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ABSTRACT 30 

 31 

The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical 32 

Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, 33 

spiked with the 16 USEPA priority PAHs, were incubated in a climate chamber at stable 34 

conditions of temperature (20°C) and light (9.6 W m-2) for 28 days, simulating a climate 35 

change base scenario. PAH concentrations in soils were analyzed throughout the 36 

experiment, and correlated with data obtained by means of Microtox® ecotoxicity test. 37 

Photodegradation was found to be dependent on exposure time, molecular weight of each 38 

hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being 39 

PAHs more photodegraded than in coarse-textured soil. According to the EC50 values 40 

reported by Microtox®, a higher detoxification was observed in fine-textured soil, being 41 

correlated with the outcomes of the analytical study. Significant photodegradation rates 42 

were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, 43 

and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH 44 

pollution, was completely removed after 7 days of light exposure. In addition to the PAH 45 

chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of 46 

benzo(a)pyrene was also carried out. The degradation of this specific compound was 47 

associated to a high enrichment in 2H, obtaining a maximum δ2H isotopic shift of +232‰. 48 

This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific 49 

isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. 50 

Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of 51 

unknown origin occurring in the darkness.  52 

 53 
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1. Introduction 61 

 62 

Polycyclic aromatic hydrocarbons (PAHs) are a large group of semi-volatile organic 63 

compounds composed of two or more fused aromatic rings. Although these chemicals are 64 

mostly released to air, soil is considered as one of the major sinks of atmospheric PAHs 65 

(Nadal et al., 2011; Wang et al., 2014), being deposited via dry and wet processes (Nadal 66 

et al., 2004). PAH fate in the environment includes volatilization, adsorption on soil 67 

particles, leaching, microbial degradation, chemical oxidation, and photo-oxidation 68 

(Hartiash and Kaushik, 2009). Photodegradation is an important transformation pathway 69 

for most PAHs in the environment (Zhang et al., 2006), having been largely studied in 70 

water (Bertilsson and Widenfalk, 2002; de Bruyn et al., 2012; Fasnacht and Blough, 2003; 71 

García-Martínez et al., 2005; Jacobs et al., 2008; Jing et al., 2014; Luo et al., 2014; Rivas 72 

et al., 2000; Shemer and Linden, 2007; Singh et al., 2013; Xia et al., 2009). In contrast, 73 

the knowledge regarding the photodegradation process of PAHs in soils is rather limited 74 

(Balmer et al., 2000; Frank et al., 2002; Gong et al., 2001; Xiaozhen et al., 2005). It has 75 

been reported that soil depth has an important role in the photodegradation of these 76 

chemicals, enhancing the resistance of PAHs to be photodegraded. In addition, 77 

temperature, soil particle size and humic acids also have a significant influence on 78 

photodegradation in soils under UV-B radiation (Zhang et al., 2010). Photodegradation 79 

of PAHs in soils has been shown to be not only limited by the light penetration capacity 80 

in soils, but also by its wavelength (Cavoski et al., 2007; Xiaozhen et al., 2005). 81 

Consequently, photodegradation depends on a number of variables, such as soil type, 82 

thickness of the soil layer, as well as light absorption spectrum of each compound (Zhang 83 

et al., 2010). This degradation process may play a key role on the fate of PAHs in areas 84 

such as the Mediterranean region, with high sunlight presence during the whole year. In 85 

turn, some PAH metabolites, which can even be more toxic than their parental 86 

compounds, may be generated during the degradation process. Overall, although PAH 87 

levels might be reduced in soils exposed to sunlight, toxicity may be increased (Huang et 88 

al., 1995; Mallakin et al., 1999; McConkey et al., 1997). 89 

Compound-specific isotope analysis (CSIA) is a very valuable tool, which can be used 90 

to monitor in situ degradation processes of chemical pollutants, and as a source 91 

identification technique (Elsayed et al., 2014; Imfeld et al., 2014). CSIA is capable of 92 

discriminating degradation from other attenuation processes naturally occurring in the 93 

environment,  that do not generate destruction of pollutants, such as dispersion, 94 
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volatilization or sorption. CSIA is based on the isotopic effect produced during a 95 

degradation process, which is known as isotopic fractionation (Meckenstock et al., 2004). 96 

