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Abstract

Extracting information from data sets that are high-dimensional, incomplete
and noisy is generally challenging. The aim of this work is to explain a homol-
ogy theory for data sets, called Persistent Homology, and the topology and algebra
behind it. Moreover, we will show different ways to represent it and finally com-
puting some examples with the help of the GUDHI software for Python.

2010 Mathematics Subject Classification. 55NXX, 55N35, 55-04, 62-07



Chapter 1

Introduction

Motivation
The motivation of this work comes from the many real world applications that

persistent homology has given, merging, what I thought it was the most abstract
field of mathematics, topology, with data analysis.

Persistent Homology has been successfully applied to many fields, such as
medicine [7, 10], chemistry [8, 9] or others like, detecting adversaries in artificial
neural networks [4].

Using algebraic topology and other mathematical tools, persistent homology
allows us to study the "shape" of data in a mathematical rigorous way and extract
more information than never before since it is a relatively new field.

Background
There are two fundamental results that gave to persistent homology the robust-

ness needed to be a rigorous mathematical theory with real world applications.
The first one is the structural theorem [12], that explains how the homology of

a sequence of topological spaces can be interpreted as a barcode or a persistence
diagram.

The second one is the stability theorem [5], which shows that small perturba-
tions in the data only produce at most small perturbations in the corresponding
barcode or diagram.

This two theorems provide robustness against noise and justify the use of bar-
codes and persistent diagrams. It also gives a formal way to estimate the homol-
ogy groups of the underlying subspace of a discrete set of points giving a large
enough sample [5].

Work Development
The aim of this work, is to understand how and why persistent homology

works, giving first, the intuitive idea from the algebraic and topological tools
needed and then giving a formal definition of them.
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2 Introduction

First of all there was a good amount of documentation, reading different ap-
plications of persistent homology with the help of my tutor, which would finally
take me to choose persistent homology as a field in which I wanted to know more.

Then it was the time to extend my topology knowledge, thanks to [1, 2], and
get the intuitive geometrical idea behind homology groups, to later on understand
the more formal and algebraic definitions.

The next step was entering in the field of persistent homology, which was more
complicated, since there was a lack of books and information due to the novelty
of this theory. Thanks to my tutor who provided me many papers from which I
could learn and come up with even more questions at the same time.

Then, I learned how LATEX worked in order to write all my new knowledge
down, and also using the softwares Google SketchUp and Inkscape to create most
of the images that appear.

Finally, when my work seemed finished I was not quite satisfied since I had
not the chance to compute persistent homology from any data set by myself. For-
tunately, I could get a computer with Linux OS, and with more efforts and tries
than expected I finally could install the software that I needed, GUDHI (Geometry
Understanding in Higher Dimensions), and compute the persistent homology of
a few point clouds.

Structure and Organization of This Work
This report is organised as follows. In chapter 2, a basic introduction to alge-

braic topology is given and the fundamental group is formally introduced. Chap-
ter 3 has two sections, in the first one, the intuitive idea behind homology groups
is given together with two practical examples of computing these. The second sec-
tion defines simplicial homology and gives the formal algebraic definition of some
tools used in the previous section. Chapter 4 explains persistence, and ways to go
from data to topology to then make use of the framework set in the previous chap-
ters to go a step beyond and explain persistent homology, its structure, stability
and representation, to finally show some examples of persistent homology groups,
computed with the help of [14], of two different point samples. Finally, chapter 5
summarizes the results of this work and it sketches possible further work.



Chapter 2

Algebraic Topology

Intuitively, we can say that Algebraic Topology is the study of shapes and
properties of topological spaces independent of continuous deformations through
algebra. It studies what remains constant when we continuously deform shapes.

That means that algebraic topology is the study of techniques for forming
algebraic images of topological spaces.

Before explaining how Algebraic Topology studies this topological properties
we first need to explain two concepts. Categories and Functors.

Definition 2.1. A Category is a collection of objects that are linked by arrows. A category
has two basic properties: the ability to compose the arrows associatively and the existence
of an identity arrow for each object.

Definition 2.2. A Functor is a map between categories. Functors were first considered in
algebraic topology, where algebraic objects (such as the fundamental group) are associated
to topological spaces, and maps between these algebraic objects are associated to continuous
maps between spaces.

So, we can define one Category as different Topological Spaces and maps be-
tween them (like arrows), and another Category as different Algebraic Images
and morphisms between them. Our functor will be a map between these two
categories.

That is because functors have the characteristic feature that they form images
not only of spaces but also of maps. Thus, continuous maps between spaces are
projected onto homeomorphism between their algebraic images. Meaning that
topologically related spaces have algebraically related images.

That means that with suitably constructed functors we may be able to form
images with enough detail to reconstruct accurately the shapes of a large number
of classes of topological spaces, which can be very interesting for us to study.
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4 Algebraic Topology

2.1 The Fundemental Group

One of the simplest and most important functors of algebraic topology is the
fundamental group, which creates an algebraic image of a space out of the loops
that it contains. In other words, it creates an algebraic image out of the paths from
the space that start and end at the same point.

To define the fundamental group in a rigorous way we must remember a few
things about Homotopies, since the fundamental group is the first group of ho-
motopy.

Definition 2.3. Let X and Y be Topological Spaces and f0, f1 : X → Y continuous maps.
We will say that f0 and f1 are homotopic if a continuous map F : X × [0, 1] → Y such
that F(x, 0) = f0(x) and F(x, 1) = f1(x) for all x ∈ X exists.

Note: if f0 and f1 are two homotopic maps, we will write f0 ∼ f1, and F will
be a homotopy between f0 and f1.

Definition 2.4. Let X and Y be topological spaces, A ⊆ X and f0, f1 : X → Y continuous
maps such that f0(a) = f1(a) for any a ∈ A. We will say that f0 and f1 are relatively
homotopic in A if a map F : X× [0, 1]→ Y such that F(x, 0) = f0(x), F(x, 1) = f1(x)
and for any a ∈ A, F(a, t) = f0(a) = f1(a) for t ∈ [0, 1] . And we denote it as f0 ∼

A
f1.

Definition 2.5. Let X be a Topological space. We will say that two paths γ0, γ1 : [0, 1]→
X such that γ0(0) = γ1(0) andγ0(1) = γ1(1) are equivalent if γ0 ∼

{0,1}
γ1 and we will

denote it as γ0 ∼ γ1.
More explicitly we have that γ0 ∼ γ1 if there exists a continuous map F : [0, 1] ×

[0, 1]→ X such that F(s, 0) = γ0(s), F(s, 1) = γ1(s) and F(0, t) = γ0(0) = γ1(0) and
F(1, t) = γ0(1) = γ1(1).

Note: ∼ is a equivalent relation both in functions and in paths.
Now we can define the fundamental group.

Definition 2.6. Let X be a Topological Space, and x ∈ X we denote

Cx = {α : [0, 1]→ X paths such that α(0) = α(1) = x}

Now, let us consider in Cx the relationship of homotopies between paths. Then we can
consider Cx/ ∼, which we denote as Π1(X, x). This is the Fundamental Group.

Theorem 2.7. Let X be a topological space and x ∈ X, then Π1(X, x) is a group.



2.1 The Fundemental Group 5

Proof. Though to that all paths start and end in x and knowing the path is proper-
ties it is clear that for each two elements of Π1(X, x) you can define their product.

Note: Proving associativity needs you to realize that when concatenating paths,
the "speed" at which you go through each of the paths does not change the homo-
topy type.

Corollary 2.8. If X is a path-connected topological space, then, for any two points x, y ∈
X we have Π1(X, x) ∼= Π1(X, y).

So, in a more informal way we can say that the elements of the fundamental
group Π1(X, x) are all the not homotopic paths in X that start and end in x.

For example: In an annulus you have two kinds of paths that are not homo-
topic. Trivial loops that are like an identity function and other ones that surround
the hole in the annulus, meaning that there are not homotopic to the trivial loops
that we mentioned before. You can surround the hole as many times as you want,
and we can define n as the number of times you surround the hole in one direction
and −n in the other one. So it is easy to see that the fundamental group of any
point in an annulus (because an annulus is a path-connected space) is isomorphic
to Z. The fundamental group of S2 is the trivial group {0}, since there will always
exist a homotopy F between two loops in the continuous surface of a S2, meaning
that we only have one type of loop up to homotopy.

Definition 2.9. A topological space is called contractible if it is homotopocaly equivalent
to a point.

Corollary 2.10. If X is a contractible space and x0 ∈ X then Π1(X, x0) = {0}.

Note: If X is a topological space that satisfies Π1(X, x0) = {0} does not mean
that X is contractible.

