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ABSTRACT 

We overview a previously reported three-dimensional (3D) polarimetric integral imaging method and algorithms for 

extracting 3D polarimetric information in low light environment. 3D integral imaging reconstruction algorithm is first 

performed to the originally captured two-dimensional (2D) polarimetric images. The signal-to-noise ratio (SNR) of the 3D 

reconstructed polarimetric image is enhanced comparing with the 2D images. The Stokes polarization parameters are 

measured and applied for the calculation of the 3D volumetric degree of polarization (DoP) image of the scene. Statistical 

analysis on the 3D DoP can extract the polarimetric properties of the scene. Experimental results verified the proposed 

method out performs the conventional 2D polarimetric imaging in low illumination environment. 
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1. INTRODUCTION  

Conventional imaging technologies can record the light intensity to provide information of the scene. In order to reveal 

additional information, multidimensional optical imaging and sensing technologies and systems [1] have be researched for 

the past decades. Among various degree of freedoms, the three-dimensional (3D) imaging and polarimetric imaging have 

drawn attentions by worldwide research groups.  

As one of the promising 3D sensing and imaging technologies, integral imaging (InIm) [2]  has been proposed by Lippman 

about one hundred years ago. A conventional integral imaging system obtains information of a 3D scene from multiple 

perspectives by placing a lenslet array in front of a 2D image sensor. The 3D reconstruction process is the reverse of the 

3D sensing by illuminating the captured multi-perspective 2D images, also named as elemental images, in front of a lenslet 

array to form real 3D images in the imaging space [3][4]. In addition, the computational reconstruction is further developed 

with volumetric 3D images corresponding to a series of in-focused planes. Nowadays, integral imaging has been widely 

applied for 3D display, object recognition, augmented reality, biomedical applications, sensing and imaging under 

degraded conditions, [5]-[8]etc. 

As a fundamental property in electromagnetic fields, the polarization state of light may represent the physical and optical 

properties of material surface [9]. Polarimetric imaging can provide a visual extension for conventional imagery, and it 

has the advantage to reveal additional information of the object of interest comparing with the intensity-based imaging 

technologies. The potential applications of polarimetric imaging include object recognition, material inspection and 

classification for remote sensing, security and manufacture [10]-[12]. 

Conventional polarimetric imaging systems may perform poorly under low illumination conditions because of the starve 

of photons. Combining with integral imaging, 3D polarimetric may provide accurate polarimetric information. Previous 

research has focused on the polarimetric integral imaging algorithms [13][14].In [15], a simulation approach for obtaining 

3D polarimetric image with photo-counting models has been presented.  
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In this overview paper, we present a recently reported approach for polarimetric imaging under low illumination conditions 

using integral imaging [16]. With the scheme of synthetic aperture integral imaging [17], 3D information under low light 

environment is captured by a moving polarimetric image sensor, which includes a camera attached with a linear polarizer, 

to obtain multi-perspective 2D polarimetric images. Our approach will first reduce the camera dark offset from each 2D 

image, then the 3D computational reconstruction is performed to further mitigate the effect of camera read noise and 

extend the polarimetric information into 3D space. The generated Stokes polarimetric images are further utilized to 

generate 3D Degree of Polarization (DoP) image enhanced signal-to-noise ratio (SNR). Finally, total variation (TV) 

denoising algorithm is applied to the 3D DoP image. Comparisional experiments show that the DoP image with the 

proposed approach can reveal accurate polarimetric properties of the scene under low illumination conditions. However, 

the conventional 2D / 3D polarimetric imaging approaches false on it.  

2.  THREE DIMENSIONAL POLARIMETRIC IMAGING UNDER LOW ILLUMINATION 

CONDITIONS   

2.1 Polarimetric integral imaging and Degree of Polarization 

To create the polarimetric image, the Stokes polarization parameters (Si, i=[0, 1, 2, 3]) need to be obtained [14][16]: 

                                                                               

{
  
 

  
 𝑆0 = 𝐸0𝑥

2 +𝐸0𝑦
2 = 𝐼0°+ 𝐼90°                      

𝑆1 = 𝐸0𝑥
2 −𝐸0𝑦

2 = 𝐼0°− 𝐼90°                      

𝑆2 = 2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑠𝛿 = 𝐼
45° − 𝐼135°            

𝑆3 = 2𝐸0𝑥𝐸0𝑦𝑠𝑖𝑛𝛿 = 𝐼
45°,𝜋/2− 𝐼135°,𝜋/2

,                                                                   (1) 

where E0x and E0y are the instantaneous (time average) amplitudes of the x and y components in electric field, δ is the 

instantaneous phase of plane wave. The Degree of Polarization (DoP) can be derived by the Stokes polarization parameters: 

                                                                    𝐷𝑜𝑃 = (√𝑆1
2 + 𝑆2

2 + 𝑆3
2) 𝑆0⁄                                                                            (2) 

where DoP is between [0, 1]. Furthermore, we can decompose the DoP into (i) DoLP (Degree of Linear Polarization) by 

applying the linear components of Stokes polarization parameters:  𝐷𝑜𝐿𝑃 = √𝑆1
2 + 𝑆2

2 𝑆0⁄  and (ii) DoCP (Degree of 

Circular Polarization): 𝐷𝑜𝐶𝑃 = |𝑆3| 𝑆0⁄ . To measure the Stokes polarization parameters, a linear polarizer and quarter 

retarder (waveplate) are placed in front of the image sensor [see Fig.1(c)]. Corresponding to Eq. (1), the Stokes parameters 

can be measured by the captured polarimetric images [Iα° and Iα°, π/2]. Iα° represents the linear polarizer with an angle of α°, 

which corresponding to the x axis for measuring the linear polarimetric components. Iα°, 𝜋/2 represents that a quarter 

waveplate attached to the polarizer for measuring the circular polarimetric component (S3). A total of six sets of 

polarimetric images are required for polarimetric imaging.  