This effect is based on the enrichment of heavy isotopes in the reacting compound, which 97 

is linked to the different strength of the bonds that contain heavy and light isotopes. Since 98 

nondestructive natural attenuation processes frequently do not entail significant isotope 99 

fractionation, a significant enrichment of the heavy isotope of organic pollutants confirms 100 

that a degradation process is occurring. Unfortunately, research on the hydrogen isotopic 101 

fractionation of PAHs during degradation is very scarce. To the best of our knowledge, 102 

the only precedent is the study of Bergmann et al. (2011), who reported a high hydrogen 103 

isotopic shift of naphthalene in two different microbial cultures. 104 

The present investigation aimed at assessing the photodegradation of 16 US EPA 105 

priority PAHs in two types of Mediterranean soils. Laboratory experiments were 106 

conducted in a climate chamber to simulate the current Mediterranean environmental 107 

conditions, keeping temperature and sunlight stable. Temporal changes of PAH 108 

concentrations and ecotoxicity levels were investigated, and jointly evaluated. Moreover, 109 

hydrogen isotopic analysis of benzo(a)pyrene, considered one of the most toxic PAHs 110 

and probably carcinogenic to humans (Aina et al., 2006), was complementarily performed 111 

to verify the findings. 112 

 113 

2. Materials and methods 114 

 115 

2.1. Soil characteristics 116 

 117 

Two common Mediterranean soils were selected to perform the photodegradation 118 

experiments. Physicochemical properties of both soils are given in Table 1. Soil samples 119 

were collected from the A horizon of remote areas of Catalonia (NE of Spain). The 120 

Arenosol soil, with granitic origin, is an acidic and coarse-textured soil that can be 121 

classified as Haplic Arenosol, according to the (FAO-UNESCO, 1998). It is commonly 122 

used for ecotoxicity tests in terrestrial environments. In turn, Regosol soil is an alkaline 123 

calcareous fine-textured soil formed of sedimentary materials, being classified as Calcaric 124 

Regosol (FAO-UNESCO, 1998). Both soils are characterized by owing a low organic 125 

matter content (Table 1). In order to quantify titanium, iron, aluminum and manganese 126 

oxides, ammonium oxalate was used as extractant, according to the method described by 127 

Drees and Ulery (2008). 128 
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 129 

2.2. Experimental design 130 

 131 

Photodegradation experiments were carried out in a Binder KBWF 240 climate 132 

chamber (Binder GmbH, Tuttlingen, Germany) with constant lighting, temperature and 133 

humidity. Temperature and daylight were set at 20 ºC and 9.6 W/m2, respectively, as 134 

current environmental conditions in the Mediterranean area. Because photodegradation 135 

reactions occur mainly in the surface, soil was air-dried. Consequently, to avoid the 136 

presence of water and any potentially associated biodegradation process, humidity was 137 

kept constant at 40%. Ten grams of air-dried soil were deployed in uncovered glass Petri 138 

dishes forming a thick layer of 1 mm of soil. A stock solution containing 16 US EPA 139 

priority PAHs at 2000 µg mL-1 in dichloromethane:benzene was provided by Supelco® 140 

(99.0% purity, Bellefonte, PA, USA). Each sample was 10-times spiked with 25 µL of 141 

this stock solution diluted with an hexane/dichloromethane (1:1) mixture (Scharlau 142 

Chemie S.A., Barcelona, Spain; hexane: 96% purity, dichloromethane: 99.5% of purity) 143 

to an individual PAH concentration of 100 µg mL-1, leading to a Σ16 PAHs concentration 144 

of 40 µg g-1 in soil. Afterwards, samples were incubated inside the climate chamber. In 145 

order to differentiate concentration decreases due to slow sorption and/or volatilization 146 

processes from photodegradation, a number of dark control samples covered with 147 

aluminum foil were exposed to the same environmental conditions. Duplicates of 148 

irradiated samples and dark controls of each soil were removed from the climate chamber 149 

after 1, 2, 3, 4, 5, 6, 7, 14, and 28 days. To verify the lack of any biotic reactions, before 150 

the experiment was initiated, soils were incubated at the same conditions in manometric 151 

respirometers (Oxitop®, WTW). Negligible oxygen consumption was observed during the 152 

incubation period, discarding biotic processes. Ten grams of soil without any spiking of 153 

PAHs were used as blank soil samples. 154 

 155 

2.3. PAH analysis 156 

 157 

Prior to analysis, PAHs were extracted from soil samples by using 30 mL of a mixture of 158 

hexane/dichloromethane (1:1) (Scharlau Chemie S.A., Barcelona) in a Milestone Start E 159 

Microwave Extraction System (Milestone s.r.l., Sorisole, Italy), according to the US EPA 160 

method 3546. Subsequently, samples were filtered, concentrated to 1 mL and further 161 

evaporated with a gentle stream of purified N2. Since any interference with target analytes 162 
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was found, cleanup was discarded in order to achieve suitable recoveries for low 163 

molecular weight PAHs. Regarding the quality control, d10-fluorene (98.3% purity, 164 

