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ABSTRACT 17 

In this study we analyzed some aspects of the assessment of developmental delay in the zebrafish 18 

embryotoxicity/teratogenicity test and explored the suitability of acetylcholinesterase (AChE) activity as a 19 

biochemical marker and as a higher throughput alternative to morphological endpoints such as head-trunk 20 

angle, tail length and morphological score. Embryos were exposed from 4 to 52 hours post-fertilization (hpf) 21 

to a selection of known embryotoxic/teratogen compounds (valproic acid, retinoic acid, caffeine, sodium 22 

salicylate, glucose, hydroxyurea, methoxyacetic acid, boric acid and paraoxon-methyl) over a concentration 23 

range. They were evaluated for AChE activity, head-trunk angle, tail length and several qualitative 24 

parameters integrated in a morphological score. In general, the different patterns of the concentration-25 

response curves allowed distinguishing between chemicals that produced growth retardation (valproic and 26 

methoxyacetic acid) and chemicals that produced non-growth-delay related malformations. An acceptable 27 

correlation between the morphological score, AChE activity and head-trunk angle as markers of 28 

developmental delay was observed, being AChE activity particularly sensitive to detect delay in the absence 29 

of malformations.   30 
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Abbreviations:  33 

AChE: acethylcolinesterase 34 
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TMS: Total morphological score 36 

WEC: Whole Embryo Culture 37 

DTNB: 5,5'-dithiobis-(2-nitrobenzoic acid)  38 

hpf: hours post-fertilization 39 

40 



1. Introduction 41 

Animal testing will increase dramatically over next decade as a consequence of implementation of the new 42 

EU regulation for the Registration, Evaluation and Authorization of Chemicals, REACH (Pedersen et al., 43 

2003; Van der Jagt et al., 2004). One of the toxic responses that must be evaluated is the effect on 44 

development, principally teratogenesis. Reproductive and developmental toxicity studies will use by far the 45 

most animals and resources within REACH (particularly 23% of animals and 32% of resources in 46 

developmental studies). Thus, the introduction of valid alternatives and research into new alternative 47 

methods for developmental toxicity testing is specifically urgent in order to reduce the number of animals 48 

used (Piersma, 2006). Furthermore, medium-to-high throughput assays of developmental toxicity would be 49 

valuable during the screening phase of new drugs research.  50 

 51 

In the last decade assays using embryonic stages of the vertebrate zebrafish (Danio rerio) have attracted the 52 

attention of toxicologists due to their several advantages. In particular, fish embryos are considered as non-53 

protected life stages and –similar to in vitro assays- an alternative to animal testing (EU directive 54 

2010/63/EU), although they use whole organisms. The fish embryo test with zebrafish (FET) has been 55 

suggested as replacement of the acute tests performed with juveniles or adults (Braunbeck et al., 2005) and 56 

a draft for an OECD guideline is currently under review (OECD, 2006). Approval of this OECD guideline 57 

would prompt the application of the fish embryo test for the chemical safety evaluation on an international 58 

scale. The FET is also employed for effluent testing in different countries replacing adult fish tests (DIN, 59 

2001). Analysis of acute toxicity in embryos can also include the screening for developmental disorders as 60 

an indicator of teratogenic effects. 61 

 62 

Zebrafish are easy to maintain and produce large numbers of embryos that develop outside the mother. The 63 

transparency of their embryos allows the scoring of teratological and embryotoxic effects easily. In addition, 64 

the development is fast and has been well characterized, including morphological, biochemical and 65 

physiological information at all stages of early development (Hill et al., 2005). The development process is 66 

highly conserved across vertebrates and the zebrafish genome is completely characterized. Hence, 67 

zebrafish embryos represent an attractive model allowing reduction and refinement of animal use in research 68 

(Yang et al., 2009).  69 

 70 



Numerous studies have been reported exploring the capacity of zebrafish assays for the assessment of the 71 

teratogenic potential of chemicals showing a good concordance with in vivo results in mammals (Brannen et 72 

al., 2010; Hermsen et al., 2011; Nagel, 2002; Selderslaghs et al., 2009; Van den Bulck et al., 2011).  They 73 

focused on three manifestations of deviant development: death, malformation and growth retardation (Wilson 74 

and Fraser 1977). However, they applied different experimental protocols and the number and the variety of 75 

assayed substances were limited. Currently there is no consensus about the optimal procedure in some 76 

basic features as the specific endpoints and scoring systems to use, the time of exposure and the stage of 77 

embryonic/larval development to do the observations.  78 

General retardation of development is a phenomenon often observed in teratogen-exposed embryos (Liang 79 

et al., 2010; van den Brandhof and Montforts, 2010). Developmental delay is usually considered as a 80 

reversible and unspecific effect. However, it might lead to persistent delays or deficits in function (Daston et 81 

al., 2010) and permit teratogens to act for a longer time during sensitive stages, and thus intensify the 82 

severity of the produced anomalies (Weis and Weis, 1987). Some studies have aimed to distinguish between 83 

growth retardation and other developmental effects in the zebrafish assays. Nagel (2002) considered that 84 