You can intuitively compute the fundamental group of some spaces like a torus
(which has a fundamental group isomorphic to Z×Z like the fundamental group
of S1 × S1). But, it is certainly difficult to imagine the fundamental group of some
other spaces, therefore it exists a very useful tool called the Seifert VanKampen
theorem, which allows us to compute the fundamental group of a topological
space X using the fundamental groups of open sub-spaces of X.

Definition 2.11. A topological space X is simply connected if and only if it is path-
connected and Π1(X, x0) = {0} for one (therefore, for all) x ∈ X.

This way, we can intuitively say that simply connected means that the space
has no holes. Which will be interesting due to the content of the next chapter.
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Chapter 3

Simplicial Homology

The fundamental Group is especially good for low-dimensional information
(because it is all about loops). Therefore there are higher-dimensional analogues
called homotopy groups Πn(X) to study higher-dimensional loops.

Example: Π2(S2) is considering a two dimensional loop (a loop of loops), in a
sphere S2 (figure 3.1), and we see that Π2(S2) = Z owing to that the loop of loops
surrounds the whole sphere and it only matters the number of times the sphere it
surround and in which direction it does.

Figure 3.1: A 2-dimensional loop in a sphere.

And we can study these homotopy groups, but these are complicated and
difficult to compute. And, even more, sometimes they can come out a little bit
bizarre, for example, Πn(Sk) groups can be non trivial even when n > k, which is
somehow measuring n-dimensional holes in k-dimensional spheres.

So what we want is an alternative to homotopy groups that is easier to com-
pute. Those are the homology groups.

Definition 3.1. Homology is a commutative alternative to homotopy. For a topological

7



8 Simplicial Homology

space X we have a functor to homology groups Hn(X; K) which are all commutative.
Where K is a group that determine the coefficients of Hn(X; K).

The most common group to use is Z, which makes from Hn(X; Z) a Z-module.
The homology group is the quotient of the group generated by their cycles and

the group generated by their boundaries.

Hn(X; Z) =
< n− dim cycles >

< n− dim boundaries >
(3.1)

3.1 Intuitive Idea of Homology Groups

Next we give an intuitive idea of what cycles and boundaries are. In the next
chapter we will go more in detail in this formula, and formally define the concepts
cycle and boundary.

That is, as a result of the commutative properties of the homology group.
A cycle it is similar to a loop, but it has not a starting point. If you look at
the figure 3.2 of a topological space X, one can observe the loop a + c + b which
starts and ends at x, the loop c + b + a which start and ends at y, and the loop
b+ a+ c which start and ends at t. But since we want Hn(X; Z) to be commutative,
a + b + c = b + c + a = c + a + b, which leads as to think that the starting and
ending point does not really matter.

Figure 3.2: Directed Cell Complex.
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Regarding the boundaries, a topological manifold with boundary M is a Haus-
dorff space in which every point has a neighborhood homeomorphic to an open
subset of Euclidean half-space (for a fixed n): Rn

+ = {(x1, x2, ..., xn) ∈ Rn : xn ≥ 0}.
We will call interior of M, the subspace formed by all the points p ∈ M that

have a neighborhood homeomorphic to Rn. And we will call boundary of M, to
the complement subspace of the interior of M (i.e. M \ Int(M)). The boundary of
M will be an (n− 1)-dimensional topological manifold.

Our next step, will be explaining how to compute the first homology group
of the 1-dimensional skeleton (1-skeleton) of a Cell Complex (which until later
explanation we can suppose it is like a graph) with the purpose to get the intuitive
idea behind the first homology group and to get a little bit of contact with this
machinery. But first we need to understand a couple of ideas.

3.1.1 Previous ideas we need to understand

A Cell Complex is a topological space formed by Cells of different dimensions.
In order to describe a cell complex, one simply lists its cells, a n-dimensional Cell
is homeomorphic to a n-dimensional closed ball, and how the boundary of those
cells get attached to the rest of the complex.

In order to compute the first homology group, first of all we have to compute
the 1-dimensional cycles (see equation 3.1).

Note: Remember that a principal ideal domain, or PID, is an integral domain
in which every ideal is principal, meaning that it can be generated by a single
element.

To compute an independent set of 1-dimensional cycles that generate all of
them you need an oriented Cell Complex like in Figure 3.2. That means that, a +
c + b is a cycle, but a + c− b is not one. Once we have the group generated by the
cycles we will see that this group will be isomorphic to and n-dimensional abelian
group, and since we normally work with Z, our n-dimensional abelian group will
be homeomorphic to Zn, or Zn

2 , or more complex ones like Z3 ⊕Z2
⊕

Z2
7
⊕

Zn−6
13 .

Due to the fact that, if K is a PID and M a finitely generated K-module, then there
exists r ≥ 0 and elements d1, d2, . . . , ds ∈ K such that:

M ∼= Kr ⊕Kd1 ⊕ · · · ⊕Kds

Note: Remember that a principal ideal domain, or PID, is an integral domain
in which every ideal is principal, meaning that it can be generated by a single
element.

In order to avoid such types of groups that are not necessarily free , and to
simplify later on computations that we want to realize with help of computers, we
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will be working with Z2. And we will denote the homology group of dimension
n as Hn(X; Z2).

If we are working in Z2 we can see that no orientation is needed since a = −a.
Moreover, Z2 is a field, which means that Hn(X; Z2) is a Z2-vector field, which
leads to an important simplification of the computation, owing to the fact that
there is only one Z2-vector field of dimension n, which is Zn

2 . Besides these two
reasons, in later chapters we will see, that to compute persistent homology one
needs a field of coefficients and it is usually the case that this field is used when
an algorithm is implemented to run on a computer in order to compute homology
groups.

That been said, we will for now on ignore the orientation of Simplicial and Cell
Complexes. That means that we will now work with the representation in Figure
3.3 of our Cell Complex.

Figure 3.3: undirected Cell Complex.

Another idea that we need to understand are the Chain-Groups Cn and a spe-
cific morphism between them called the boundary operator.

Definition 3.2. Let X be a Cell Complex. We will define the n-Chain group as the the
abelian group generated by the cells of dimension n. And we denote it as Cn.

Meaning that, if we have a Cell Complex CWA like in figure 3.3:
The C0 would be the group generated by the vertices x, y, z, t, v And C1 would

be the group generated by the edges a, b, c, d, e, f , g.
And if we have a different Cell Complex CWB like in figure 3.4. Where two

2-cells M, N have been attached along the cycle a + b + c.
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Note: M and N are two-cells, meaning that there is an empty cavity between
them.

Figure 3.4: Another Cell Complex with two added 2-dimensional Cells. Here M
and N are two-cells, meaning that there is an empty cavity between them.

We can see that C0 and C1 are the same but now we have C2 generated by M
and N.

Now we will define a morhpism between different chain groups called bound-
ary operator, that sends every element to its boundary. And we will denote it with
∂n. And we define it as ∂n : Cn → Cn−1.

So, for example, ∂1 : C1 → C0 will send each combination of edges to a combi-
nation of vertices.

In the next chapter, we will define this morphism algebraically in a more for-
mal way, but for now let us geometrically see it this way.

Example 3.3. ∂1(a) = x + y (the signs of x and y would depend on the direction
of the edge, but due to the fact that we are working on Z2 and x=-x that will be
irrelevant).

If we apply this function to all the generators from C1 we have a set of genera-
tors for ∂1(C1) and we see that it is a morphism. Moreover, since we are working
on Z2, which is a field, Cn is a Z2-vector field for each n. And the boundary
operator is a linear map.
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Other examples: ∂1( f ) = y+ v, ∂1(c+ f ) = t+ v, ∂2(M) = a+ b+ c , ∂0(z) = 0.

Intuitively we can think that a 1-dimensional cycle will have a boundary equal
to zero in C0, owing to that there are no vertex that delimit the end of a 1-
dimensional cycle. If we check this idea with all the 1-dimensional cycles of A
we see that ∂(a + b + c) = 0, ∂(a + b + e + f ) = 0. (∂ is a linear map, that means
that ∂(a + b + c) = ∂(a) + ∂(b) + ∂(c) = y + x + x + t + t + t = 2x + 2t + 2y = 0
since we are in Z2. The same goes for ∂(a + b + e + f ) = 0.)

So an element c ∈ C1 will be a cycle iff (if and only if) ∂1(c) = 0. Which implies
that < 1-dim cycles >= Ker(∂1). The same happens for every dimension. If we
look at CWB on figure 3.4 we can see that ∂2(M + N) = ∂(M) + ∂(N) = (a + b +
c) + (a + b + c) = 2a + 2b + 2c = 0. So we can say that < n-dim cycles>= ker(∂n).