Supelco®) was used as surrogate, while d8-naphthalene (99.8% purity, Supelco®) and d12-165 

benzo(a)pyrene (98.5% purity, Supelco®) were used as internal standards. Dried samples 166 

were dissolved with a solution of internal standards at 50 µg mL-1 concentration in 167 

hexane/dichloromethane (1:1) mixture (Scharlau Chemie S.A., 99.5% of purity). Blank 168 

soil samples were also extracted following the same procedure in order to assure that 169 

collected soils were PAH-free. All samples were analyzed by means of gas 170 

chromatography-mass spectrometry (GC-MS) in accordance to the US EPA method 171 

8270. A Hewlett-Packard G1099A/MSD5973 equipment with an HP-5MS 5% Phenyl 172 

Methyl Siloxane column (20 m x 0.25 mm x 0.25 µm) was used to quantify the content 173 

of the 16 PAHs under study in soil. The final experimental conditions were: 1 µL injection 174 

at 310 ºC in split-splitless, and pulsed splitless mode at 35 psi (for 0.05 min). Transfer 175 

line temperature was set at 280 ºC. Ultra-pure (99.9999%) helium was used as carrier gas, 176 

at a total flow rate of 1.4 mL min-1. The GC oven temperature started at 80 ºC, being 177 

consecutively increased at 15 ºC min-1 until 180 ºC, at 8 ºC min-1 until 250 ºC, and at 3 178 

ºC min-1 up to 300 ºC. At the end of each ramp, temperature was held for 1 min. Finally, 179 

an increase of 20 ºC min-1 was executed until reaching 320 ºC, holding this temperature 180 

for 6 min. The detector was set to quantify the analytes covering specific masses ranging 181 

from 40 to 600 atomic mass units. The mass spectrometer and source temperatures were 182 

150 ºC and 230 ºC, respectively. Samples were quantified using a six-point calibration 183 

curve (5, 10, 25, 50, 60, 80 µg mL-1). Sample preparation for the PAH analyses was 184 

performed at the “Laboratory of Environmental Engineering” of THE Universitat Rovira 185 

i Virgili (URV), while concentrations were determined at the “Servei de Recursos 186 

Científics i Tècnics” of the same institution (SRCiT-URV). 187 

 188 

2.4. Statistical analysis 189 

 190 

Results were statistically evaluated using XLSTAT Statistical Software for Excel. 191 

Repeated measures of the ANOVA were used to state significant differences between 192 

irradiated and non-irradiated samples through the time. A regression analysis was also 193 

executed to study the relationship between concentrations and time. Probability levels 194 

were considered as statistically significant at p<0.05. 195 

  196 
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2.5. Ecotoxicological tests 197 

 198 

Soils were extracted by using an ultrasonic bath mixture (1:1) of n-hexane 95% (UV-199 

IR-HPLC) PAI-ACS (Panreac, Castellar del Vallès, Barcelona, Spain) and acetone (Reag. 200 

Ph. Eur) PA-ACS-ISO (Panreac), following the US EPA method 3550C. Blank soil 201 

samples were simultaneously extracted following the same procedure. Afterwards, soil 202 

extracts were filtered, and the solvent was completely dried with a rotatory evaporator, 203 

being finally reconstituted with 2 mL of dimethyl sulfoxide (UV-IR-HPLC-GPC) to a 204 

concentration of 2-4% in Microtox diluent (2% NaCl of aqueous solution). Ecotoxicity 205 

values were quantified by means of the Microtox® 500 Analyser (SDI, USA), following 206 

the ISO 11348-1:2007 norm. The bioluminescent bacteria V. fischeri was used to measure 207 

the inhibition of light emission when organisms were exposed to soil extract samples. 208 

EC50 values were estimated as the sample concentration causing 50% of light inhibition 209 

on the test organisms (Roig et al., 2013). Sample preparation and Microtox® test were 210 

performed at the “Laboratory of Environmental Engineering” of the URV. 211 

 212 

2.6. Hydrogen isotope analysis of benzo(a)pyrene 213 

 214 

For hydrogen isotope analysis, soil samples were also extracted with the same 215 