“growth-retardation” at 24 or 48 hpf and tail length at 120 hpf were “teratogenic endpoints”, whereas defects 85 

on development of somites, eyes or blood circulation were “development endpoints”. Brannen et al (2010) 86 

proposed an extensive scoring system that takes into account the severity of the effects, but those endpoints 87 

more related to growth retardation were finally eliminated because they were non-discriminating or not cost-88 

effective. More recently, Van den Bulck et al (2011) considered “growth retardation” as a teratogenic 89 

endpoint. However, Hermsen et al (2011) split the assessment in two endpoint categories and two respective 90 

scores, a general morphology score and a teratogenic score, suggesting that the first score gives a “semi-91 

quantitative assessment of (mal)development”.   92 

 93 

For the purpose of attain a better characterization of the developmental retardation in the zebrafish embryo 94 

assays we delineated a scoring system based on some qualitative morphological features characterizing the 95 

zebrafish stages described by Kimmel and co-workers (1995) during the 52 hpf. This score has a similar 96 

design as the scoring system developed for mammalian whole embryo culture assays (WEC) by Klug and 97 

co-workers (1985).  Furthermore, we measured the length of the tail and head-trunk angle as quantitative 98 

morphological markers of development (Bachmann, 2002; Kimmel et al., 1995). Finally, we determined the 99 

acetylcholinesterase (AChE) activity in whole 52hpf embryos. In zebrafish, AChE is expressed in a variety of 100 



tissues, including non-cholinergic cells (Hanneman and Westerfield 1989). Its expression starts early before 101 

synapse formation (Layer, 1990) and increases with age along the embryo development (Behra et al., 2002; 102 

Bertrand et al., 2001). Therefore, AChE activity was a reasonable candidate as a sensitive biochemical 103 

marker of developmental delay with a medium-high throughput potential. Embryos were exposed to a 104 

selection of eight compounds characterized by diverse known embryotoxic/teratogen activities (Table 1). 105 

Most of these compounds belong to the set of chemicals tested in the ECVAM international study of 106 

validation on the three in vitro embryotoxicity tests namely embryonic stem cells test, limb bud micromass 107 

test and post-implantation whole-embryo culture test (Genschow et al., 2004). The concentration-response 108 

curves obtained for the different endpoints were analyzed and compared in order to assess their relative 109 

performance as markers of developmental delay and in connection with the teratogenic effects. In addition, 110 

an irreversible AChE inhibitor was tested so as to compare AChE inhibitors and compounds that decrease 111 

AChE activity since they induce developmental delay. 112 

 113 

2. Materials and methods 114 

2.1. Chemicals and test media 115 

All the selected chemicals were purchased from Sigma-Aldrich (St. Louis, MO). Danieau’s buffer (58 mM 116 

NaCl; 0.7 mM KCl; 0.4 mM MgSO4·7 H2O; 0.6 mM Ca(NO3)2; 5 mM HEPES; pH 7.4) was used as the 117 

medium for all solutions during the experiments to keep the pH stable and constant between assays due to 118 

the different pKa of the chemicals tested.  119 

 120 

2.2. Zebrafish maintenance and egg production 121 

Adult female and male zebrafish were obtained from a commercial supplier (Pisciber, Barcelona) and housed 122 

separately in a closed flow-through system in standardized dilution water as specified in ISO 7346-1 and 123 

7346-2 (ISO, 1996; 2 mM CaCl2•2 H2O; 0.5 mM MgSO4•7 H2O; 0.75 mM NaHCO3; 0.07 mM KCl). Fish 124 

were maintained at 26±1 ºC on a 14-h light and 10-h dark cycle and were fed with commercial dry flake food 125 

and live brine shrimp. The day before eggs were required, males and females were placed in breeding tanks 126 

(Aquaneering, San Diego, California) with a 2:1 male:female ratio. On the next morning, the eggs could be 127 

collected 30 minutes after the light had been turned on. Eggs were collected and successively cleaned with 128 

dilution water corresponding to the reconstituted water according to ISO-standard 7346, which was diluted 129 

1:5 using deionized water. 130 



 131 

2.3. Embryo exposure 132 

All stock solutions were prepared with Danieau’s buffer except retinoic acid that was initially prepared in 133 

100% dimethylsulfoxide (DMSO) and subsequently diluted in Danieau’s buffer with a final DMSO 134 

concentration of 0.05% (v/v). For all substances, the tests were carried out using five concentrations with a 135 

negative control, test medium only or solvent control with 0.05% of DMSO. The tested concentrations 136 

covered the range between those producing non-abnormal development and those producing high indices of 137 

teratogenesis as determined in at least one previous range-finding assay and/or lethality assay (data not 138 

shown). 139 

After egg collection, fertilization success was checked and only batches of eggs with at least a fertilization 140 

rate of 80% were used. Fertilized eggs were exposed at 4 hours post-fertilization (hpf) to test media in a 6-141 

well culture plate (Greiner Bio-one, Germany). Ten embryos were randomly distributed into wells and filled 142 

with 5 ml of each solution.  Each 6-well plate held five different concentrations of the test compound and the 143 

negative or solvent control. Embryos were incubated at 27 ± 1ºC on a 14-h light and 10-h dark cycle for 48 144 

hours. The exposure was semi-static and solutions were renewed at 28 hpf.   145 

At 8, 28 and 52 hpf, mortality of embryos was checked using a stereomicroscope (SMZ-168, Motic). 146 

According to Nagel (2002) four lethal endpoints were determined which are coagulation of eggs, non-147 

development of somites, non-detachment of the tail and no presence of heartbeat. At 52 hpf embryos were 148 

evaluated for developmental effects and acetylcholinesterase activity.  149 

 For each substance and concentration, ten fertilized eggs were exposed. Six independent replications were 150 

done, using eggs from different spawning events. AChE activity was measured in pool homogenates of each 151 

of the 6 replicates. Morphological parameters were evaluated in at least 4 of the replicates. 152 