3.1.2 Computing homology groups

So let us compute the first homology group of CWA. H1(CWA; Z2) =
<1−dim cycles>

<1−dim boundaries> .
Which will be equal to < 1−dim cycles >= Ker(∂1) due to it has no 1-dimensional
boundaries. (remember that, with our geometric intuition so far, a 1-dimensional
boundary has to be a 2-dimensional manifold minus its interior, and in A there
are not any 2-dimensional cells).

We want to compute the Ker of ∂1 : C1 → C0, and we know that any element of
C1 is a lineal combination of a, b, c, d, e, f , g so for ∀c ∈ C1 there ∃λ0, λ1, λ2, λ3, λ4, λ5, λ6 ∈
Z2 such that c = λ0 · a + λ1 · b + λ2 · c + λ3 · d + λ4 · e + λ5 · f + λ6 · g (Remember
we are working on Z2 so λi only can be equal to 0 and 1 for i = 1, 2, 3, 4, 5, 6)
Meaning that:

∂1(c) = ∂(λ0 · a + λ1 · b + λ2 · c + λ3 · d + λ4 · e + λ5 · f + λ6 · g)

And, due to the fact that ∂1 is a linear map:

∂1(λ0 · a + λ1 · b + λ2 · c + λ3 · d + λ4 · e + λ5 · f + λ6 · g) =

= λ0 · ∂1(a) + λ1 · ∂1(b) + λ2 · ∂1(c) + λ3 · ∂1(d) + λ4 · ∂1(e) + λ5 · ∂1( f ) + λ6 · ∂1(g)

And, thanks to the image 3.3 we see that:

∂1(a) = x + y

∂1(b) = x + t

∂1(c) = t + y

∂1(d) = z + y

∂1(e) = v + t
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∂1( f ) = y + v

∂1( f ) = z + t

which leads us to the equality:

λ0 · ∂1(a) + λ1 · ∂1(b) + λ2 · ∂1(c) + λ3 · ∂1(d) + λ4 · ∂1(e) + λ5 · ∂1( f ) + λ6 · ∂1(g) =

= λ0 · (x+ y)+λ1 · (x+ t)+λ2 · (t+ y)+λ3 · (z+ y)+λ4 · (v+ t)+λ5 · (v+ y)+λ6 · (z+ t) =

= x · (λ0 +λ1)+ y · (λ0 +λ2 +λ3 +λ5)+ z · (λ3 +λ6)+ t · (λ1 +λ2 +λ4 +λ6)+ v · (λ4 +λ5)

Which leads us to the conclusion:

c ∈ Ker(∂1)⇔ ∂1(c) = 0⇔ x · (λ0 +λ1)+ y · (λ0 +λ2λ3 +λ5)+ z · (λ3 +λ6)+ t · (λ1 +λ2 +λ4 +λ6)+ v · (λ4 +λ5) = 0⇔

⇔



λ0 + λ1 = 0

λ0 + λ2 + λ3 + λ5 = 0

λ3 + λ6 = 0

λ1 + λ2 + λ4 + λ6 = 0

λ4 + λ5 = 0

Now, we could solve this equation system, but we will transform it in his
matrix form in order to see how we would handle this computation with code.

Notice that we can transform this equation system in a matrix only because of
the fact that we work in Z2 which is a field.

1 1 0 0 0 0 0
1 0 1 1 0 1 0
0 0 0 1 0 0 1
0 1 1 0 1 0 1
0 0 0 0 1 1 0

 ∼
reduced form


1 1 0 0 0 0 0
0 1 1 1 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 1 0
0 0 0 0 0 0 0


Which gives us following reduced equation system:

λ0 + λ1 = 0

λ1 + λ2 + λ3 + λ5 = 0

λ3 + λ6 = 0

λ4 + λ5 = 0

Since we have a system with 4 equations and 7 variables we will set λ1, λ5 and
λ6 as the parameters α, β, γ respectively.
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So the solution will be: 

λ0 = α

λ1 = α

λ2 = α + β + γ

λ3 = γ

λ4 = β

λ5 = β

λ6 = γ

And those are all the solutions. Let us write it in vector form:

λ0

λ1

λ2

λ3

λ4

λ5

λ6


= α ·



1
1
1
0
0
0
0


+ β ·



0
0
1
1
0
0
1


+ γ ·



0
0
1
0
1
1
0


In other words, the vector formed by λi for i = 0, 1, 2, 3, 4, 5, 6 is formed by the lin-
ear combination of the vectors (1,1,1,0,0,0,0,),(0,0,1,1,0,0,1,),(0,0,1,0,1,1,0). Meaning
that the kernel has dimension 3, and these 3 vectors form a basis for all the cycles.
That means that all the one dimensional cycles in CWA are generated by those

1− dimensional Cycles =< (a + b + c), (c + d + g), (c + e + f ) >
Which leads us to the conclusion that the cycles form a group isomorphic to

Z3
2.

Finally, since there is no non-trivial 1-dimimensional boundary, we conclude:

H1(CWA; Z2) =< 1− dimensional Cycles >= Z3
2

.
For a more general graph X with v number of vertices and e edges, we can

apply a well known theorem from graph theory.

Theorem 3.4. Every connected graph X contains a Spanning Tree. (A tree which is a
subgraph of X which includes all the vertices.)

Note: A Tree is a graph without loops or double paths.

Proof. Let X be a connected graph, if X does not have a cycle it is a spanning tree.
If it has any cycle, you just have to remove edges without disconnecting the graph.
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When you can not remove any edge without disconecting the graph, you will have
a subraph X′, that will be, by definition, a Tree.

Using that theorem, we conclude that for every graph X that represents a
topological space we have a Spanning Tree. A tree with v vertices has v− 1 edges.
So there are e− (v− 1) edges that are not included in the spanning tree. And all
of these edges that are not included in the spanning tree represents a cycle each.

And each one is independent from the other because it uses a new edge. With
linear algebra you can determine which cycles are generators of the graph.

So the first homology group of a Graph X is H1(X; Z2) ∼= Ze−v+1
2 .

Example 3.5. If we look at the graph in the figure 3.5, where the red subgraph
represent a spanning tree we see that it has 7 vertices and 17 edges. Its spanning
tree has 6 edges, so there are 11 different edges that generate a cycle, and the first
homology group of this graph G is H1(G; Z2) = Z11

2 .

Figure 3.5: A graph and a spanning tree of it in red. This is not a planar graph.
The vertices of the outer polygon marked with a number are the only vertices of
the graph. When lines cross within the interior of the polygon, they are actually
not touching.

In some way, we can say that Hn(X; Z2) somehow measures the number of
n-dimensional holes in X.

To make more clear and to extend the definition a little bit more accurately
we well go up on dimensions and calculate H1, H2 of our Cell Complex CWB

represented in Figure 3.4.
In CWB, C0 and C1 are the same since CWA and CWB have the same points

and edges. But, C2 =< M, N > in CWB. And ∂2(M) = a + b + c = ∂2(N). That
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will change the first homology group. Owing to the fact that the cycle a + b + c
does not surround a hole anymore, it is now homotopocaly trivial since we can
contract it to a point sliding by M or by N. So, the presence of the 2-cells modifies
our idea of what a cycle is. a + b + c was a cycle that represented a hole in A.
In B, obviously a + b + c still represents a cycle, but now it is homotopic to 0.
Algebraically that implies that the cycle a + b + c should not count anymore as
far as measuring 1-dimensional holes. This suggests that we form a quotient of
the group of cycles that do not enclose holes (boundaries). In order to do so we
will quotient the group of 1-dimensional cycles by the subgroup of 1-dimensional
boundaries. Which is how we have defined homology groups.

H1(CWB; Z2) =
< 1− dim cycles >

< 1− dim boundaries >

We already know that n-dimensional cycles = Ker(∂n). What the n-dimensional
boundaries concerns, in order to compute the group generated by the n-dimensional
boundaries we have to find all the cycles that enclose n + 1 dimensional cells. And
that is easy, we just have to compute all the boundaries of the n + 1 cells, i.e.
∂n+1(Cn+1).

As we see ∂2(M) = a + b + c, and a + b + c is a boundary.
So, c ∈ Cn is a boundary ⇔ ∃c′ ∈ Cn+1 such that ∂n+1(c′) = c for a given n.