Milestone Start E Microwave Extraction System (Milestone s.r.l., Sorisole, Italy), 216 

according to the US EPA method 3546. The extract was treated by following the same 217 

procedure used to analyze PAH levels. Once the extract was completely dried, it was 218 

dissolved in 62.5 µL of dichloromethane (99.5%, Scharlau Chemie S.A.) free of any 219 

deuterated PAHs that could interfere in δ2H analysis. The hydrogen isotope composition 220 

of benzo(a)pyrene was analyzed using a gas chromatography-pyrolysis-isotope ratio 221 

mass spectrometry system (GC-Pyr-IRMS) consisting of a Trace GC Ultra equiped with 222 

a split/splitless injector, coupled to a Delta V Advantage IRMS (Thermo Scientific 223 

GmbH, Bremen, Germany), through a combustion interface.  224 

The GC/Pyr/IRMS system was equipped with an Agilent Technologies DB-1 column 225 

(30 m × 0.25 mm, 1.0 μm film thickness; Santa Clara, CA, USA). The oven temperature 226 

program was kept at 50 °C for 1 min, heated again until 160 °C at a rate of 25 °C min-1, 227 

then up to 320 °C at a rate of 3 °C min-1, being finally held at 320 °C for 20 min. The 228 

injector was set to splitless mode at a temperature of 280 °C. Helium was used as a carrier 229 

gas with a gas flow rate of 1.0 mL min-1. 230 



8 
 

Hydrogen isotope ratios are reported relative to an international standard (Vienna 231 

Standard Mean Ocean Water, VSMOW), using the delta notation: 232 

 δ2H (‰) = (R/(Rstd-1)) x 1000 233 

where R and Rstd are the isotope ratios (H2/H1) of the sample and the standard, 234 

respectively. All the measurements were run in duplicate, and the standard deviations of 235 

the δ2H values obtained were below ±10‰. The analytical system was daily verified using 236 

PAH control standards with known hydrogen isotope ratios, which were previously 237 

determined using a Carlo-Erba 1108 (Carlo-Erba, Milano, Italy) elemental analyzer (EA) 238 

coupled in continuous flow to a Delta Plus XP isotope ratio mass spectrometer (Thermo 239 

Fisher Scientific, Bremen, Germany). The samples were prepared for the isotopic 240 

analyses in the “Mineralogia Aplicada i Geoquímica de Fluids” Research Group 241 

laboratory and analyzed at the “Centres Científics i Tecnològics” of the Universitat de 242 

Barcelona (CCiT-UB).  243 

 244 

3. Results and discussion 245 

 246 

3.1. Photodegradation of PAHs in soils 247 

 248 

The trends in the levels of naphthalene, phenanthrene, pyrene, benzo(a)pyrene, and 249 

benzo(g,h,i)perylene in Arenosol and Regosol soils, are depicted in Fig. 1. Those 250 

compounds were selected as representatives of 2-, 3-, 4-, 5- and 6-ringed PAHs, 251 

respectively. The results for other PAHs are shown in Supporting Information (SI, Fig. 252 

S1). A different behavior for the 16 PAHs in coarse- and fine-textured soils over the time 253 

was observed, leading to different photodegradation rates, which were calculated 254 

considering the difference between irradiated samples and dark controls (Table 2). 255 

Statistical significances for the different exponential and linear rates are shown in Table 256 

3. Three main processes might be related to the concentration decreases: volatilization 257 

(Wang et al., 2015), sorption (Liu et al., 2007; Zhang et al., 2014), and photodegradation 258 

(EL-Saeid et al., 2015). However, the contribution of each process was different 259 

according to the physicochemical properties of each compound (SI, Table S1), as well as 260 

to the texture of each soil. In general terms, higher photodegradation rates were noted in 261 

some compounds for fine-textured soil, when comparing irradiated samples and dark 262 

controls. As expected, the lowest PAH recoveries were found for the most volatile 263 

compounds (naphthalene, acenaphthylene and acenaphthene). PAH recoveries 1 h after 264 
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soil contamination were found to be higher in fine-textured Regosol soil (14%-127%) 265 

than in heterogeneous coarse-textured Arenosol soil (7%-92%). The latter has lower 266 

organic matter content, as well as a lower amount of fine fraction, causing a weaker 267 

retention of PAHs.  268 

Volatilization was probably the most significant process for 2- and 3-ringed PAHs. No 269 

differences of naphthalene concentrations were found between irradiated and dark control 270 

samples, indicating that naphthalene was not photodegraded in any soil, either Arenosol 271 

or Regosol. Because of its high vapor pressure, the decreasing content of naphthalene 272 