                                                                                                              153 

2.4. Evaluation of developmental effects  154 

 2.4.1. Total morphological score (TMS) 155 

We developed a scoring system based on zebrafish development described by Kimmel and co-workers 156 

(1995) in order to compute morphological differentiation of embryos at around 52 hpf. This score has a 157 

similar design as the scoring system developed for mammalian whole embryo culture assays (WEC) by Klug 158 

and co-workers (1985). We selected nine morphological features based in three developmental stages of 159 

zebrafish (segmentation period, pharyngula period and hatching period). These nine features were chosen 160 



because they show a clear change between developmental stages and they are easy to observe (Table 2). 161 

Each feature was examined in an individual embryo and assigned the appropriate score. A score of 4 was 162 

given for features developed as in hatching period, score 3 was given for features that reach developmental 163 

stage of pharyngula period and score 2 to features showing a developmental stage as in segmentation 164 

period. Finally, score 1 was attributed when features showed a malformation. If the stage of development of 165 

a feature was between two defined stages, a half mark was assigned. The numerical total of scores for all 166 

nine features is the morphological score for the embryo (a maximum score of 36).. The frequency of embryos 167 

in each concentration and control group presenting scores of 35 or less, 34 or less, 33 or less, 32 or less and 168 

31 or less (namely -1, -2, -3, -4 and -5 or more points less than the total score) were calculated and 169 

represented as a set of concentration-response curves. Also, the fraction of abnormal embryos (defined as 170 

the embryos with some score 1 in any morphological feature) was determined for each concentration and 171 

control group and represented together with the morphological score. Scoring of embryos was supervised by 172 

one of the authors (E.T.) and any dubious specimen was photographed and reevaluated. 173 

 174 

 2.4.2. Tail length and head-trunk angle 175 

Embryos that have not yet hatched were dechorionated and all embryos were anesthetized with buffered 176 

tricaine methanesulfonate (0.5 mM, Sigma-Aldrich, St. Louis, MO) and photographed (Moticam 2000, Motic) 177 

positioned on their lateral side. The distance between the anus and the posterior end of the notochord was 178 

defined as tail length (Bachmann, 2002).  179 

The head-trunk angle was measured between a line drawn through the middle of the ear and the eye and a 180 

line parallel to the notochord. The resulting angle was subtracted from 180º to express head-trunk angle as 181 

described in developmental stages (Kimmel et al., 1995).  182 

All measurements were performed with ImageJ 1.41(http://rsb.info.nih.gov/ij/). 183 

 184 

2.5. Acethylcholinesterase (AChE) activity determination 185 

A total of six samples per concentration were analyzed. Each sample was composed of a pool of 10 186 

embryos. The analysis of AChE activity was adapted from Küster (2005). Briefly, the pool of 10 embryos was 187 

homogenized in 0.5 ml ice-cold sodium phosphate buffer (0.1 M, pH 7.4, and 0.1% v/v Triton X-100). 188 

Homogenization was done for 3x 10s using a Pellet Pestle® Kontes. The homogenates were centrifuged at 189 

4ºC for 15 min at 12,600 rpm. Supernatants were removed and stored at -20ºC until analysis. The 190 



determination was carried out in triplicate per sample at 22ºC according to the spectrophotometric method of 191 

Ellman (Ellman et al., 1961), adapted to microtitre plates. Kinetic measurement of the optical density change 192 

with time (OD/min) was recorded at 405 nm for 5 min. The final concentration of the chromogenic reagent, 193 

DTNB, and the substrate, acetylthiocholine-iodide, in the mixture was 0.3 mM and 0.45 mM respectively. The 194 

specific enzyme activity was expressed as nmols of substrate hydrolyzed per minute and per mg of protein. 195 

Protein concentration of the samples was determined in triplicate at 695 nm using a commercial kit 196 

(QuantiPro BCA assay kit, Sigma-Aldrich, St. Louis, MO).  197 

Age-dependent AChE activity characterization between 24 and 52 hpf was performed using embryos 198 

exposed to Danieau’s buffer alone. 199 

 200 

Additionally, an assay of the in vitro AChE inhibitory activity for each substance was done in order to discard 201 

a direct inhibitory action (Results in the supplementary file). Total homogenates of ten unexposed fish 202 

embryos (52 hpf) were incubated directly for 30 minutes at 30ºC with the highest concentration of each 203 

substance tested in the in vivo AChE activity determination. The assay was carried out in triplicate per 204 

substance at 22ºC according to the spectrophotometric method of Ellman (Ellman et al., 1961) as described 205 

previously.  206 

 207 

2.6. Statistical analysis 208 

Concentration-response curves were fitted to all the data using PROAST software (Slob, 2002). The final 209 

model, for the concentration-response curves for head-trunk angle, tail length and AChE activity, was 210 

selected based on the goodness of fit and the presence of the lowest number of parameters in the equation.  211 