Therefore: < n-dimensional boundary >= ∂n+1(Cn+1) = Im(∂n+1).
In conclusion we have that for every n:

Hn(X; Z2) =
< n− dim cycles >

< n− dim boundaries >
=

Ker(∂n)

Im(∂n+1)

In particular:

H1(CWB; Z2) =
< 1− dim cycles >

< 1− dim boundaries >
=

Ker(∂1)

Im(∂2)
=

=
< (a + b + c), (c + d + g), (c + e + f ) >

< a + b + c >
=< (c + d + g), (c + e + f ) >∼= Z2

2

Let us now compute H2(CWB; Z2).
With this information we now know that

H2(CWB; Z2) =
< 2− dim cycles >

< 2− dim boundaries >
=

Ker(∂2)

Im(∂3)

Im(∂3) = {0} since C3 = 0.
If we repeat the process that we have done earlier, for c′ ∈ C2 there ∃λ0, λ1 ∈

Z2 such that c′ = λ0 · M + λ1 · N which implies that ∂2(c′) = λ0 · ∂2(M) + λ1 ·
∂2(N) = λ0 · (a + b + c) + λ1 · (a + b + c).
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As a result of this we have:

c′ ∈ Ker(∂2)⇔ ∂2(c′) = 0⇔ a · (λ0 + λ1) + b · (λ0 + λ1) + c · (λ0 + λ1) = 0⇔

⇔


λ0 + λ1 = 0

λ0 + λ1 = 0

λ0 + λ1 = 0

∼ λ0 + λ1 = 0

And, as we did before: (
λ0

λ1

)
= α ·

(
1
1

)
Which leaves us with the fact that the vector (λ0, λ1) is formed by the linear com-
bination of < (1, 1) >. Meaning that all the 2-dimensional cycles in CWB are
generated by the cycle M + N. And ultimately

H2(CWB; Z2) =
< 2− dim cycles >

< 2− dim boundaries >
=

Ker(∂2)

Im(∂3)
=< (M + N) >∼= Z2

Now that we have computed a few homology groups and we have had a first
contact with the basic formulas and hopefully have got an intuitive idea of what
this functor does, we want to make a framework in which we can set this theory
up in a more formal way and not just by drawing pictures.

There basically two approaches to setting up a theory of homology. The first
one is the initial one that Poincaré introduced in 1895, and it is what we call
Simplicial homology where we work with spaces build with simplices.

There are also alternatives to simplicial complexes, such as cell complexes or
∆-complexes that follow a similar logic of glueing elements but work with spaces
built in a different way or with different elements.

And then we have the singular homology, which allows us a more flexible
approach to compute the homology groups of every kind of topological space, but
it is significantly more complicated.

In this work we will focus on the simplicial homology which is easier to under-
stand but it is powerful enough to compute the homology group of the spaces that
are interesting for us, moreover it is the one used to compute homology groups
via computers and coding meaning that it is an indispensable idea in order to
understant persistent homology.

3.2 Simplicial Homology

3.2.1 Simplicial Complexes

First of all we have to define what a Simplicial complex is.
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Definition 3.6. A simplex is a topological manifold of dimension n determined by n + 1
points in a space of dimension equal to or greater than n which satisfies: n-simplex =

{(t0, t1, ..., tn) ∈ Rn|∑i ti = 1 and ti ≥ 0 for all i}.

Example 3.7. A triangle together with its interior determined by its three vertices
is a two-dimensional simplex in the plane or any space of higher dimension.

To get the intuitive idea behind it, a simplex is a point, segment, triangle or its
higher-dimensional analogues (tetrahedron, pentachoron, etc.).

Note: We denote a simplex S as S = [V0, V1, . . . , Vn], where Vi for i ∈ 0, . . . , n
are the vertices of the given simplex.

Definition 3.8. A face of a simplex S is another simplex P ⊆ S whose vertices are also
vertices of S.

Example 3.9. If we have a 2-simplex (a triangle) it has three different 1-dimensional
faces (the three different segments) and three different 0-dimensional faces (the
three points).

Now that we have the basic building blocks we will use these to build up the
topological spaces we want called Simplicial Complexes, and with this kind of
framework, homology will be much easier to determine and compute.

Definition 3.10. A Simplicial Complex is a topological space formed by different sim-
plices not necessarily of the same dimension which have to satisfy that any two simplices
are either disjoint or meet in a common face.

Example 3.11. See Figure 3.6

Figure 3.6: An example of a simplicial complex.

As you can see the intersection of A and B is a 1-simplex, the intersection
between A and C is a 0-simplex such as the intersection between B and D or D
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and E, or B and E. The intersection of E and F is also a 1-simplex, and we could
have another tetrahedron which could share a triangle with F and it would still
have been a Simplicial Complex.

CWB, the topological space with we have worked previously (see Figure 3.4) is
a Cell Complex, which is a generalization of a Simplicial Complexes. CWB is not a
Simplicial Complex because M and N share three 1-simplices, so they have 3 faces
in common, not one or zero.

So, if we want to determine the homology group of a topological space X, we
will look for a simplicial complex S, such that X ∼= S, and calculate the homology
group of S. These types of homeomorphisms are called triangulations.

Definition 3.12. A triangulation of a topological space X is a homeomorphismus |S| →
X where S is an abstract simplicial complex. We will say that X is triangulable if it admits
some triangulation. In other words, a triangulation of X is a decomposition X =

⋃
j∈J Tj

where each Tj is a closed from X homeomorphic to a simplex such that for all pair i, j ∈ J,
either the intersection Ti ∩ Tj is empty or Ti ∪ Tj is a common face of Ti and Tj.

Note: Two triangulations are called equivalent if there exists another triangu-
lation which is a refinement of both.

Example 3.13. Let us show an example: Let T be a Torus, the easiest way to
triangulate it is by looking at it in his planar form. See Figure 3.7.

The first idea that someone would come up with to make the planar form of a
torus homeomorphic to a set of triangles would be this one shown in Figure 3.8.
Nevertheless, T1 ∪ T2 is not a simplicial complex due to T1 ∩ T2 = a ∪ b ∪ c. So, T1

and T2 are not neither disjoint, and do not meet in a common face, they meet in
three faces, which means that T1 ∪ T2 is not a simplicial complex.

The idea is to triangulate T1 and T2 until the union of all the simplices form a
simplicial complex.

And that is exactly what we have in Figure 3.9.

3.2.2 Algebraic definition of homology theory tools

Now that we have explained how to treat our topological spaces in order to
easily compute their homology groups we will define in a more formally algebraic
way a couple of ideas in terms of simplicial complexes that we have mentioned
before to see how it worked out geometrically.

Note: Remember:

Hn(X; Z2) =
< n− dim cycles >

< n− dim boundaries >
=

Ker(∂n)

Im(∂n+1)
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Figure 3.7: A Torus in his 3D and his planar form.

First of all, let us explain the boundary and the boundary operator for a n-
simplex S homeomorphic to a topological space. ∂p : Cp(S)→ Cp−1(S).

Definition 3.14. If S = [V0, . . . , Vp] is an oriented simplex with p > 0, we define the
boundary operator as:

∂p(S) =
p

∑
i=0

(−1)i · [V0, . . . ,
∧
Vi, . . . , Vp],

Where the symbol
∧
Vi stands for not counting the vertex Vi.

Note: Thanks to the right side of the equation it is easy to see that ∂p(S) lies

in Cp−1. Every term of the sumatory [V0, . . . ,
∧
Vi, . . . , Vp] is a (p− 1)-simplex.

Since we are working in Z2 and we do not care about orientation and −v = v.
We will have:

∂p(S) =
p

∑
i=0

[V0, . . . ,
∧
Vi, . . . , Vp],

Example 3.15. If we have a segment [V0, V1], ∂1([V0, V1]) = V0 + V1.
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Figure 3.8:

Figure 3.9: Triangulate Torus

For now on, owing to that we will work always with Z2 since is the most com-
mon field used in persistent homology we will ignore the signs, and the boundary
operator will be used like in the previous equation.

Now, we have to see that this morphism is well-defined. Meaning that for a
Simplex S, one can choose whatever way he wants to assign the vertices and they
boundary should remain the same. If we have that S = [V0, . . . , Vi, . . . , Vj, . . . , Vn],
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you can choose to switch Vi and Vj. This leads us to the equality that we want:

∂n([V0, . . . , Vi, . . . , Vj, . . . , Vn]) = V0 + · · ·+ Vi + · · ·+ Vj + · · ·+ Vn = (*)

= V0 + · · ·+ Vj + · · ·+ Vi + · · ·+ Vn = ∂n([V0, . . . , Vj, . . . , Vi, . . . , Vn])

* (That equality will be always true because we work in abelian groups, not
only because of the fact that we work on Z2).

