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 Use of infrared thermography to estimate brown fat activation after a cooling protocol 

in patients with severe obesity that underwent bariatric surgery 

 

Abstract 

 

Introduction 

Obesity has reached epidemic proportions worldwide, and its prevalence has doubled in the last 

30 years. In contrast to the energy-storing role of white adipose tissue (WAT), brown adipose 

tissue (BAT) acts as the main site of non-shivering thermogenesis in mammals, and has been 

reported to play a major role in protection against obesity and associated metabolic alterations 

in rodents. Infrared thermography (IRT) has been proposed as a novel non-invasive, safe, 

inexpensive, and quick method to estimate BAT thermogenic activation in humans. The aim of 

this study is to determine the thermogenic activation of BAT after a cooling protocol using IRT 

in patients with severe obesity in response to two different types of bariatric surgery (BS). 

 

Methods 

Supraclavicular BAT thermogenic activation was evaluated using IRT in a cohort of 31 patients 

(50 ± 10 years-old, BMI = 44.5 ± 7.8) at baseline and 6 months after BS. Clinical parameters were 

determined at different time points. 

 

Results 

BAT thermogenic activation by IRT was increased at 6 months after laparoscopy sleeve 

gastrectomy (LSG), while patients undergoing to a roux-en-Y gastric bypass (RYGB) did not 

change their thermogenic response using the same cooling protocol. 

 

Conclusions 

Our study reports a differential effect of LSG technique compared to RYGB on BAT activation, 

suggesting that the mechanisms involved in weight loss after surgery might differ between the 

two techniques. 
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Introduction/Purpose 

Increased body mass is associated with numerous metabolic diseases, including type 2 

diabetes (T2D). Thus, it is not surprising to find out that, concomitantly with the dramatic 

increase in obesity, T2D has become the most common metabolic disorder, being recognized as 

one of the deadliest non-communicable diseases worldwide. Nowadays, it has been estimated 

that approximately 350 million people has diabetes, representing almost 10% of the world 

population [1]. White adipose tissue (WAT) is involved in the regulation of energy balance and 

glucose homeostasis, owing to its function as a lipid-storing and endocrine organ. Numerous 

studies have demonstrated that abnormal WAT function is linked to obesity, whole body insulin 

resistance and T2D [2]. However, few studies have comprehensively addressed the effect of 

obesity and weight loss in the thermogenic capacity. 

In contrast to the energy-storing role of WAT, brown adipose tissue (BAT) acts as the 

main site of non-shivering thermogenesis in mammals due to the presence of uncoupling 

protein-1 (UCP1) in mitochondria of brown adipocytes, which uncouples mitochondrial oxidative 

processes and generates heat [3]. BAT plays a major role in protection against obesity and 

associated metabolic alterations in rodents due to its draining of glucose and lipids from 

circulation to sustain thermogenesis [4, 5]. Moreover, sustained thermogenic activation leads 

also to the so-called ‘browning’ of adipose tissue: the appearance of beige (brown adipocyte-

like) adipocytes in anatomical sites corresponding to WAT depots [6, 7]. Chronic exercise, cold 

exposure and chronic 3-adrenergic stimulation have been shown to promote browning of WAT 

in experimental models [8]. A higher capacity of browning has been directly associated with 

protection against experimental obesity and improved glucose tolerance in mice [9]. Moreover, 

BAT has been also reported to secrete endocrine regulatory factors which contribute, in addition 

to the intrinsic energy expending properties of BAT, to the healthy effects of active BAT on 

systemic metabolism [10, 11]. 