For the dichotomous data (teratogenic and lethal effects) a log-logistic model was fitted. The concentration–212 

response curves generated were required to determine EC50 (teratogenic effects) and LC50 (lethal effects) 213 

values. Based on LC50 and EC50 (teratogenic effects) values, a teratogenic index (TI) was calculated as the 214 

ratio LC50/EC50.  215 

 216 

Statistical analysis was performed with SPSS 15.0. One-way analysis of variance (ANOVA) followed by post 217 

hoc multi-comparison with the Bonferroni’s test was used to analyze homogeneous data of the continuous 218 

variables. Kruskal-Wallis test was used to analyze non-homogeneous data. The frequency of abnormal 219 

embryos was evaluated with Fisher's exact test. Significance was accepted when p < 0.05. 220 



 221 

3. Results 222 

The age-dependent AChE activity of zebrafish embryos from Prim-5 to the Long Pec stage (from 24 to 52 223 

hpf) has been characterized. AChE activity increased from about 2 to 43 nmol/min/mg protein (Fig. 1), 224 

showing a negative correlation with head-trunk angle (r2 = -0.96). 225 

 226 

Zebrafish embryos exhibited diverse and specific morphological abnormalities after exposure to each 227 

substance. The incidence of abnormal embryos (fraction of embryos with some teratogenic effect) and 228 

retarded embryos (fraction of embryos with some retardation as measured by the applied morphological 229 

score) were concentration dependent in all compounds except glucose. The defects described below for 230 

each compound were observed in all or most of the embryos at high concentrations. Table 1 shows the LC50 231 

(for lethal effects) and EC50 (for teratogenic effects), derived from the concentration response curves, and the 232 

TI values. All the concentration data are nominal values. 233 

 234 

Valproic acid was tested in the range from 0.05 to 0.6 mM. The main teratogenic effects observed were 235 

pericardial edema and tail necrosis. Fig. 2.A shows the concentration-response curves for morphological 236 

score performed from the fraction of embryos showing -1, -2, -3, -4 and -5 points less on the total 237 

morphological score. For valproic acid, there was a clear shift between the concentration-response curves 238 

suggesting that a progressive effect on the development occurs at doses that did not produce malformations. 239 

Among all the morphological features, pigmentation was the most affected. A significant decrease of AChE 240 

activity was reached at the first concentration (Fig. 2.C). Similarly, head-trunk angle significantly increased 241 

from 0.05 mM (Fig. 2.B) whereas for tail length a significant decrease was observed from 0.3 mM (Fig. 2.D). 242 

Moreover, all three parameters showed a significant concentration-response relationship.  243 

 244 

The concentration range of retinoic acid tested was between 0.5 nM and 10 nM. Embryos exposed to 245 

retinoic acid showed a characteristic kink in the end of the tail among other abnormalities like pericardial 246 

edema. Concentration-response curves for morphological score shift to the right (higher concentrations) 247 

crossing the concentration-response curve for teratogenic effects (Fig. 3.A). Therefore, developmental 248 

retardation was observed but at doses that produced a high incidence of malformations. AChE activity was 249 

not significantly influenced after retinoic acid exposure (Fig. 3.C), while head-trunk angle showed a statistical 250 



significance from 1 nM (Fig. 3.B). Due to the serious malformations presented by embryos exposed to 10 nM 251 

of retinoic acid, tail length and head-trunk angle were not measured in this concentration. Tail length was 252 

significantly decreased in embryos exposed to retinoic acid at 5 nM. 253 

 254 

For caffeine, tested concentrations were between 0.1 mM and 2.5 mM. The most observed abnormalities 255 

were head, heart and tail malformations. Concentration-response curve for morphological score and 256 

teratogenic effects showed almost no shift (Fig. 3.A). Tail length and head-trunk angle were not significantly 257 

influenced (Fig. 3.B and D), however they could not be measured in embryos exposed to 1.5 mM and 2.5 258 

mM of caffeine due to the gross morphological abnormalities. Only the highest concentrations (1.5 mM and 259 

2.5 mM) showed a significant decrease in AChE activity (Fig. 3.C).  260 

 261 

The concentrations of glucose tested were between 1 mM and 100 mM. All embryos exposed to glucose 262 

showed a normal development without growth retardation or teratogenic effects (Total morphological score 263 

data not show). Glucose also had no significant effect on tail length (Fig. 4.C). Only the highest concentration 264 

tested (100 mM) resulted in a significantly decreased AChE activity (Fig. 4.B) in concordance with a 265 

significantly increased head-trunk angle (Fig. 4.A).  266 

 267 

Sodium salicylate was tested in the range between 3 mM and 16 mM. The characteristic effects of the 268 

treated groups were intracranial hemorrhage, the yolk sac and its extension structure changing from 269 

transparent to opaque brown and swimming disorders. Concentration-response curve for teratogenic effects 270 

(Fig. 3.A) was fitted without considering yolk sac abnormalities as a teratogenic effect. The concentration-271 

response curves for morphological score showed a shift to the right relative to the curve for teratogenic 272 

effects. Sodium salicylate had no significant effect on AChE activity (Fig. 3.C) and only the highest 273 

concentration (16 mM) showed a significant higher head-trunk angle (Fig. 3.B). Tail length was not influenced 274 

after sodium salicylate treatment (Fig. 3.D).  275 

 276 

The concentrations tested for hydroxyurea were from 2 mM to 32 mM. Treated embryos showed tail 277 

malformations and pericardial edema. The concentration-response curves for morphological score showed 278 

some incidence of less pigmented embryos at low concentrations. The slopes were low and the curves were 279 

crossed by the steepest curve for teratogenic effects at high concentration (Fig. 2.A). A significant difference 280 



was only observed in AChE activity at the highest concentration tested (Fig. 2.C and D).  281 