Meaning that for a concrete simplex S you will always have the same boundary.
Now, let us study in a more formal way the homology groups. We have defined

the homology group as a quotient. But to make sure that this group is well defined,
we have to see that Im(∂p) ⊆ Ker(∂p−1). And since c ∈ Ker(∂p−1) ⇔ ∂p−1(c) = 0
if we prove this next lemma true we will have demonstrated that our quotient is
well defined.

Lemma 3.16. ∂p−1 ◦ ∂p = 0.

Proof.

∂p−1(∂p([V0, . . . , Vp])) =
p

∑
i=0

(−1)i · ∂p−1([V0, . . . ,
∧
Vi, . . . , Vp]) =

p

∑
i=0

∂p−1([V0, . . . ,
∧
Vi, . . . , Vp])

(remember we are working on Z2 and v = −v)

=
p

∑
j<i

∂p−1([. . . ,
∧
Vj, . . . ,

∧
Vi, . . . ]) +

p

∑
i<j

∂p−1([. . . ,
∧
Vi, . . . ,

∧
Vj, . . . ]) =

= 2 ·
p

∑
j<i

∂p−1([. . . ,
∧
Vj, . . . ,

∧
Vi, . . . ]) = 0

It is almost trivial to see that the two terms that we are adding are the same since
you only have to switch Vi and Vj and we already have seen that the boundary
operator is well defined. And once we have that they are the same it is easy to see
that our expression is equal to zero since ∀z ∈ Z2, 2 · z = 0.

A good question could be, why should we triangulate this torus in a simplicial
complex? What Figure 3.8 shows us is a ∆-complex, which is another way to ap-
proach homology, where the boundary operator and homology in general can be
defined in a similar way as in simplicial complexes.If you compute the homology
groups of this two spaces homeomorphic to the Torus, they will isomorphic. But,
with the ∆-complex it is much easier. It still only has one vertex, meaning that
∂1(a) = ∂1(b) = ∂1(c) = v− v = 0. Which implies that Ker(∂1) ∼= Z3

2. And, since
∂2(T1) = ∂2(T2) = a + b + c. Im(∂2) ∼= Z2. i.e. H1(T; Z2) ∼= Z2

2.
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Computing it with the triangulation shown in 3.9 you come up with the exact
same result but with much more computational cost. So why would we chose the
Simplicial Complex triangulation instead of a ∆-Complex triangulation? That is
because in a Simplicial Complex is uniquely defined by its boundary. And you
can uniquely define a simplex in there, for example, the 2-simplex in the left upper
corner could be defined by its edges [(0,1),(0,4),(1,4)]. In the ∆-Complex, T1 and T2

have the exact same boundary. The fact that the simplices that form the complex
are uniquely defined by its boundary, make it much easier to compute homology
using algorithms.

Analogous to the Seifer-Van Kampen to compute Homotopy groups, in homol-
ogy theory we have the Mayer-Vietoris sequences, which are a powerful tool to
compute homology groups by splitting a topological space into subspaces where
homology is easier to compute.

Definition 3.17. We define the n − th Betti number of a Simplicial Complex C with
coefficients from a field K like βn(C; K) = dimK(Hn(C; K)).

Note: Due to we work always with Z2 which is a field, we do not have torsion
in mind.
If we have a topological space X and we are working with a field K (like we are
doing with Z2), Hn(X; K) is a K-vector field. which means that, if the homology
groups are finite-dimensional, then:
Hn(X; K) ∼= Km for some m ∈ Z.

And from that, it can be deduced that...

βn = dimK(Hn(X; K)) = m

Betti numbers are a topological tool that measures the dimension of the ho-
mology group meaning that in some way, Betti numbers estimate the connectivity,
by measuring the number of n-dimensional holes when the group over we work
is a field.

β0(C; K) measures the connected components of a simplicial complex C.

β0(C; K) = dim(
Ker(∂0)

Im(∂1)
)

Thanks to the algebraic definition of the boundary operator, we see that ∂0(c) = 0
for every c ∈ C0. the 0-simplices are defined by one single vertex, meaning that

if v0 is that vertex for c. c = [v0]. And ∂0(c) = (−1)0 · ∑1
0[
∧

V0] = 0. Meaning that
dim(ker(∂0))=dim(C0). And since we are making the quotient with Im(∂1), i.e. we
are making the quotient with the boundary of the edges, all the vertices that are
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connected by edges fall in the same class, which means that we have a different
class for every connected component.

β1(C; K) measures the number of 1-dimensional holes, that is straightforward,
you are looking for 1-dimensional cycles that do not surround a 2-dimensional
manifold, which is a definition for a 1-dimensional hole. Following the same
logic, β2(C; K) measures the number of 2-dimensional holes, (bubbles or cavities).
You measure the number of 2-dimensional cycles that are not the boundary of a 3
dimensional manifold.

And, so on, βn measures in some way the number of n-dimensional holes.
Note: From now on, in order to simplify notation, and since we are working

in Z2, Hn(X) and βn(X) will refer to Hn(X; Z2) and βn(X; Z2) respectively.

Example 3.18. Our Cell Complex CWA from Figure: 3.3 has the following Betti
numbers:

β0(CWA) = dimZ2(H0(CWA)) = 1,

β1(CWA) = dimZ2(H1(CWA)) = 3,

βi(CWA) = dimZ2(Hi(CWA)) = 0 for i > 2.

And for our Cell Complex CWB, in Figure 3.4 we have that:

β0(CWB) = dimZ2(H0(CWB)) = 1,

β1(CWB) = dimZ2(H1(CWB)) = 2,

β2(CWB) = dimZ2(H2(CWB)) = 1,

βi(CWB) = dimZ2(Hi(CWB)) = 0 for i > 3.

H0(CWA) ∼= H0(CWB) ∼= Z2 due to the complexes are fully connected and
the quotient is Im(∂1), we have that x ∼ y ∼ z ∼ v ∼ t. Which leaves us only
with one vertex. (You can also see that Ker(∂0(CWA)) ∼= Ker(∂0(CWB)) ∼= Z5

2 and
Im(∂1(CWA)) ∼= Im(∂1(CWB)) ∼= Z4

2.)

Note:Notice, that changing our field, different Betti numbers can come out.

A slight modification of the Betti numbers will be our main tool to determine
the persistence of topological features in our next chapters which goes deeper in a
new technique to analyze data via algebraic topology using persistent homology.



Chapter 4

Persistent Homology

Persistent homology is a new technique, first defined in [15] and whose first
effective algorithm was given in [11]. This technique consists on applying alge-
bra to obtain topological features (such as components or holes) of data (a set of
discreet points with a metric).

It consists in transforming a cloud of points into a family of topological spaces
(Simplicial Complexes to be precise) paramatrized by a variable to see which topo-
logical features persists in different values of that given parameter and are more
likely to represent true features of the underlying space rather than noise.

4.1 From Data to Topology

In first place, we have to convert our cloud of data to a simplicial complex.
To do that, we set all our data points in our metric space to vertices (0-simplices).
Then, a distance δ > 0 is chosen. Two vertices will be connected by an edge if
the distance between them is smaller or equal to δ. Now we have a graph, that
captures the connectivity of our data (clustering), but do not give any further
information. So we want to fill this graph with simplices. And to do so we have
few options, for instance:

Definition 4.1. Given a collection of points {xα} in Euclidean space En, the Čech com-
plex, Cδ, is the abstract simplicial complex whose k-simplices are determined by unordered
(k + 1)-tuples of points {xα}k

0 whose closed δ/2-ball neighborhoods have a point of com-
mon intersection.

Definition 4.2. Given a collection of points{xα} in Euclidean space En, the Rips com-
plex, Rδ, is the abstract simplicial complex whose k-simplices correspond to unordered
(k + 1)-tuples of points {xα}k

0 that are pairwise within distance δ.

25
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Example 4.3. In figure 4.1 you can see three points and they respective closed
δ/2-balls. In the Rips Complex, the three points are pairwise less than δ apart, so
they form a 2-simplex. In the other side, we have the Čech complex. Since the
intersection of the three balls is empty, the points do not form a 2-simplex, but
they are pairwise intersected, so they form three 1-simplex (an empty triangle).

Figure 4.1: Čech Complex vs Rips Complex.

Note: As one can clearly see in this image, the Čech Complex and the Rips
Complex can have different homotopy groups.

Theorem 4.4. ([6]). The Čech theorem (or ’nerve’ theorem) states that Cδ has the same
homotopy type as the union of closed balls with radius δ/2 that have as they center each
point of the given cloud.

Meaning that our Complex behaves like a subs set of En. In order to get a
more illustrative idea, what this theorem is stating is that both picture in Figure
4.2 have the same homotopy type (or are homotopically equivalent).