Laparoscopy sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB) are two 

types of bariatric surgery (BS), the most effective therapy to avert obesity and T2D currently 

available [12-15]. One of the consequences of BS is activation of BAT and browning of WAT, 

which is hypothesized to contribute to the increased energy expenditure, weight loss, and 

overall improvement in systemic glucose and lipid metabolism after BS [16, 17]. In 2009, several 

studies confirmed that active BAT is present in adult humans, and that, accordingly, BAT activity 

is reduced in patients with obesity [18-21]. One of the techniques currently used to quantify BAT 

is positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-D-glucose integrated with 

computed tomography (18F-FDG-PET–CT). This technique is considered the “gold-standard” to 

measure BAT/beige activity and metabolism [22], it is an expensive, time-consuming and 
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relatively invasive technique [23].  For the moment, the lack of non-invasive and low-cost 

methods to measure BAT activation before and after BS in patients makes it difficult to 

implement this parameter in the clinical practice for a better evaluation of the patients. 

In the last years, infrared thermography (IRT) has been proposed as a novel non-

invasive, safe, cheap and quick method to estimate BAT thermogenic activation in humans [24]. 

IRT uses the heat-emitting properties of BAT and the relatively superficial position of the 

supraclavicular BAT depot. A rise in supraclavicular temperatures after cold exposure has been 

demonstrated using this methodological approach, and several studies correlated IRT data 

obtained in supraclavicular skin surface with BAT activity as determined using PET scans [25-29].  

In this study, we determined for the first time the thermogenic activation of BAT after a 

hand-cold protocol using IRT in patients with severe obesity and the role of two different types 

of BS techniques. 

 

Materials and Methods 

Subject cohort and surgical interventions 

A cohort of 31 patients (19 females/12 males, aged= 50 ± 10 years-old, BMI= 44.5 ± 7.8) 

with severe obesity were included in this study, and were stratified into two groups according 

to the type of BS they underwent: 1) LSG (n= 15), in which the stomach is transected vertically 

from 5cm proximal to the pylorous up to the His’ angle, using a 36Fr bougie as a calibrator. 

Hence, more than 70% of patient’s stomach (mainly fundus and body) volume is removed 

without modifying the rest of gastrointestinal tract (GIT) [30]; 2) RYGB (n= 16), where the 

surgeons tailor a 40-60 mL gastric pouch that is anastomosed to the previously divided jejunum 

distal to the ligament of Treitz. Reconstruction of the GIT was completed in a “Y” configuration 

with a distal jejuno-jejunostomy [31]. All patients were evaluated by the same endocrinology 

specialist according to criteria formulated in Spanish Position Statement between Obesity, 

Endocrinology, Diabetes and Surgery Societies [32]. IRT, demographic and clinical data, including 

age, diabetes, and hypertension were recorded for all participants at baseline and 6 months 

after BS. 

 

Study Visits and Protocols 

For IRT acquisition, participants went to a specific room where the body area object of 

evaluation was uncovered and sat-down during 5 min in a thermoneutral ambient for 

acclimatization (24.3 ± 1.6ºC). Women were asked to move the straps of their sports bra aside, 

and any long-haired participants were asked to tie their hair up to expose the supraclavicular 

area when necessary. 
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For the cold protocol, 3 thermal images were taken for each patient using a FLIR T420 

infrared camera (FLIR T420 Systems AB, Sweden), with a thermal sensitivity of 0.05 ºC and 

resolution set at 320 x 240 pixels. The first image was taken to an aluminum foil phantom (1 

meter away) to obtain a measurement of the reflected temperature for each set of images; in 

this moment, ambient temperature and relative humidity were registered for each set as well. 

For the second thermal image, the participants remained seated in an upright position, with 

their arms relaxed on both sides of their legs. After a calculation of optimal distances, the camera 

was placed 1 meter from the midpoint of the chair for these images. For the third image, patients 

were asked to put their left hand in cold water (17ºC) during 5 minutes to stimulate BAT 

activation, after which the thermographic picture was taken.  

Analysis of IRT 

Thermal data were extracted from IRT pictures by using a region of interest (ROI)-based 

approach. The ROIs were manually drawn in the images on the supraclavicular and sternum 

region using the FLIR ResearchIR Max software version 4.40.6.24 for windows (FLIR Systems Inc., 

North Billerica, MA, USA). All analyses were adjusted by atmospheric temperature, distance to 

the participant and relative humidity, which, as previously stated, were recorded at the 

beginning of each IRT session. Moreover, the reflected temperature was obtained by placing a 

rounded ROI on the aluminum foil phantom of the first thermal image and retaining the mean 

value (ºC) for adjustments. For all thermographic images emissivity was set at 0.98 (human skin). 