 282 

For methoxyacetic acid, tested concentrations ranged from 2 mM to 16 mM. Abnormal embryos showed 283 

pericardial edema, eye malformation and tail necrosis. As shown in Fig. 2.A the concentration-response 284 

curves showed a clear and gradual shift between the morphological assessment and teratogenic effects. The 285 

most characteristic developmental effect observed was the non-looping of the heart in the embryos 286 

demonstrated by the presence of tube heart. AChE activity showed a significant decrease from the first 287 

concentration (Fig. 2.C). Moreover, there was a significant concentration-response relationship between 288 

methoxyacetic acid exposure and AChE activity. Comparable concentration-response curves for head-trunk 289 

angle and tail length were observed (Fig. 2.B and D).   290 

 291 

Boric acid was tested at concentrations between 7 mM and 35.5 mM. Treated embryos showed mostly tail 292 

malformations and pericardial and yolk sac edema. Concentration-response curves showed almost no shift 293 

between the morphological assessment and teratogenic effects. Head-trunk angle increased significantly 294 

from 15.8 mM (Fig. 4.B), but AChE activity only decreased significantly at 35.5 mM (Fig.4.C). Tail length 295 

showed a significant decrease from 23.7 mM (Fig. 4.D).  296 

 297 

Paraoxon-methyl was tested in the range from 1 µM to 20 µM. Embryos did not show any developmental 298 

delay, but had abnormalities on the chorda-structure and spasms. Concentration-response curve for 299 

teratogenic effects (Fig. 4.A) was fitted based on these alterations. A significant decrease in head-trunk angle 300 

was observed (Fig. 4.B) due to the spinal curvature produced by spasms. Tail length only decreased 301 

significantly from 10 µM (Fig. 4.D) and AChE activity was significantly decreased from 5 µM and reached 302 

almost zero at the highest concentration (Fig. 4.C).  303 

 304 

Correlation analysis was done between AChE activity and the two morphometric endpoints, head-trunk angle 305 

and tail length (Fig. 5) using the EC10 values for each compound (Table 4, supplementary file). LC50 was 306 

used in those cases where an EC10 value could not be calculated because the endpoint did not change after 307 

chemical exposure (AChE activity for retinoic acid and tail length for sodium salicylate). Paraoxon-methyl 308 

exposure produced a decrease in the head-trunk angle instead of an increase as a result of the body 309 

curvature caused by spasms. Therefore, LC50 value was used in the correlation analysis. 310 



Both developmental endpoints showed a moderate correlation with AchE activity with an R2 of 0.75 for head-311 

trunk angle and 0.79 for tail length. Slope values were about 0.81 for head-trunk angle and 0.88 for tail 312 

length.  313 

 314 

4. Discussion 315 

Numerous studies have been reported that explored the suitability of zebrafish embryo assays to predict the 316 

teratogenic potency of chemical substances in mammals (Van den Bulck et al., 2011). Results are promising 317 

but some additional effort is necessary both in the standardization of the methodology and in the extension 318 

and diversity of the compound database analyzed. These studies have assessed a wide diversity of 319 

endpoints, mainly morphological, at different times of development, from 24 hours to 5 days post-fertilization. 320 

These endpoints have been integrated in some semi-quantitative scores in order to characterize the 321 

concentration-effect relationship. Data is fitted by a curve and some teratogenic concentration is computed 322 

(e.g. the teratogen EC50). In addition, some teratogenicity index has to be calculated as a ratio by 323 

comparison with some non-specific embryotoxic effect of the substance as lethality (e.g. LC50, NOAEC). 324 

These relative teratogenicity indices allows to normalize the teratogenic potency in relation to unspecific 325 

toxicity and also, to some extent, to compensate for the limited compound uptake by the fish (Van den Bulck 326 

et al., 2011). Therefore, these teratogenicity indices are the final results that can be compared with the 327 

available teratogenicity data in mammals. Evidently, the predictive capacity of these tests depends on how 328 

the teratogenicity indices are computed. The main variables are the endpoints considered and how they are 329 

integrated in some semi-quantitative score. A purely empirical methodology could be applied to optimize 330 

these variables if a wide enough set of substances is assayed and compared with the in vivo data. Brannen 331 

et al (2010) applies this approach to simplify an original battery of 23 endpoints and 31 tested substances 332 

discarding seven endpoints because low discriminating power. However, these empirical approaches would 333 

not produce a single optimal point since it would be dependent on where the desired midpoint of the 334 

sensitivity-specificity-throughput triangle were positioned. 335 

 336 

While lacking a wide database, improving in the zebrafish embryotoxicity test is possible characterizing the 337 

dose relationships of some endpoints in a limited set of compounds. Our work aimed to improve the 338 

characterization of the endpoints related to developmental retardation. In the seminal study of Nagel (2002) 339 

describing the “Zebrafish Danio rerio Teratogenic Assay” (DarT),  “growth retardation” was considered as a 340 



teratogenic endpoint but no details were given about how it was evaluated, whereas a separate list of 341 

“development” endpoints were proposed (e.g. formation of somites, development of eyes, heart beat). These 342 

“development” endpoints were used by Bachmann (2002) to calculate an EC50 for developmental delay at 343 

24h and 48h in some chemicals. Based in these endpoints, Busquet et al (2008) evaluated growth 344 

retardation considering different parameters such as the global size of the fish egg, the eye and the 345 

sacculi/otoliths position, the degree of pigmentation, the tail not detached and the frequency of spontaneous 346 

movements. On the other hand, some of these “development” endpoints were considered as teratogenic 347 

endpoints by other group that did not included any explicit marker of growth retardation (Selderslaghs et al., 348 