(85%) observed during the first hour after being spiked (SI, Table S1) could be related to 273 

volatilization processes (Liu et al., 2011). Similar results were also obtained for 274 

acenaphthylene, being 80% decreased in the same period of time elapsed. Regarding 275 

acenaphthene, similar and constant concentrations were noted for irradiated and dark 276 

control samples over the time, with slight decreasing rates in Arenosol and Regosol soils 277 

(1.5% and 2%, respectively). Consequently, a significant decrease of the concentration of 278 

this compound was not observed (p>0.05), indicating that photodegradation did not occur. 279 

Fluorene, phenanthrene, anthracene and fluoranthene showed higher decreasing 280 

concentration rates in Regosol than in Arenosol soil. In Regosol soil, phenantrene and 281 

anthracene exhibited photodegradation rates of 33% and 40%, respectively, after 28 days 282 

of light exposure, being the differences between controls and irradiated samples 283 

statistically significant after 2 days.   284 

 In Arenosol soil, pyrene, benzo(a)anthracene, chrysene and benzo(b+k)fluoranthene 285 

kept their concentrations constant in both irradiated samples and dark controls, suggesting 286 

lack of photodegradation. In contrast, decreasing concentrations of the same 4-ringed 287 

PAHs were found in fine-textured Regosol soil. Decreasing rates were up to 30% for these 288 

compounds at the end of the experiment. In turn, pyrene concentration was only slightly 289 

decreased (17%) over the experiment. This ratio is 10% lower than that reported by 290 

(Zhang et al., 2010) for pyrene in soil samples irradiated using UV lamps with a 291 

wavelength of 254 nm. However, no significant differences were noted in the current 292 

study between irradiated and control samples (p>0.05).  293 

Benzo(a)pyrene was sorbed to soil during the first day according to the fast 294 

concentration decrease, in both soils and both irradiated and non-irradiated samples. A 295 

decreased rate of 23% was estimated in coarse-textured Arenosol soil, which is in 296 

agreement with the findings of Zhang et al. (2006). In turn, higher rates were observed in 297 

fine-textured Regosol soil, showing a complete removal of benzo(a)pyrene after 7 days 298 
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of incubation. Zhang et al. (2008) reported that titanium dioxide (TiO2) under UV light, 299 

accelerates the photodegradation process of phenanthrene, pyrene and benzo(a)pyrene on 300 

surface soil, being benzo(a)pyrene the most quickly degraded. Although the TiO2 content 301 

in fine-textured Regosol soil is lower than that in Arenosol soil, the higher content of 302 

other photocatalysts (e.g., Fe2O3, Al2O3, MnO2, or TiO2) in the fine-textured soil, as well 303 

as the higher fine fraction due to its clay content, might be responsible of this complete 304 

degradation (Gupta and Gupta, 2015; Zhang et al., 2006; Zhao et al., 2004).  305 

As a consequence of the high constant concentrations in irradiated samples and dark 306 

controls, it can be confirmed that dibenzo(a,h)anthracene tended to be less adsorbed than 307 

other PAHs in both soils, since concentrations in dark controls were constant over the 308 

experiment. This compound seemed to suffer a slight photodegradation in the coarse-309 

textured soil, while the degradation rate was substantially higher in fine-textured soil 310 

(<5% and 28%, respectively) over the experiment. After 28 days of exposure, only 12% 311 

of the indeno(123-cd)pyrene was photodegraded in Arenosol soil, while up to 69% was 312 

removed in fine-textured Regosol soil. Benzo(ghi)perylene was adsorbed more quickly 313 

in the coarsed soil, finding a slightly higher decrease of its concentration in dark controls 314 

over the experiment when comparing to dibenzo(a,h)anthracene. The photodegradation 315 

of benzo(ghi)perylene started in the 14th day of exposure, being the photodegradation rate 316 

<5% after 28 days. Contrastingly, this PAH was less adsorbed in Regosol soil, where a 317 

photodegradation of up to 25 % was noted at the end of the experiment.  318 

Phenantrene, pyrene, benzo(a)pyrene and benzo(ghi)perylene showed a concentration 319 

decrease in dark conditions in Arenosol soil, indicating that unknown degradation 320 

processes, other than photodegradation, could be also occurring in the dark conditions for 321 

this type of soil. In contrast, in the Regosol soil, these same compounds showed constant 322 

concentrations in dark conditions, being therefore different from the levels observed 323 

under light conditions. 324 

Focusing on the differences between soil textures, our findings agree with those 325 

previously reported by Xiaozhen et al. (2005). These authors found that the photolysis 326 

rate of antrazine and the photolytic depth increased gradually from sand through silt to 327 

clay. Therefore, photochemical reactions may be accelerated when soil particles are 328 

smaller. This is likely related to the increase of the surface area per mass, hence showing 329 

a greater catalytic capability. By contrast, Zhang et al. (2010) found that the increase of 330 

soil particle size allows a higher scattering and permeation of light, therefore speeding up 331 

any photodegradation process. It must be stated that the current experiment was 332 
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performed with the top soil layer (1 mm of depth), since the objective was to analyze the 333 