Minimum, maximum and mean values of each ROI were retained as variables. The temperature 

in the supraclavicular region was normalized by sternum region temperature for each 

participant at all time points before and after BS. 

We calculated the delta ‘Supraclavicular T - Sternum T in thermal image number 1 (0 

min) and in thermal image number 2 (5 min after cold stimulation), obtaining a value ‘ΔT0’ for 

the thermal image 1 and a value ‘ΔT5’ for the thermal image 2: 

∆𝑇(𝑠𝑐𝑟−𝑠𝑡𝑟)
0 = 𝑇𝑠𝑢𝑝𝑟𝑎𝑐𝑙𝑎𝑣𝑖𝑐𝑢𝑙𝑎𝑟 𝑎𝑟𝑒𝑎

0 − 𝑇𝑠𝑡𝑒𝑟𝑛𝑢𝑚 𝑎𝑟𝑒𝑎
0  

∆𝑇(𝑠𝑐𝑟−𝑠𝑡𝑟)
5 = 𝑇𝑠𝑢𝑝𝑟𝑎𝑐𝑙𝑎𝑣𝑖𝑐𝑢𝑙𝑎𝑟 𝑎𝑟𝑒𝑎

5 − 𝑇𝑠𝑡𝑒𝑟𝑛𝑢𝑚 𝑎𝑟𝑒𝑎
5  

After that, we calculated the delta ‘ΔT0-5min’, which gave us the value of BAT thermogenic 

activation capacity elicited by cold stimulus. This is key readout of our study: 

∆𝑇0−5𝑚𝑖𝑛 = ∆𝑇(𝑠𝑐𝑟−𝑠𝑡𝑟)
0 − ∆𝑇(𝑠𝑐𝑟−𝑠𝑡𝑟)

5  

We repeated this same sequence 6 months after bariatric surgery, and we compared the values 

of the capacity of BAT thermogenic activation by cold stimulus 6 months after surgery, taking 

into account the different type of surgery. 
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Serum samples 

Serum samples from the study participants were collected after a 12h fasting period at 

baseline and 6 months after BS. All samples were stored at -80ºC in the Biobanc of the Health 

Sciences Research Institute Germans Trias i Pujol Foundation. The Institutional Ethics 

Committee, in accordance with the Declaration of Helsinki, approved the study (PI16-025). All 

participants gave their written informed consent before the IRT and the collection of clinical 

data and samples. 

 

Human serological analysis 

Fasted glucose and insulin levels, glycated haemoglobin, lipid profile (total cholesterol, 

HDL and LDL cholesterol, and triglycerides), urea, creatinine, and c-reactive protein were 

measured in the certified core clinical laboratory at the hospital. Body mass index, waist 

circumference and blood pressure were measured by the endocrinologists and dieticians in 

charge of the patients. The Homeostatic model Assessment-insulin resistance (HOMA-IR) was 

calculated through the following formula:  

𝐻𝑂𝑀𝐴 − 𝐼𝑅 =
[𝐺𝑙𝑢𝑐𝑜𝑠𝑒

𝑚𝑔
𝑑𝐿

] ∗ [𝐼𝑛𝑠𝑢𝑙𝑖𝑛
m. u. int

𝑑𝐿
]

405
 

 

Statistical analysis 

Data are presented as mean ± sem. Statistical tests were performed with GraphPad 

Prism 6.0. Normality of datasets was assessed using the Kolmogorov-Smirnoff test. Wilcoxon 

matched pairs test was used to compare delta ‘ΔT0-5min’ before and after bariatric surgery. 