2009). Brannen et al (2010) included several endpoints that could be considered as indicators of 349 

development delay but finally, some of them were discarded because low discriminating power. The way that 350 

growth/developmental retardation is evaluated and whether it is considered a teratogenic event or not, could 351 

modify the quantitative results of the assay. We have some expertise using WEC (Flick et al., 2009) and 352 

applying the scoring system developed by Klug et al (1985) that assigns numerical scores to readily 353 

observable developmental endpoints characteristic of different developmental stages in the rat/mouse 354 

embryo. This score allows a semi-quantitative assessment of the retardation degree and a neat 355 

discrimination of retardation versus malformation. Therefore, we have adapted the design of the WEC 356 

scoring system to zebrafish up to 52 hpf. Details are commented in the Materials and Methods section and in 357 

the Table 2. Recently, a study has been published that followed the same idea and defined a scoring system 358 

very similar to the presented by us but extended until 72 hpf (Hermsen et al., 2011). A concentration-effect 359 

curve can be drawn using the mean morphological score as the quantitative response (Hermsen et al., 360 

2011). However, this curve shows a flat shape and a slight retardation is not apparent. This is a drawback of 361 

indices based on high scores for normal embryos because some individuals losing 1 or 2 points in a score of 362 

36 points practically do not produce a perceptible deviation of the curve. In order to facilitate the discussion, 363 

the results have been represented in an alternative way as a set of curves corresponding to the fraction of 364 

embryos that have lost at least 1, 2, 3, 4 or 5 points on the total morphological score. This representation 365 

gives a better image of the gradual increment of the effects, in the form of a gradual shift between curves, 366 

and allows a direct comparison with the teratogenicity curve (Fig. 2.A and 3.A) 367 

 368 

Curves for teratogenic effect (frequency of abnormal embryos) and for lethality (not shown) can be compared 369 

in order to compute the teratogenic index (TI) as the ratio LC50/EC50 (Table 1). These values can not be 370 



directly compared with those reported previously in other studies because of the multiple heterogeneities 371 

among the respective experimental protocols. However, the results for caffeine, valproic acid and retinoic 372 

acid present are comparable with those reported by Selderslaghs et al (2009) in the assay at 48 hpf. The 373 

LC50 and EC50 values of some compounds, for instance methoxyacetic acid and valproic acid, are not in 374 

accordance with these studies (Bachmann, 2002; Selderslaghs et al., 2009). These differences could be 375 

explained by the fact that they did not use buffered medium in the test solutions, so the EC50 value would 376 

depend on the pH of the solution. Furthermore, in these studies LC50 were calculated from the mortality only 377 

accounted for coagulated embryos.  378 

 379 

In addition to the score, two quantitative morphological endpoints have been evaluated: head-trunk angle, a 380 

parameter described by Kimmel and co-workers (1995) to determine the developing stage of zebrafish 381 

between segmentation period and hatching period (20-70 hpf), and tail length. Head-trunk angle is a very low 382 

throughput morphometric endpoint, but seems to be appropriate for early embryo stages whereas tail length 383 

(or body length) could be more suitable to evaluate growth in older stages (after hatching) (Brannen et al., 384 

2010). Head-trunk angle has also been a useful parameter in measuring developmental delay caused by 385 

disruption of thyroid hormones (Walpita et al., 2009).  386 

 387 

Furthermore, we have explored the suitability of a biochemical endpoint, the activity of AChE, as a marker of 388 

developmental delay in zebrafish embryos. A biochemical endpoint could be more liable to automation and 389 

higher throughput than the morphological endpoints. The expression of AChE starts early, before synapse 390 

formation (Layer, 1990), and increases with age along the embryo development (Behra et al., 2002; Bertrand 391 

et al., 2001). Methods for AChE determination are easy, robust and sensitive. Results from non-exposed 392 

embryos showed a good correlation between AChE activity and head-trunk angle during development (Fig. 393 

1), so AChE activity is developmental stage dependent. We hypothesized that any chemical-induced delay in 394 

development would imply a lower AChE activity compared to normally developed embryos and, conversely, 395 

that a low AChE activity would indicate a chemical-induced delay. Evidently, some exceptions can be 396 

foreseen to this hypothesis: any substance with some specific action on AChE expression or activity, as 397 

AChE inhibitors, could produce results unrelated to the developmental stage.  398 

 399 

The analysis of our results provides an insight on the suitability of the studied endpoints as indicators of 400 



developmental delay. In general, an acceptable degree of accordance among the concentration-effect curves 401 

for the morphological score, head-trunk angle, tail length and AChE activity was observed. A moderate 402 

correlation was demonstrated by the analysis of correlation between AChE activity and the morphometric 403 

endpoints for developmental delay (Fig. 5). The correlation coefficients increase from 0.75 to 0.98 for head-404 

trunk angle, and from 0.79 to 0.93 for tail length if paraoxon-methyl, a compound that interferes directly with 405 