One can see that both have the same number of components and the same
number of one-dimensional holes, and also have an isomorphic fundamental group
(Z2). Indeed, one is a deformation retract of the other.

To sum everything up, thanks to this theorem it is clear that the Čech Complex
is a good enough topological approximation to what the underling object could
be, nevertheless, the Čech complex and various topologically equivalent subcom-
plexes, have a very expensive computational cost.
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Figure 4.2: The union of three closed balls and its respective Čech Complex.

However, the Rips Complex is much easier to compute than the corresponding
Čech Complex despite having at least, the same amount of simplices. That is
because of the fact that the Rips Complex is a flag complex (it is maximal among
all the simplicial complexes with the same 1-skeleton). Therefore, the 1-skeleton
determines univocally the complex. That implies that the Rips Complex can be
stored as a graph and later be reconstructed, meaning that the entire boundary
operator needed for a Čech complex do not need to be stored. That been said, this
computational simplification comes not without any handicap. The disadvantage
is that in general, a Rips complex Rδ do not necessarily behave like a subset of
En nor an n-dimensional space at all. But, once we have introduced the idea of
persistence, we will see that the Rips complex will also be a good approximation
if one handles the parameter in a concrete way.

Logically, the next step would be to ask which distance δ to chose, if such
distance exist, to capture these true features from our underlying object from our
data. If δ is sufficiently small, the complex will be a discrete set of points. Contrar-
ily, if δ is too large, the Simplicial Complex will be a single (n− 1)-simplex, where
n is the number of points of our data, which would have a trivial homology.

In [3] there is a perfect example of a sampling of points on a planar annulus
(See Figure 4.3) where one can observe that when δ is large enough to have re-
moved all the small holes within the annulus, the characteristic hole that discerns
it from a disk is already filled in.

So, does actually the optimal δ exists?
The answer is that, if such ideal choice of δ exist, it is rare.
It is insufficient to know the number of components and different dimensional

holes (Betti numbers) of a single simplicial complex created from clouds of data
(regardless one chooses the Čech Complex or the Rips Complex) with a particular
δ. It is a mistake to ask which value of δ is optimal. What we need is some kind
of tool to declare which holes are essential and which can be ignored (considering
them noise). But, the problem is than neither homology non homotopy gives
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Figure 4.3: A sequence of Rips complexes for a point cloud data set representing
an annulus extracted from [3].

any information of this kind, these functors compute if there is a hole, with no
regard to how fragile this hole can be. And here is where we explain the idea
of persistence, which is a novelty that is applied to topology with the aim of
discernoing the significant topological features from simple noise.

4.2 Persistence

Persistence is the rigorous answer to this problem given by Edelsbrunner,
Letscher, and Zomorodian [16] and later refined by Carlsson and Zomorodian
[12]. Given a parameterized family of spaces C, those topological features which
persist over a significant parameter range are to be considered as significant and
those that are short-lived features should be considered noise.

Given values δ0, δ1 ∈ {δi}i∈I , if a new topological feature of a space appear at
δ0, and at δ1 this feature disappears, we will say that δ0 is its birth-time and that
δ1 is its dead-time, and that this feature lived from δ0 to δ1.

We can represent the persistence of this feature as a pair (δ0,δ1). The distance
between δ0 and δ1 measures how long this feature has lived.

Example 4.5. Let us supose we have a sequence of Čech Complexes C={Cδ}δ∈I

(See Figure 4.4), parametrized by a distance δ, and where I is increasing sequence
of values {δi}i∈N. This sequence is associated to a fixed cloud of points (in this
case three points), and we can look at it as our parameterized family of spaces. By
lookinkg at the picture one can observe that for δi = 5, there is a hole, and that at
δi + 1 = 6 there is not one, so the persistence of this hole is (δi, δi + 1) = (5, 6).

Note: Notice that if the sequence {δi}i∈N is increasing, Rδi ↪→ Rδj for i < j,
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Figure 4.4: A simple example of the persistence of a topological feature (in this
case, a hole).

meaning that after a feature has died it can not appear again (but one of the same
kind, can).

So, to determine the features of the underlying space, instead of computing
the homology group for a single complex Rδi , one examines the homology of the
iterated inclusions ι : H∗(Rδi) → H∗(Rδj) for all δi < δj. These maps reveal which
features persist.

That explains why Rips Complexes are acceptable approximations to Čech
complexes. Although no single Rips complex is a good approximation to a single
Čech complex, pairs of Rips complexes can capture the appropriate Čech complex.
For any δ, it is trivial to see that Cδ ↪→ Rδ due to that the restrictions from the Čech
complexes are much stronger that the ones of the Rips complexes. That means that
if for every δ one can find a δ′ that satisfies Rδ′ ↪→ Cδ. We would have a chain of
inclusion maps:

Rδ′ ↪→ Cδ ↪→ Rδ (4.1)

Which leads us to the conclusion that any topological feature which persists under
the inclusion R′δ ↪→ Rδ is in fact a topological feature of Cδ.

Lemma 4.6. For any δ > 0, there is a chain of inclusion maps:

Rδ ↪→ Cδ·
√

2 ↪→ Rδ·
√

2

Proof. For a cloud of points P, we will prove that Rδ ↪→ Cδ·
√

2. In other words, if a
collection n points are pairwise at distance 2 · δ or closer, then the balls of radius
δ ·
√

2 centered on these points have a non-empty intersection.
We will demonstrate it for the worst of the cases (when the Čech Complex

differs at most from the Rips complex). When d(x, y) = δ for each two points
x, y ∈P, where d represents the euclidean distance. This is the distribution where
the closed balls are more far away from each other, meaning that the probability
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that a simplex is added in the Rips Complex and not added in the Čech complex
is maximal.

Once demonstrated the worst case, that would imply that if the distance be-
tween any two points of the cloud are closer than δ, the Čech complex would be
at least equal to the Rips, what simplices reefer.

Let us suppose that we have n points distributed like we said before in Rm,
where m ≥ n− 1. We can set up a coordinate system where each point is included
in a different axis of Rm, meaning that each point p, can be represented as pi =

(0, 0, . . . , 0, a
i
, 0, . . . ). The value of a is easy computable. The distance between ev-

ery two points will be δ, so: d(pi, pj) =
√

0 + · · ·+ 0 + a2 + 0 + · · ·+ 0 + a2 + 0 . . . =√
2 · a = δ −→ a = δ√

2
.

What we want to see is that the
⋂

i≤n Dδ·
√

2(pi) 6= ∅ where Dδ·
√

2(pi) is the
closed ball with radius δ ·

√
2 and center pi. To do so, we will see that the

barycenter, is included in all the balls. Let B be the barycenter, B = ∑n+1
i=0

pi
n =

( δ
n·
√

2
, δ

n·
√

2
, . . . , δ

n·
√

2
n

, 0, . . . ).

We want to see that for every i, d(B, pi) ≤ δ·
√

2
2 . Owing to that δ > 0 and

d(x, y) ≥ 0. To simplify everything we will multiply each side by itself. Meaning
that we want to demonstrate: d(B, pi)

2 ≤ δ2

2 .
And it is easy to see, that with this distribution, the distances for all the points

to B will be the same, since B − pi = ( δ
n·
√

2
, δ

n·
√

2
, . . . , δ

n·
√

2
− δ√

2
i

, . . . , δ
n·
√

2
n

, 0, . . . ).

And since δ
n·
√

2
− δ√

2
= δ·(1−n)

n·
√

2
, we have that B− pi = ( δ

n·
√

2
, δ

n·
√

2
, . . . , δ·(1−n)

n·
√

2
i

, . . . , δ
n·
√

2
n

, 0, . . . ).

Which implies that:

d(B, pi)
2 = |B− pi|2 = ∑

j 6=i
(

δ

n ·
√

2
)2 +(

δ · (1− n)
n ·
√

2
)2 =

(n− 1) · δ2

2 · n2 +
(1− n)2 · δ2

2 · n2 =

=
δ2 · ((n− 1) + (1− n)2)

2 · n2 =
δ2 · (n2 − n)

2 · n2 =
δ2 · (n− 1)

2 · n
That last expression is the distance between B and any point of the point cloud.
And, to finalize:

δ2 · (n− 1)
2 · n ≤ δ2

2
,

due to n−1
n ≤ 1. Meaning that the barycenter will be in every ball of center pi and

radiuses δ ·
√

2. Which implies that Rδ ↪→ Cδ·
√

2. As said before, the implication
Cδ ↪→ Rδ is trivial, since in order to have an non empty intersection of closed balls
of radius δ, the points must be a at most at distance δ pairwise.
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And with this two implications we have that:

Rδ ↪→ Cδ·
√

2 ↪→ Rδ·
√

2

This lemma implies that the δ′ mentioned before in the inclusions of 4.1 exists
if δ

δ′ >
√

2.