Grubbs test was used to remove outliers prior to statistical analyses. P<0.05 was considered as 

the threshold of statistical significance in all analyses. 

 

Results 

BAT thermogenic capacity of patients with severe obesity increases after BS.  Evidence of higher 

effects of the LSG versus RYGB type of BS on the induction of BAT activation. 

Clinical data from patients with obesity are shown in table 1. Patients were distributed 

according to the type of surgery. As expected, both LSG and RYGB led to weight loss and 

improved metabolic profile, including glucose and triglycerides levels. The group of individuals 

operated by LSG displayed significant lower levels of glucose and glycated hemoglobin before 

the surgery compared to the RYGB group. IRT images from all participants were taken at baseline 

(before surgery) and 6 months after the surgery. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 
 

We performed a pilot study in order to select the correct time of cold stimulus, and 

pictures were taken before and at 1, 2, 3, 4, and 5 minutes since the patients put the hand in 

the cold water. We detected a marked variability at very short times between the different 

patients (Supplementary Figure S1), and considering our observations and the previous 

literature, we chose to perform 5 minutes of cold stimulus. 

Figure 1 shows a representative example of IRT images of one participant from each 

type of surgery. This figure shows the lack of thermogenic activation by cold exposure before 

surgery in both patients. At 6 months after bariatric surgery, cold exposure activated 

supraclavicular BAT in the patient from the LSG group but not in the patient from the RYGB 

group. The general data from the whole cohort of patients are shown in Figure 2, where we 

observe a significant increase of the thermogenic activity 6 months after LSG but not RYGB. 

There were no significant differences between females and males before and after bariatric 

surgery. 

 

Conclusions 

In this study, we demonstrate for the first-time usage of IRT as a novel non-invasive 

technique to estimate BAT activation after hand-cold exposure in patients with severe obesity 

undergoing BS.  Due to IRT being a non-invasive method, a longitudinal approach could be used 

to estimate BAT activity at several time points after BS in patients with obesity.   

Patients undergoing BS are currently evaluated before surgery in different aspects 

including endocrine-metabolic status and psychological traits. However, it is still challenging to 

predict the success of surgery because of the high variability in the extent of weight loss after 

surgery. Moreover, it is known that BAT thermogenic activation inversely correlates with BMI 

[18]. According with that, we have observed that at 6 months after BS, BAT thermogenic capacity 

increases. Therefore, we propose that this parameter, obtained through a non-invasive method 

such as IRT, is worthy to be considered among the number of data that are taken into account 

to evaluate the physiological and metabolic status of patients candidates to BS. 

Interestingly, we found differences in the extent of BAT activation depending of the type 

of surgery, being patients undergoing LSG but not RYGB the ones who actually improved BAT 

activation capacity after BS. It is important to point out that RYGB has demonstrated better long-

term results in patients with diabetes [33], and due to this fact, it is accepted in the clinical 

practice that this type of surgery must be performed in patients with severe obesity and 

impaired glucose homeostasis. In our study, differences in glucose levels and glycated 

hemoglobin were found between LSG and RYGB groups at baseline. Moreover, the LSG group 

showed normal glucose levels despite of having the same degree of obesity in terms of BMI 
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compared to RYGB group. Considering that BAT has demonstrated its positive role in energy 

expenditure and insulin sensitivity, contributing to a better metabolic state [4], it is tempting to 

speculate that the BAT of patients with normoglycemia would maintain a better function than 

patients with pre-diabetes or diabetes in terms of endocrine activity. It could explain, at least in 

part, the improvement in insulin sensitivity and the increase in the capacity to activate BAT after 

cold exposure observed in LSG group compared to RYGB, which might be contributing to the 

success of BS regarding weight loss. Other researchers have described BAT activation measured 

by 18F-FDG-PET–CT after a RYGB, but interestingly, a lack of hypothalamic activity was reported 

in these patients with obesity before and after the RYGB [17]. Since hypothalamic signaling to 

BAT is the main neural circuit involved in thermogenic activation of this tissue [34], a potential 

explanation is that our protocol to expose patients to cold stress (5 minutes with their hand in 

cold water) might not be enough to activate BAT thermogenesis in the RYGB group compared 

to LSG group due to this impairment of sympathetic signaling in the former set of patients. Other 

mechanisms of action (e.g. specific changes in enterokine secretion, adipokine release or 

microbiota changes) could account for the systemic effects of RYGB without involving central 

nervous BAT activation. Further studies should be developed to decipher the potential different 

effect of LSG and RYGB in the capacity to activate BAT thermogenesis. 