AChE activity, is removed from the data analysis.  406 

 407 

The analysis of the respective dose-morphological score curves confirms that valproic acid and 408 

methoxyacetic acid exposure was characterized by a developmental delay at concentrations that did not 409 

induce malformations (Fig. 2.A), whereas boric acid caused also a clear developmental delay overlapped 410 

with the teratogenic effect. 411 

 412 

AChE activity and head-trunk angle curves for hydroxyurea indicate that this compound produced only a 413 

small retardation effect as can be confirmed by the slight shift on the concentration-morphological score 414 

curves (Fig. 2.A). This developmental delay was overlapped and masked by a strong teratogenic effect. In 415 

the case of caffeine, it behaved as a teratogen that did not induce any significant developmental retardation 416 

at low non-teratogenic concentrations. The reduced AChE activity found at teratogenic concentration and 417 

without developmental delay could be caused by the weak AChE inhibitory activity of caffeine (Table 3, 418 

supplementary file). 419 

 420 

Glucose exposure showed a slight change in morphometric endpoints and AChE activity, but did not produce 421 

any significant morphological alteration on embryos. These results were in accordance with previous studies 422 

reported, in which glucose was used as a negative control for the evaluation of the specific embryotoxic and 423 

teratogenic potential of chemicals (Hill et al., 2005). However, it has been recently demonstrated that 424 

zebrafish embryos exposed to glucose (25 mM) showed severe growth retardation and developmental delay 425 

with heart defects (Liang et al., 2010). The difference from our assay data could be attributed to the fact that 426 

in their study the medium was renewed every eight hours because a fast depletion of the glucose levels was 427 

observed. 428 

 429 

In our study the morphological score curves, head-trunk angle and tail length for retinoic acid suggests that 430 



induces developmental delay at teratogenic concentrations, whereas AChE activity did not seem to be a 431 

good marker of this developmental retardation. This lack of correlation could be explained by the fact that 432 

retinoic acid modulates AChE activity in neuronal maturation in vitro (Sidell et al., 1984). Salicylate produced 433 

intracranial bleeding and yolk sac injuries at concentrations that did not produce any significant 434 

developmental delay. In concordance, no effects were observed in AChE activity, tail length and head-trunk 435 

angle. 436 

 437 

Paraoxon-methyl exposure, a known irreversible AChE inhibitor, produced a decrease in head-trunk angle, 438 

the contrary effect that is observed in the other compounds. This effect could be explained by the fact that 439 

paraoxon-methyl exposed embryos showed muscular spasm resulting in a body curvature. In this case the 440 

reduced AChE activity is unrelated to the developmental stage because of the direct inhibitory action of 441 

paraoxon-methyl.  At high concentrations the inhibition raised nearly 100%. In contrast, in the cases of 442 

valproic acid and methoxyacetic acid, AChE activity decreased parallel to developmental retardation and did 443 

not reach extremely low levels.  444 

 445 

In summary, developmental delay occurs, in a more or less pronounced degree in the zebrafish embryo 446 

exposed to teratogen compounds, but only in some cases, as valproic acid and methoxyacetic acid, the 447 

delay appears at non-teratogenic concentrations. The performance of AChE activity, head-trunk angle, tail 448 

length and the morphological score as markers of developmental delay was comparable. Specifically, for the 449 

two compounds producing retardation at non-teratogenic concentrations the four responses gave similar 450 

results, being AChE activity the most sensitive endpoint. Therefore, the morphological score system that we 451 

have implemented allows an easy and objective assessment of developmental delay and teratogenesis, that 452 

can be complemented with the determination of AChE activity, particularly in those cases in which 453 

developmental delay occurs at non teratogenic concentrations. Furthermore, it is worth noting that AChE 454 

determination is easy, automatable and relatively fast. In the case that an unknown compound is analysed, 455 

false positives can be obtained in the case of strong AChE inhibitors, but can be easily discarded by means 456 

of an in vitro assay.    457 

 458 

Ours results do not allow concluding about the discriminating efficiency of developmental retardation 459 

endpoints in the zebrafish assay to predict teratogenic potential in mammals. Probably, for a major part of 460 



substances, developmental delay is an unspecific effect unrelated or secondary to teratogenic activity and 461 

then including this effect would produce a loss of specificity. In the other side, inclusion of developmental 462 

delay assessment would increase the sensitivity of the assay for some specific compounds inducing 463 

developmental delay related to teratogenic effects. 464 

 465 
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 561 

Tables 562 

 563 

Table 1. Test substance – overview. LC50, EC50 with confidence intervals. Slopes and TI values of the test 564 

substances. EC50 for sodium salicylate was calculated taking into account embryos with brain 565 

hemorrhages and swimming disorders. – No effect.   566 

Test 

substance 

Cas 

no. 
Characterization LC50 (mM) 

Slope 

LC50 

EC50 teratogenic 

(mM) 

Slope 

EC50 

TI 

(LC50/EC50) 



 567 

Valproic acid 
1069-

66-5 
Antiepileptic drug 1.74 (1.68 – 1.75)  

5.0 x 

10-2 
0.52 (0.48 – 0.57)  0.15 3.3 

Caffeine 
58-08-

2 

Xanthine 

alkaloid, 

psychoactive 

substance 

5.0 (4.8 – 5.2)  0.36 0.8 (0.7 – 1.0)  0.69 6.2 

All-trans 

retinoic acid  

302-

79-4 

Vitamin A 

metabolite 

5.1 x 10-5 (4.99 x 10-

5 – 5.71 x 10-5)  

4.15 x 

10-6 

1.9 x 10-6 (1.7 x 

10-6 – 2.2 x 10-6)  