4.3 Persistence in Homology

First of all, we need to define the family of topological spaces in which we will
work.

Definition 4.7. A persistence complex C={Cδi

∗ }i∈I is a sequence of chain complexes
together with their chain maps x : Cδi∗ → Cδi+1

∗ . This is motivated by having a sequence
of Rips or Čech complexes of increasing parameter δ from an increasing sequence of values
{δi}i∈I . Since Rips or Čech complexes grow with δ, the chain maps x are naturally
identified with inclusions.

Definition 4.8. For i < j, the (i, j)-persistent homology of C, denoted Hi→j
∗ (C), is

defined to be the image of the induced homomorphism x : H∗(Ci
∗)→ H∗(C

j
∗).

Continuing with the point of before, consider a filtration of Rips Complexes
R= {Ri}i∈I parametrized by proximities {δi}i∈I as our family of topological spaces.
The previous lemma 4.6 implies that if δi

δj
≥
√

2, then Hi→j
n (R) 6= 0 implies that

Hn(Cδj) 6= 0. Meaning that properties in the Čech complex are deduced by the
persistent homology of the Rips filtration.

Let us a choose a PID of coefficients R and place a graded R[x]-module struc-
ture on C with x acting as a map between complexes that can be composed in the
following form xm ∈ R[x] and sends xm : Ci

∗ → Ci+m
∗ via m applications of x. We

also will assume that each complex from C is finitely generated as an R[x], since it
clearly exist a parameter M ∈ R, such that, CM

n is a n-simplex, and Hp(CM
n ; R) = 0

for p ≥ n.
The problem is, that, although C is a free R[x]-module, meaning it has unique

basis and a unique rank, (due to it is a filtering via chain maps x,) H∗(C) is not
necessarily free, it is certainly a R[x]-module, but, like with the non-persistent
homology, if one takes coefficients over a ring other than a field, there are many
possible forms for the homology groups.

That is why we are working all the time with coefficients Z2. It is a field. If we
choose our coefficients from a field K, the classification of K[x]-modules is much
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easier, if one takes in consideration the Structure Theorem for PIDs which tells
us that the only graded ideals of K[x] have following form: xn ·K[x]. If one also
assumes that all Betti numbers are finite, which is the case for the most reasonable
finite-dimensional spaces, that implies that:

H∗(C, K) ∼=
⊕

i

xti ·K[x]⊕

⊕
j

xrj ·
(

K[x]
xsj ·K[x]

)
This classification has a natural interpretation. The free part of the equation

has a bijective correspondence with those topological features which appear at the
parameter ti and persist for all other values of {ti}i∈I for indices greater than i.
These are the features that persist to infinity. The torsion elements correspond to
those topological features that come into existence at rj and dissapear at rj + sj. So,
this theorem provides a pair with the birth-time and dead-time for each feature,
except those that persist to infinity.

4.4 Representation

Now that we have explained some of the algebra behind Persistent Homology,
we want to represent the persistence of the topological features in a more graphical
way with the aim of making it a little bit more understandable. We have defined
the persistence of a feature as a pair (x, y) where x is the parameter where this
feature is born (birth-time) and y is the parameter where the feature dies (death-
time).

There are two common used ways to represent the persistence of this features.
One is the persistent diagram, where each feature is described as a point in a plane
where the x axis represent the birth-time of the feature and the y axis represent the
death-time. So, logically, all the points will be find over the diagonal x = y since
a feature can not die before it has been born. In this diagram the most important
feature would be the ones furthest from the diagonal, hence they will be the more
persistent ones.

Example 4.9. See figure 4.5.

The other way to represent persistence, in which one we will go more indeed,
are the persistent barcodes.

This way, consists in the fact that each feature has an interval (bar) in the
barcode, and all the intervals are set on top of another. The x axis will represent
the parameter δ that parametrizes our family of Complexes. And each interval of
the barcode will begin in its birth-time and end in its dead-time.
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Figure 4.5: Example of a persistence diagram, where the color of the points tells
us the dimension of the features.

Theorem 4.10. ([12]). The dimension dimK of the persistent homology group of a fil-
tration R={Ri}i∈I , Hi→j

n (R) is equal to the number of intervals in the barcode of Hn(R)
between i and j. And in particular dimK(Hn(Ri)) is equal to the number of intervals in
the complex Ri for each n.

Example 4.11. If we take a look at figure 4.6, extracted from [3]) one can see the
different Rips Complexes from a given filtration R from a sample of points of
an annulus. In every Rips Complex one can see that it has an interval in the
barcode for each of their features in that value of the parameter. For example, in
the fourth image, on can see that at this time it has one interval of H0(R), three
intervals of H1(R) and none of them of H2(R), and, at this time, it certainly has
one connected component, three one dimensional holes, and not a single cavity or
two-dimensional hole. If one looks at the whole barcode , it is easy to see which
features are more persistent. There is only one big interval of H0(R), and one of
H1(R), meaning that it has one connected component and one 1-dimensional hole,
meaning that the underlying figure of our data cloud has isomorphic homology
groups to the homology groups of S1 (which is a retract of an annulus).

So, in a more intuitive way of though, a barcode is the persistence analogue of a
Betti number. Remember, βk = dimZ2(HK) = rank(HK), and a barcode do not give
any further information of the structure. It is only a continuously paramatritzed
rank. The reason why one chooses barcodes to represent persistence is the capacity
to distinguish noise and significant topological features by measuring the different
intervals lengths.

Example 4.12. Let us see an example of the persistence of a topological feature
represented in a persistence diagram and in a persistence barcode.
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Figure 4.6: Example of barcodes for H0(R), H1(R), H2(R) for a given filtration R
from a data cloud. Exctracted from [3].

The hole of Figure 4.4 which had birth-time 5 and dead-time 6, and is repre-
sented in Figure 4.1 in a persistence diagram.

Figure 4.7: The persistence of the feature in Figure 4.4 represented in a persistence
diagram and a persistence barcode.

As we will see in the next section, barcodes and persistence diagrams are stable
in the presence of noise.

4.5 Stability

Let us recapitulate. We have now, Persistent Homology is the homology of a
filtration, and we set up a theory that allows us to genarate a filtration of Simplicial
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Complexes parametrized by the distance of the points. That, leads us to a way to
calculate topological features starting from discrete data.

4.5.1 Homology Inference

One of the most fundemental applications of Persistent Homology is the Ho-
molgy Inference. Which tackles the following problem.

Given a finite sample of points P ⊂ Ω of an unkown shape Ω ⊂ Rm, we want
to determinate H∗(Ω).

In order to do so, we want to approximate the homology of Ω via barcodes.
But, we first, need to explain a couple of ideas.

Let X ⊆ Rm be a closed set, we define dX : Rm → R as a function that gives
the euclidean distance to the nearest point in X.

dX(p) = in f
x
||p− x||2, for x ∈ X and p ∈ Rm.

Definition 4.13. The Parellel Body Xε
0 is defined as Xε = d−1[0, ε].

Meaning that the paralel body, are all the points that are at distance ε or less
from any point of X.

Definition 4.14. Let Y be another closed set in Rm the Hausdorff distance between two
sets dH(X, Y) is defined as the infimum ε > 0 for which X ⊆ Yε and Y ⊆ Xε.

Which implies that if dH(X, Y) = ε, all the points from X are at a distance ε or
less from a point of Y and viceversa.

Definition 4.15. Let f be a real function on X. A Homological Critical Value of f is
a real number a for which there exists an integer such that for all ε > 0 suffiecent small
the map Hk( f−1(−∞, a− ε)) → Hk( f−1(−∞, a + ε)) induced by inclusions is not an
isomporhism.

If f = dX, it is the distance in which a betti number Bk changes.

Definition 4.16. The Homological feature size of X, denoted as h f s(X) is the infimum
positive homological critical value of dX.

Now, we can use a theorem to handle our initial problem.
Construct X such that H∗(X) ∼= H∗(Ω) from a finite sample of points P ⊂ Ω ⊂

Rm.