Despite the advantages described above, IRT-based estimation of BAT activity is not 

exempt of limitations. Some researchers have pointed out some flaws in the quantification of 

BAT activity by IRT in subjects with obesity, suggesting that the changes in the layer of 

subcutaneous fat insulation could be a confounding factor to measure BAT temperature [35]. 

Although we assume this potential limitation in our study, it is important to remark that we did 

not use basal temperature at the supraclavicular area as index of BAT activity but the individual 

capacity to increase supraclavicular temperature before and after a single bout of cold stress in 

every individual. As the fat layer is the same before and after the 5 min cold-stimulus exposure 

in each individual patient, changes in fat layer width are not expected to significantly influence 

our estimation. PET-scan-based measurement of BAT activity may have less potential limitations 

in this regard. However, using PET-scan techniques rises as well a number of concerns (e.g., 

specific type of labeled metabolite used for the assay, stress associated with the scanning 

procedures, etc.) and are obviously not feasible for dynamic repeated measuring in the same 

individual as performed in our study, which can otherwise be assessed by IRT. Moreover, the 

lack of randomization in the type of surgery and no inclusion of normal weight individuals to 

compare at the same time their thermogenic activation by IRT are also limitations of the study 

and might be a bias in the different response to RYGB and LSG. 
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In conclusion, we report for the first time that IRT-based estimation of BAT thermogenic 

activity may be useful for a follow-up of patients after BS in a convenient, non-invasive manner. 

Thus, we propose that quantification of active BAT by IRT after a cold protocol may be useful in 

clinical practice as an additional measurement to evaluate the metabolic status and the 

potential success of BS in patients with obesity. Further studies including a meta-analysis to 

check potential biological and clinical associations would be necessary to establish its precise 

contribution to the clinical practice. 
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Figures 1. Representative IRT images of 2 patients with severe obesity undergoing RYGB or 

LSG, respectively. 

IRT before RYGB at 0 minutes (A) and before RYGB at 5 minutes of cold exposure (B). IRT 6 

months after RYGB at 0 minutes (C)and 6 months after RYGB at 5 minutes of cold exposure (D). 

IRT before LSG at 0 minutes (E) and before LSG at 5 minutes of cold exposure (F). IRT 6 months 

after LSG at 0 minutes (G) and 6 months after LSG at 5 minutes of cold exposure (H).  

 

Figure 2. BAT thermogenic capacity of patients with severe obesity is increased after BS. 

Supraclavicular skin temperature corrected by sternum temperature before and 5 minutes after 

cold exposure. Thermogenic activation, measured as the difference between 5 minutes and 0 

minutes, is represented at basal time and 6 months after the RYGB (A) and SLG (B). Paired two-

tailed t-test was used. ** p< 0.01 

 

Supplementary Figure S1. Supraclavicular skin temperature measured in several times during 

5 minutes of cold stimulus. Supraclavicular skin temperature (ºC) before and 1, 2, 3, 4, and 5 

minutes after cold stimulus (n= 8 patients). 
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Table 1. Anthropometric and metabolic parameters from patients with morbid obesity before and after bariatric 

surgery.  