PAH photodegradation in soils due to atmospheric deposition. Consequently, in the 334 

present study the role of light penetration is discarded. Several studies have also 335 

highlighted the active function of Fe2O3, MnO and TiO2 to boost photodegradation 336 

processes. Zhao et al. (2004) found that the addition of α-Fe2O3 or TiO2 enhanced the 337 

photocatalytic degradation of gamma-hexachlorocyclohexane (γ-HCH) in the soil 338 

surface. Similarly, Zhang et al. (2006) stated that the content of Fe2O3 and other 339 

semiconductor oxides, such as TiO2 and MnO2, in soils improved the photodegradation 340 

of benzo(a)pyrene. Notwithstanding, the presence of oxides available in fine-textured 341 

Regosol soil, as well as its clay content, might have some influence on the high 342 

photodegradation rates, even in the PAHs of high molecular weight. Nadal et al. (2006) 343 

reported that high molecular weight PAHs could not be photodegraded in an organic 344 

solvent after one week of UV-B exposure. In contrast, Guieysse et al. (2004) confirmed 345 

found out that UV-photolysis acts preferentially on large PAHs. In any case, the 346 

complexity of soils could give place to an enhancement and acceleration of 347 

photodegradation reactions. 348 

  349 

3.2. Effect of photodegradation over ecotoxicity of PAHs 350 

 351 

Microtox® has been established as a fast, useful and sensitive method to assess the 352 

toxicity of soils spiked with PAHs (Khan et al., 2012). According to Salizzato et al. 353 

(1997), 5 min.-EC50 values were found to be suitable for these organic compounds. In the 354 

present study, blank samples in Arenosol and Regosol soils, showed ecotoxicity values 355 

of 113 and 182 mg of soil mL-1 Microtox® diluent, respectively. These results are 10-356 

times higher than toxicity results found in spiked soil samples before any irradiation, 357 

showing values of 12.9 and 15.6 mg of soil mL-1 Microtox® diluent, in Arenosol and 358 

Regosol soil samples, respectively.  359 

The EC50 values of irradiated samples and dark controls in Arenosol and fine-textured 360 

Regosol soils are depicted in Fig. 2. The coefficient of determination (R2) of EC50 vs. Σ16 361 

PAH concentrations over the time was 0.75 and 0.78 in coarse- and fine-textured soils, 362 

respectively. Both irradiated samples and dark controls tended to increase their EC50 over 363 

time. This slow detoxification would be mainly consequence of the volatilization, 364 

sorption and/or photodegradation of PAHs. In Arenosol samples, EC50 of irradiated and 365 

control samples showed a very similar trend. Therefore, no ecotoxicity differences were 366 
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found, independently on the exposure to light, being in full agreement with the findings 367 

from the chemical analysis of PAHs.  In contrast, EC50 in irradiated and dark control 368 

samples of fine-textured soils showed a different pattern (Fig. 2). Excluding data 369 

regarding one day after incubation, the EC50 curve of irradiated samples was more 370 

pronounced than that of dark controls, indicating a lower toxicity. Taking into account 371 

that irradiated and dark control samples were exposed to the same conditions, excepting 372 

light exposure, it is clear that light enhances the detoxification of fine-textured Regosol 373 

soil. Similarly to Arenosol soil findings, the current toxicity results also agree with the 374 

high photodegradation rates observed in the analytical experiment. Those 3-, 4-, 5- and 375 

6-ringed PAHs, which were highly photodegraded, could be the responsible of the 376 

toxicity decrease. In the period of time elapsed between day 1 and before 2 and 3 days 377 

after incubation time in Regosol and Arenosol soils, respectively, the toxicity of irradiated 378 

samples was higher than in dark controls. This could be linked to the potential formation 379 

of metabolites, such as some oxygenated PAHs, even more toxic than the parental 380 

compounds (Bandowe et al., 2014; Knecht et al., 2013; Lundstedt et al., 2007). Anyhow, 381 

this finding deserves further investigation, which should confirm the relationship between 382 

the generation of by-products and the ecotoxicological status of soil. 383 

The results of the Microtox® ecotoxicity test demonstrated that the light, together with 384 

other mechanisms such as sorption, volatilization, and abiotic degradation, enhances PAH 385 

detoxification on surface soil. This process is especially remarkable in fine-textured soils, 386 

which contain materials capable to act as photocatalysts. Anyway, although 387 

photodegradation and detoxification occurred, spiked soil samples did not achieve 388 

toxicity levels of blank samples 28 days after light exposure. Consequently, a longer 389 

exposure time, or an increase of light intensity, would be required to completely remove 390 

