level, respectively. It is therefore 

interesting to analyze the performance of the G0W0 approach on determining the Egap of the different 

isomers. With this idea in mind, the electronic properties of two different isomers, obtained during 

the global optimization search,6 are investigated for the three largest particles considered in the 

present work which are those with n = 18, 19 and 20 (Figure 5). For a given size (n), the energy 

differences for the different isomers are almost the same for the PBEx and PBE0 methods; the n=19 

nanoparticle shows the largest energy difference followed by nanoparticles with n=20 and n=18. 

The energy differences may seem large but correspond to ~0.2 eV/unit only.  

The results reported in Table 2 clearly show the influence of the nanoparticle shape, in 

agreement with previous findings reported by Cho et al.6 The present results show that the 

minimum energy structures with a different atomic structure show smaller band gaps than the most 

stable ones, with differences in Egap as large as 1 eV. It is worth pointing out that these observations 

are consistent with experiments reported by Ba-Abbad et al.63 Depending on the shape and size of 

the synthesized nanoparticles, these authors observed Egap variations of 0.15 eV. Nevertheless, even 

if the shape has a marked influence in small nanoparticles, this is notably reduced when increasing 

the size of the particles.  Therefore, small band gap deviations in large nanoparticles composed by 

hundreds of TiO2 units are expected independently of the shape. Finally, note that the difference 

between Egap(DSCF) and Egap(G0W0) for the higher energy isomers is similar to that corresponding 

to the global minima, as expected, indicating the performance of the G0W0 method in predicting Egap 

of TiO2 nanoparticles barely depends on the particle size. 
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Conclusions 

The Egap of (TiO2)n (n=1-20) nanoparticles is assessed employing ΔEH-L from KS orbital 

energies, ΔSCF and G0W0 methods by means of a relativistic all-electron description with numerical 

atomic centered orbital basis sets and using PBEx (12.5% Fock) and PBE0 (25% Fock) hybrid 

functionals. The systematic, well-known, underestimation predicted by ΔEH-L is largely corrected 

by the G0W0 method, which leads to results is good agreement with those obtained for the 

variational ΔSCF approach. The present analysis clearly proves that a systematic correlation exists 

between G0W0 and ΔSCF independently of the hybrid functional employed. This correlation is not 

fortuitous, arising for instance from error cancellation, since a similar correlation is obtained for the 

vertical ionization potential and electron affinity. The differences of ΔEH-L in TiO2 isomers 

corresponding to the largest nanoparticles show variations within the experimental range. In a 

similar way, using the G0W0 approach small deviations are expected for nanoparticles composed by 

hundreds of atoms.  

It has been shown that a systematic correlation between electronic band gap, ionization 

potential and electron affinity of TiO2 nanoparticles exists between the variational ΔSCF and G0W0 

methods. Therefore, G0W0 calculations provide one a successfully way to investigate the electronic 

band gap of realistic size of TiO2 nanoparticles (~20 nm diameter) at an affordable computational 

cost using FHI-AIMS code with a ΔSCF precision. One of the main advantage of G0W0 method is 

that the quasiparticles energies are compared directly with results from photoemission spectroscopy. 

This information is of great interest to understand and improve the photocatalytic activity of TiO2 

nanoparticles in processes as CO2 photoreduction and water splitting by light. This study opens the 

possibility for using G0W0 in larger systems like extended semiconductors where the the variational 

ΔSCF is not suitable.  
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Table 1.- Range of IPv and EAv using ΔSCF and G0W0 methods at PBEx and PBE0 level. Potentials 

for periodic TiO2 anatase are also included.53,54 All values are in eV. 

 
 

 ΔSCF G0W0 

PBEx 

IPv 9.30 – 10.14 9.10 – 9.78 

EAv 2.49 – 3.94 1.70 – 3.06 

PBE0 

IPv 9.84 – 10.59 9.54 – 10.16 

EAv 2.39 – 3.42 1.63 – 2.53 

Periodic TiO2 anatase  

IPv 7.82 – 8.30 

EAv 4.67 – 5.10 
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Table 2.- Electronic band gap of the global minima and one higher energy isomer of the (TiO2)n 

nanoparticles with n=18-20 as predicted from ΔEH-L, ΔSCF and G0W0 calculations carried out with 

the PBEx and PBE0 hybrid functionals. Numbers correspond to the most stable structures located at 

the top in Figure 5. Those located between parenthesis correspond to the bottom structures in Figure 

5. ΔE has the same meaning as in the caption of Figure 5. All values are in eV. 
 

n ΔE ΔEH-L ΔSCF G0W0 

PBEx 

18  0(2.09)  4.01 (3.48) 6.07 (5.60) 7.38 (6.62) 

19 0 (3.68) 4.22 (3.23) 6.28 (5.55) 7.06 (6.32) 

20 0 (2.34) 4.66 (3.46) 6.58 (5.55) 7.49 (6.58) 

  PBE0   

18 0 (1.96) 5.34 (4.75) 6.93 (6.37) 7.93 (7.07) 

19 0 (3.71) 5.47 (4.49) 7.02 (6.25) 7.46 (6.78) 

20 0 (2.65) 5.94 (4.77) 7.55 (6.30) 7.92 (7.07) 
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Figure 1. Structure of global minima of the (TiO2)n nanoparticles, n = 1-20 used in this work. Blue 

and red spheres correspond to titanium and oxygen atoms, respectively. 
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Figure 2. Calculated electronic band gap of (TiO2)n nanoparticles using (a) G0W0, (b) ΔSCF and (c) 

ΔEH-L methods at PBEx (orange) and PBE0 (purple) levels. The dashed lines in (c) correspond to 

the experimental band gap of bulk anatase (3.2 eV) and rutile (3.03 eV) systems which are provided 

for comparison. All these values are compiled in Figures S1 and S2 at PBEx and PBE0, 

respectively. 
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Figure 3. Linear relationship between Egap(G0W0) and (a) Egap(ΔSCF) and (b) Egap(ΔEH-L). The 

smallest nanoparticles, n= 1, 2 and 3 units are not considered in the linear fitting due to their 

oscillation effects. Fitting equations are shown in the inset. For simplicity, the Egap term is removed 

from the axis legends and linear regressions. All these values are compiled in Figures S1 and S2 at 

PBEx and PBE0, respectively. 
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Figure 4.- Linear relationship between (a) vertical ionization potential (IPv) and (b) vertical electron 

affinity (EAv) obtained from G0W0 and ΔSCF calculations. Results for the smallest nanoparticles, 

n= 1, 2 and 3 units are not considered in the linear fitting due to their oscillation effects. The linear 

regression is also displayed. All these values are compiled in Figures S1 and S2 at PBEx and PBE0, 

respectively. 
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Figure 5.- (TiO2)n nanoparticles with n = 18, 19 and 20 units. The nanoparticles shown at the top 

are the most stable energetically and they are compared with the nanoparticles below, which have 

different shape and higher energies. Positive values of ΔE are associated with energies above the 

global minima, which are taken as reference.  
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