  

Data are shown as mean ± SD except when it is indicated. Two-tail Student’s t-test was applied to compare two 

groups, and one-way ANOVA with Tukey’s post-hoc test was used for comparisons between more than two groups. * 

indicates p<0.05 between LSG and RYGB; # indicates p<0.05 between 0-6 postsurgery. LSG: laparoscopic sleeve 

gastrectomy; RYGB: roux-en-Y gastric bypass; LDL-Cho: Low-density lipoprotein cholesterol; HDL-Cho: High-density 

lipoprotein cholesterol.  

a This parameter is the difference between the supraclavicular skin temperature measured before the cold 

stimulation and the supraclavicular skin temperature measured after 5 minutes of cold exposure. 

b This parameter is the difference between the supraclavicular skin temperature minus the sternum temperature 

measured before the cold stimulation and the supraclavicular skin temperature minus the sternum temperature 

measured after 5 minutes of cold exposure. 

 Basal 6 months Δ6-0 months 

LSG (n=15) RYGB (n=16) LSG RYGB LSG RYGB 

Age (years) 46 ± 13 53 ± 8 - - - - 

Sex (F/M) 10/5 9/7 - - - - 

Type 2 diabetes 5 9 0 0 - - 

Body mass index (kg/m2) 46 ± 9.7 42 ± 5.1 35 ± 9.0# 31 ± 5.3# -11.74 ± 2.82 -10.91 ± 1.68 

Waist circumference (cm) 136 ± 14 130 ± 11 117 ± 16# 105 ± 15# -19.25 ± 11.23 -25.96 ± 11.91 

Glucose (mg/dl) 94 ± 10 128 ± 44* 86 ± 9 90 ± 16# -7.60 ± 9.91 -36.33 ± 30.68* 

Glycated hemoglobin (%) 5.6 ± 0.38 6.2 ± 1.01* 5.3 ± 0.32 5.3 ± 0.50# -0.30 ± 0.27 -0.89 ± 0.61* 

Insulin (m.u.int./l) 11.02 ± 8.48 12.07 ± 7.32 10.38 ± 8.34 7.14 ± 4.27# -2.38 ± 9.32 -10.72 ± 17.98 

Homeostatic model assessment 
(HOMA-IR) 

2.87 ± 2.21 4.50 ± 3.99 2.54 ± 2.11 1.63 ± 1.13# -0.77 ± 2.3 -4.48 ± 6.68 

Triacylglycerides (mg/dl) 133 ± 46 130 ± 35 97 ± 39# 100 ± 33# -38.50 ± 54.37 -29.81 ± 46.28 

Total cholesterol (mg/dl) 153 ± 20 145 ± 33 181 ± 45 164 ± 34 30.00 ± 54.17 18.75 ± 51.36 

LDL -cholesterol (mg/dl) 85 ± 20 82 ± 34 113 ± 43 100 ± 30 30.50 ± 52.76 15.06 ± 46.65 

HDL-cholesterol (mg/dl) 41 ± 9 37 ± 4 48 ± 7 48 ± 22 8.41 ± 7.82 10.97 ± 22.97 

Creatinine (mg/dl) 0.91 ± 0.64 0.84 ± 0.26 0.86 ± 0.59 0.76 ± 0.18 0 ± 0.15 -0.10 ± 0.14 

Urea (mg/dl) 39.13 ± 29.09 37.06 ± 13.74 34.80 ± 24.27 35.00 ± 7.65 -4 ± 9.87 -2.06 ± 11.62 

C-reactive protein (mg/l) 8.89 ± 5.08 6.67 ± 5.17 7.12 ± 7.32 4.22 ± 3.59 -3 ± 9.79 0.11 ± 10.92 

Systolic blood pressure (mmHg) 136 ± 16 134 ± 13 - - - - 

Diastolic blood pressure 
(mmHg) 

80 ± 7 80 ± 10 - - - - 

Absolute temperature 
difference (ºC) a 

0.59 ± 0.2 0.56 ± 0.2 0.44 ± 0.1 0.58 ± 0.3 - - 
 

Relative temperature 
difference (ºC) b 

0.06 ± 0.1 0.09 ± 0.1 0.32 ± 0.1#* 0.08 ± 0.1 - - 
 

Table
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