Theorem 4.17. Homology Inference Theorem. ([5]). For all δ ∈ R such that
dH(Ω, P) < δ < hs f (Ω)/4, and all suffecently small ε > 0, rank(Hp(Ωε)) = rank(Hp(Im( f 3δ

δ ))),
where f 3δ

δ : Hp(Pδ)→ Hp(P3δ).
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In other words, if Pδ = Dδ(P) =
⋃

p∈P Dδ(p) covers Ω, (being Dδ(p), the
closed ball with radius δ and center p,) which is a direct implication of the in-
equality dH(Ω, P) < δ, and the inclusions Dδ(P) ↪→ D2δ(P) ↪→ D3δ(P) pre-
serve homology, which is an implication of the other inequality δ < hs f (Ω)/4,
since 3δ + dH(Ω, P) < hs f (Ω), meaning that, H∗(Dδ(P)) ↪→ H∗(D2δ(P)) ↪→
H∗(D3·δ(P)) are isomorphisms. Which implies that they do preserve homol-
ogy, meaning that dim(Hp(Im( f 3δ

δ ))) = dim(Hp(Dδ(P))) = dim(Hp(D2δ(P))) =

dim(Hp(D3δ(P))) = dim(Hp(Ωδ)) for any p.
Since we work with fields, that imply that Hp(Ωδ) is isomorphic to all the

union of closed balls that we listed, meaning that we have almost found the shape
we wanted, except for one detail. We have now determinated the homology for
Ωδ, but not for Ω. So, in order to determine the homology of Ω, one has to
assume a certain regularity of the shape Ω, (meaning that we are not working
with fractals, or other irregular structures,) so, that it exists a small enough δ, such
that the Ω ∼= Ωδ.

Now, we can determinate how to compute the homology of a shape with a
sample of points by computing the persistent homology of the thickening of this
points by closed balls. And thanks to the Čech Theorem (theorem 4.4), we know,
that this thickening has the same kind of homotopy as its corresponding Čech
Complex. And since a filtration of Čech Complexes and Rips Complexes have
similar (although not the same) persistent features, we can compute the homol-
ogy of the underlying shape by calculating the persistent homology of the Rips
filtration.

In this subsection, one can deduce, that for any sufficiently well distributed
set of points that satisfyes the inequalities, one will obtain the same homology,
meanin that there exists some kind of stability of persistence homology for near
point clouds. Let us see, that this stability is also present in persistent diagrams
and persistent barcodes.

4.5.2 Stability of persistence diagrams

In the first place, one needs to know that there is a way to define persistent
homology given a function, rather than given a thickening parameter. But I will
not focus on that, so I will consider only the particular case in which the function
is dP for some point cloud, since it is the example I have covered in this report.

Definition 4.18. The bottleneck distance measures the similiraty between two persis-
tence diagrams. Given functions f , g that create filtrations, (such as dP, dQ, for two point
clouds, P, Q), and Dgmp( f ), Dgmp(g) the persistence diagrams for dimension p from the
filtrations derivated from f and g respectively. And η being a bijection between these two
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diagrams, the Bottleneck distance is defined as:

dB(Dgmp( f ), Dgmp(g)) = in f
η

sup
x
||x− η(x)||∞ (4.2)

Which implies that, the bottleneck distance between two diagrams, dB(Dgmp( f )
and Dgmp(g) = d, is the shortest distance d such that it exists a perfect matching
between the points of the two diagrams (completed with all the points in the di-
agonal so it do not has cardinality mismatches) such that any couple of mathced
points are at L∞-distance d or less.

And the equation 4.2 surely does that, it is equal to the supremum of the
L∞-distance of all the points with its match, and then takes the infimum of this
distance between all the possible matchings.

Theorem 4.19. ([5]). Given two functions f , g as before, for each dimension p the bottle-
neck distance between the the persistence diagrams of dimension p is bounded from above
by the L∞-distance between the two funcions.

dB(Dgmp( f ), Dgmp(g)) ≤ || f − g||∞ (4.3)

And, if f and g, are the distance functions to two set of points P, Q. ( f =

dP, g = dQ). Theorem 4.3 implies that if any point of P is less than d (in L∞-
distance) apart from a point of Q and viceversa, the points from the persistence
diagrams for both point clouds will be also less than d apart from its matching
point, since:

dB(Dgmp( f ), Dgmp(g))) ≤ || f − g||∞ = ||dP − dQ||∞ = dH(P, Q). (4.4)

4.5.3 Stability of persistence barcodes

Knowing that persistence diagrams have this stability, it is easy to see that
persistence barcodes also have it.

Theorem 4.20. If || f − g||∞ = d there exists a matching between the intervals of the
persistence barcode of f and g such that:

• matched intervals have endpoints with distance equal or less than d, and

• unmatched intervals have length equal or less than 2 · d.

Proof. (Remember that for each interval in the persistence barcode there is a point
in the persistent diagram if they came from the same filtration.) From equation 4.4
we know that there exists a matching between the points of the two diagrams such
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that all the points are at L∞-distance d or less. That means that these two points
differ by d in birth-time and dead-time at most. This implies that for each couple
of mathced points of the diagram that are not in the diagonal there exist a couple
of matched intervals of the barcode that also differ at most in d in both birth-time
and dead-time which, in other words means that the ending a starting point of the
mathced intervals differ by d or less. There are points in the persistence diagram
that are matched with the diagonal, and that leaves us with unmatched barcodes,
but since the L∞-distance from those points to the diagonal is also equal or less
than d: Let us suppose the worst case, where the point with coordinates (a, b) is
at distance d in both birth-time and dead-time from the diagonal. That means that
the nearest point from (a, b) is (a + d, b − d) since the points are only above the
diagonal. And given that the diagonal is x = y, a+ d = b− d→ b− a = 2 · d. And,
b− a is the dead-time minus the birth-time, the length of the respective barcode.
And since this was the worst case, it clear that the unmatched intervals have length
equal or less than 2 · d.

Which implies that the stability of persistent homology is also present in the
persistent diagrams and persistent barcodes. This stability gives the tools to per-
form Homology inference as it has shown that the persistent homology will deter-
mine the homology from the underlyng space if a good enough sample is given.
And it also means that persistent diagrams and persistent barcodes are stable with
respect to data perturbation. So noise will not affect the homology of our filtration.

4.6 Persistent Homology Examples

Now, we will see, two examples from Persistent Homology computed with the
help from the Gudhi library [14] 1.

The data from the first example are 200 points from a sphere S2. I took a sample
of points of a sphere from the library and then selected 200 random points. The
seconds example are 300 points from a Torus, which I also extracted from [14].

Let us see this points in a more graphical way in Figure 4.8.
Setting up parameters (like maximum dimension of simplices, or maximum

distance that parametrizes the Rips Complex) that we have to have in mind in
order to have a reasonable computational time, one can calculate the persistence
barcodes and diagrams from the sphere (see Figure 4.9), and from the torus (see
Figure 4.10).

1The code used in those examples can be found at https://github.com/fritzpere/Gudhi_
examples.git
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Figure 4.8: Sample points of a sphere(Up).Sample points of a Torus (Down).

Figure 4.9: Persistence barcode of the sphere (Left).
Persistence diagram of the sphere (Right).

Then, I added noise to check the stability of those persistence. I added a
random number between 0 and 0.1 to each coordinate of each points of both sphere
and torus and recalculated the persistent barcodes and persistence diagrams with
the same parameter. See Figure 4.11 for the sphere and Figure 4.12 for the torus.
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Figure 4.10: Persistence barcode of the torus (Left).
Persistence diagram of the torus (Right).

Figure 4.11: Persistence barcode of the sphere with noise (Left).
Persistence diagram of the sphere with noise (Right).

Figure 4.12: Persistence barcode of the torus with noise (Left).
Persistence diagram of the torus with noise (Right).



Chapter 5

Conclusions

In this work we have provided a formal introduction to algebraic topology
and the fundamental group. Then we have explained the intuitive idea behind
homology groups and formally defined simplicial homology and all the algebraic
tools needed to understand it.

Next, we have entered in persistent homology, explaining how to represent
persistent homology and the remaining ideas needed in order to explain the struc-
ture theorem and the stability theorem, both theorems set the basis for persistent
homology to be a robust mathematical theory.

Finally, two examples of computing persistent homology are given, where one
can appreciate that, persistent barcodes and persistence diagrams are indeed sta-
ble against noise.

Persistent Homology is a new technique in topological data analysis with
many applications that allows us to denoise and discover other features from
high-dimensional data by studying its shape. This two applications evoke many
questions that can work as a source for future works. For example, a more statisti-
cal research on how short-living a feature must be in order to be considered noise.
Or, since persistent homology only gives us information about Betti numbers, go-
ing beyond only persistence to find tools able to distinguish between spaces with
the same Betti numbers.

These are just two examples of the immense amount of possibilities to cover,
this field will be studied in the near future and hopefully extended to give us even
more information starting from noisy and high-dimensional data.

41
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