1.96 x 

10-6 
26.8 

Methoxyacetic 

acid 

625-

45-6 

Glycol ether 

alkoxy acid 

metabolite 

32.8 (32.1 – 36.4)  2.68 11.3 (10.0 – 12.0)  3.54 2.9 

Salicylic 

sodium salt 

54-21-

7 

Aspirin 

metabolite 
41.0 (39.2 – 47.1) 4.15 12.5 (11.7 – 13.4)  7.26 3.2 

Hydroxyurea 
127-

07-1 

Antineoplasic 

drug 
42.6 (40.2 – 43.3)  3.09 31.6 (28.3 – 32.0) 2.03 1.3 

Boric acid 
10043-

35-3 

Antiseptic, 

insecticide, flame 

retardant 

53.4 (52.7-57.3) 4.07 18.3 (16.7-20.0)  13.24 2.9 

Paraoxon-

methyl 

950-

35-6 
AChE inhibitor 

8.8 x 10-2 (8.4 x 10-2 

– 9.2 x 10-2)  

1.99 x 

10-2 

1.0 x 10-2 (9.4 x 

10-3 -1.08 x 10-2)  

1.26 x 

10-3 
8.8 

D-(+)-glucose 
50-99-

7 
Sugar  - - - - - 



Table 2. Zebrafish embryo morphological scoring system and criteria employed to evaluate development. Movement was evaluated after dechorionation of the 

embryo. OVL, otic vesicle length (Estimation of the number of additional otic vesicles that could fit between the eye and the otic vesicle). 

  



Endpoints 

Score 

Abnormal Segmentation period Pharyngula period Hatching period 

1 2 3 4 

Detachment of the tail 
No tail, malformation of 
chorda or spinal cord 

Very short tail or attached to 
yolk sac 

Tail completely detached 

Yolk extension retains a 
posterior end begins to taper, 
to take on a more conical 
appearance 

Optic system 
Abnormal pigmentation, 
asymmetric eyes. 

Optic primordium has a 
prominent horizontal crease 

Eye with the retina 
surrounding the lens 

Eyes pigmented 

Otic system 

Formation of no, one or more 
than two otoliths per 
sacculus. Absence or 
abnormally shaped vesicles.  

Placode has hollowed out 
into the otic vesicle 

Embryos possess two sacculi 
(vesicles) each with two 
prominent otoliths (OVL>1) 

Otic vesicle close to the eye 
(OVL<1) 

Brain Brain necrosis, hemorrhage 
Not  morphological 
subdivisions 

 Brain prominently sculptured 

Heart 
Pericardial edema, big heart, 
hemorrhage, abnormal 
chambers 

 Linear heart tube S-shaped loop 

Tail 
Hemorrhage, tail necrosis, 
bent tail, bent or twisted tip 
tail 

 No tail blood circulation Tail blood circulation 

Head-body pigmentation Abnormal pigmentation  Not pigmented Pigmented 

Tail pigmentation Abnormal pigmentation  Not pigmented Pigmented 

Movement  
Spasms, abnormal 
movements 

Not movement at all 
Side-to-side flexures, 
spontaneous myotomal 
contractions 

Dechorionated embryos lie 
on their sides when at rest. A 
touch elicits a vigorous and 
rapid response 

 



Figures  

 

 

Fig. 1. AChE activity and head-trunk angle in the developing zebrafish embryo from Prim-5 to Long-pec 

stage. Values are mean ± SD of n= 10 embryos.  

 



 

Fig. 2. Concentration-response curves for frequency of embryos with -1, -2, -3, -4 and -5 or more points less 

on the total morphological score and frequency of abnormal embryos (A), head-trunk angle (B), AChE 

activity (C) and tail length (D) of valproic acid, methoxyacetic acid and hydroxyurea treated embryos. 

Embryos were analyzed at 52 hpf after 48 hours of exposure. Error bars indicate SD. *, **, *** indicates 

significant difference from control values at P<0.05, P<0.01 and P<0.001. 



 

Fig. 3. Concentration-response curves for frequency of embryos with -1, -2, -3, -4 and -5 or more points less 

on the total morphological score and frequency of abnormal embryos (A), head-trunk angle (B), AChE 

activity (C) and tail length (D) of caffeine, retinoic acid and sodium salicylate treated embryos Embryos were 

analyzed at 52 hpf after 48 hours of exposure. Error bars indicate SD. *, **, *** indicates significant difference 

from control values at P<0.05, P<0.01 and P<0.001. 

 



 

Fig. 4. Concentration-response curves for frequency of embryos with -1, -2, -3, -4 and -5 or more points less 

on the total morphological score and frequency of abnormal embryos (A), head-trunk angle (B), AChE 

activity (C) and tail length (D) of boric acid, paraoxon-methyl and glucose treated embryos Embryos were 

analyzed at 52 hpf after 48 hours of exposure. Error bars indicate SD. *, **, *** indicates significant difference 

from control values at P<0.05, P<0.01 and P<0.001. 
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Fig. 5. Correlation between the EC10 values for decrease in AChE activity versus EC10 for head-trunk angle 

increase (A) and AChE activity versus tail length decrease (B). Coefficient of correlation of each simple linear 

regression is shown in the figure. 

Each point is labeled with the tested compounds: MAA = methoxyacetic acid; VPA = valproic acid; CAF= 

caffeine; HYU = hydroxyurea; BORIC = boric acid; PX = paraoxon-methyl; SAL = sodium salicylate; GLU = 

glucose; RA = retinoic acid 
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