PAHs from soils. However, the outcomes of both chemical and ecotoxicological analyses 391 

indicate that photodegradation is an important process of PAH removal in soil.  392 

 393 

3.3. Hydrogen isotope effects on benzo(a)pyrene 394 

 395 

The hydrogen isotopic composition of benzo(a)pyrene in irradiated samples and dark 396 

controls is shown in Fig. 3. In Arenosol soil, benzo(a)pyrene of irradiated samples 397 

experienced a change in its hydrogen isotopic composition (after only 5 days of 398 

experiment) from  -39‰ to +193‰. In agreement with data on PAH levels, this high 399 

isotopic shift clearly confirms degradation of benzo(a)pyrene under the selected climate 400 
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conditions. Due to their too low concentrations, δ2H could not be obtained from the 401 

subsequent samples. Unexpectedly, a hydrogen isotopic change of benzo(a)pyrene was 402 

also observed in dark control samples. Therefore, unknown degradation processes could 403 

be also occurring in absence of light (Fig. 3). Under darkness conditions, benzo(a)pyrene 404 

in Arenosol suffered a progressive enrichment in δ2H. Despite being slower than in 405 

irradiated samples, it increased from -39‰ to +181‰ after 28 days of incubation in the 406 

dark. It is suggested that there could be some abiotic degradation of benzo(a)pyrene, 407 

which would be the result of its reaction with organic and/or mineral phases of the soil.  408 

The hydrogen isotope results of benzo(a)pyrene in Regosol soil samples were similar 409 

to those corresponding to Arenosol soil. Benzo(a)pyrene hydrogen isotopic composition 410 

changed from -39‰ to +68‰ after only 3 days of experiment (Fig. 3). Five days after 411 

starting, a decrease in the δ2H value was observed, most likely as a result of reversible 412 

sorption processes, which might have released benzo(a)pyrene molecules with a lower 413 

degradation degree, and consequently, with a lower δ2H. However, this isotopic shift also 414 

confirms that benzo(a)pyrene in Regosol soil is degraded under the same climate 415 

conditions. Dark controls also showed a slow degradation, with an isotopic change from 416 

-39‰ to +35‰ after 28 days of experiment. Similarly to Arenosol soil samples, dark 417 

controls of Regosol soil showed a slower isotopic enrichment in 2H with respect to 418 

irradiated samples, confirming that the same process of PAH loss might be occurring. 419 

The evolution of the hydrogen isotopic composition of the dark controls shows 420 

fluctuations over the time that could be linked to sorption/desorption effects. 421 

Consequently, the hydrogen isotope analysis also seems to confirm that sorption 422 

processes of PAHs in soil were present, which is in agreement with the data from the 423 

chemical analysis of PAHs. Notwithstanding, since the relationship between the lack of 424 

hydrogen isotopic fractionation of PAHs with sorption processes in soil has not been 425 

described in the scientific literature, this hypothesis cannot be confirmed yet. Our results 426 

corroborate that benzo(a)pyrene is not only photodegraded, but also that this degradation 427 

is associated to a significant isotopic change. Moreover, they highlight the great potential 428 

of CSIA to be used as a powerful tool to monitor in situ PAH degradation. Furthermore, 429 

the abiotic degradation of benzo(a)pyrene without light intervention was proved to be a 430 

potentially relevant pathway of PAH loss in soil. However, further studies are still 431 

necessary to confirm the mechanisms of PAH degradation in dark conditions. 432 

 433 

4. Conclusions 434 



14 
 

 435 

The photodegradation of PAHs in soils is highly dependent on the exposure time, the 436 

molecular weight of each hydrocarbon, and the soil texture. Low molecular weight PAHs 437 

are more influenced by volatilization and sorption, while medium and high molecular 438 

weight PAHs are able to undergo different photodegradation ratios. Soil properties 439 

(texture and metal oxides) were found to influence on volatilization, sorption and 440 

photodegradation of PAHs. Photodegradation in soils is a mechanism that mostly occurs 441 

in soil surface, being able to partially detoxify soil. Moreover, this process can be 442 

enhanced by solid phase soil composition, especially in soils with a finer fraction, as well 443 

as by the presence of semiconductor minerals, such as metal oxides. The evolution of 16 444 

PAH concentrations over the time agrees well with Microtox® results, with a faster 445 

detoxification in fine-textured Regosol soil. However, after 28 days of incubation, soil 446 

samples were not completely detoxified. It is important to note that photodegradation is 447 

not the only process of PAH loss in soils. Other mechanisms, such as biodegradation and 448 

sorption, may also have important roles on the PAH behavior in soils. Moreover, in a 449 

climate change context, where an increase of solar radiation is expected, 450 

photodegradation could become a very important process in PAH dynamics in soils.  451 

Finally, the complementary analyses of hydrogen isotopes of benzo(a)pyrene 452 

confirmed, at a molecular level, that this compound is degraded not only under light 453 

conditions, but also in the darkness. Furthermore, the strong isotopic effect observed in 454 

benzo(a)pyrene makes the CSIA a potentially suitable technique to give evidence of PAH 455 

degradation. Since its degradation involves a high hydrogen isotopic variation, CSIA is 456 

also a powerful tool to quantify in situ the degradation efficiency.  457 
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Fig. 1. Concentration of various PAHs in irradiated and dark control soil samples. 
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Fig. 2. Ecotoxicity of Arenosol and Regosol soil samples spiked with 16 PAHs. 
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Fig. 3. Hydrogen isotopic composition of benzo(a)pyrene in Arenosol and Regosol soils 

in irradiated and dark control experiments.  
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Table 1 

Physico-chemical properties of the selected Mediterranean soils. 

 Arenosol soil Regosol soil 

pH 5.8 8.0 

Electrical conductivity at 25 ºC (dS m-1)a 0.06 0.13 

Organic C (%)b 0.71 1.70 

Total Kjeldahl N (%) 0.07 0.18 

C/N 10.1 9.44 

CaCO3 (%) 0.10 23.20 

Texture: sand/silt/clay (%)c 74.1/14.0/11.9 43.4/22.3/34.3 

Cation exchange capacity (meq 100 g-1)d 12.60 18.23 

Exchangeable calcium (mg CaO kg-1)d 4.80 12.55 

TiO2 (mg kg-1) 429 41.3 

MnO2 (mg kg-1) 573 648 

Al2O3 (mg kg-1) 3008 6070 

Fe2O3 (mg kg-1) 6686 13492 

 Analytical methods: aAqueous extracts 1:2.5; bOxidizable C by Walkley-Black method; 
cRobinson Pipette method; d1 N ammonium acetate extracts. 
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Table 2 

Statistical significance (p) of the regression associated to the photodegradation of 

PAHs.  

Compound Arenosol soil Regosol soil 

 regression p regression p 

Naphthalene exponential 0.277 exponential 0.955 

Acenaphthylene exponential 0.571 

 

exponential 0.023 

Acenaphthene exponential 0.005 exponential <0.0001 

Fluorene exponential 0.006 exponential <0.0001 

Phenanthrene exponential <0.0001 exponential <0.0001 

Anthracene exponential <0.0001 exponential <0.0001 

Fluoranthene exponential 0.548 exponential 0.152 

Pyrene exponential 0.06 linear 0.134 

Benzo(a)anthracene + 

chrysene 

exponential 0.137 linear 0.095 

Benzo(b+k)fluoranthene exponential 0.039 linear 0.454 

Benzo(a)pyrene exponential 0.017 exponential 0.114 

Benzo(ghi)perylene exponential 0.409 exponential 0.120 

Dibenzo(a,h)anthracene exponential 0.058 exponential 0.131 

Indeno(123-cd)pyrene linear 0.289 exponential 0.004 

In bold, statistically significant regression. 
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Table 3 

Photodegradation rates (%) of the 16 PAHs under study in Arenosol and Regosol soils. 

 

 Arenosol soil Regosol soil 

Naphthalene 0 0 

Acenaphthylene 0 0 

Acenaphthene 1.5 2 

Fluorene 3 9.5 

Phenanthrene 11.2 33.2 

Anthracene 19.7 39.8 

Fluoranthene 0 12.5 

Pyrene 0 17.1 

Benzo(a)anthracene + chrysene 0 30 

Benzo(b+k)fluoranthene 0 30 

Benzo(a)pyrene 23 4.9* 

Benzo(ghi)perylene 3.6 24.6 

Dibenzo(a,h)anthracene 2 28.3 

Indeno(123-cd)pyrene 11.7 68.9 

*completely degraded after 7 days of light exposure. 

 