Integral imaging based 3D polarimetric imaging has been presented in [14]. However, under low illumination conditions, 

the conventional imaging approaches may not be able to reveal the accurate information, because the images are read noise 

dominated.  
In the proposed method, we apply synthetic aperture integral imaging [17] for polarimetric 3D imaging by replacing the 

lenslet array with a moving camera. As shown in Fig. 1(a)(c), a moving camera attached with a linear polarizer and quarter 

waveplate are used.  

 
Figure 1. The previously presented integral imaging-based 3D polarimetric imaging. (a) 3D optical sensing, (b) computational 

reconstruction, and (c) polarimetric imaging [16]. 

Proc. of SPIE Vol. 11402  1140203-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 26 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

2.2 Remove camera dark offset and 3D reconstruction 

The camera dark offset is due to the electrical system of the digital camera. When we preform 3D imaging under low 

illumination conditions, the signal intensity is very weak and camera dark offset may lead the image with a relatively low 

dynamic range. To reduce the effect from the camera dark offset, we first reduce the offset noise from the captured 2D 

elemental images. The camera dark offset can be measured by setting the camera sensor with a minimum exposure time 

and a maximum f-stop of camera to capture bias frames. The measured offset is named as a bias image, which can be 

obtained by averaging over 100 single bias frames: 𝑏𝑖𝑎𝑠𝑖𝑚𝑔 = 1 𝐾⁄ ∑ 𝑏𝑖𝑎𝑠𝑖 ,
𝐾
𝑖=1  (𝑖 = 1,2, … , 𝑘;   𝑘 ≥ 100) where biasi is 

the i-th bias frame. With the reduction of the camera dark offset, the camera read noise will dominate in the processed 

polarimetric images. The perspective 2D polarimetric images 𝜉𝑚,𝑛
𝛼°  with read noise can be expressed as 𝜉𝑚,𝑛

𝑝
= 𝐼𝑚,𝑛

𝑝
+ 𝜀,  

where 𝐼𝑚,𝑛
𝑝

 is the (m, n)-th ideal elemental image, 𝜺 is the additive read noise. Note that the image may also contain dark 

current noise, because the camera exposure time is not zero. However, the dark current noise is much smaller than read 

noise. To reduce the read noise, SAII reconstruction is applied to the polarimetric elemental images without the dark offset 

noise.  The SAII reconstruction can be expressed as: 

𝑅𝑧
𝑝(𝑥, 𝑦) =

1

𝑂(𝑥,𝑦)
∑ ∑ [𝐼𝑚,𝑛

𝑝
(𝑥 −

𝑚×𝐿𝑥×𝑝𝑥

𝑐𝑥×𝑧/𝑓
, 𝑦 −

𝑛×𝐿𝑦×𝑝𝑦

𝑐𝑦×𝑧/𝑓
) + 𝜀]𝑁−1

𝑛=0
𝑀−1
𝑚=0 =

1

𝑂(𝑥,𝑦)
∑ ∑ [𝐼𝑚,𝑛

𝑝 (𝑥′, 𝑦′) + 𝜀]𝑁−1
𝑛=0

𝑀−1
𝑚=0 ,           (3)  

where (x, y) is the pixel index of a 2D image, Z is the 3D reconstructed depth, g is the focal length of the camera. O(.) is 

the overlapping pixel number on (x, y), M and N are the number of perspectives of SAII in the horizontal and vertical 

directions, respectively. Lx and Ly are the resolution of camera sensor. 𝑥′ = 𝑥 −
𝑚×𝐿𝑥×𝑝𝑥

𝑐𝑥×𝑧/𝑓
, 𝑦′ = 𝑦 −

𝑚×𝐿𝑦×𝑝𝑦

𝑐𝑦×𝑧/𝑓
 , and (cx, 

cy) and (px, py) are the sensor size and period between adjacent sensors, respectively.  

2.3 Statistic approach for extracting polarimetric information 

We proposed a statistic approach for extracting the polarimetric information from 3D DoP image. Based on Eq.1, the 

Stokes parameter matrices (𝑆𝑖
𝑧 ) indicate the intensity differences between orthogonal polarimetric images. In low 

illumination condition, the images are read noise dominated, and the read noise follows zero mean Gaussian distribution 

[N (0, σ²)]. 3D image intensities in non-polarimetric areas and out-of-focus areas are not sensitive to the polarimetric 

component. However, image intensities in the in-focus areas of a polarimetric material depends on the orientation of the 

polarimetric optical components, and the corresponding Stokes parameters will follow a non-zero mean Gaussian, [N (μ, 

σ²), μ≠0]. With such characteristics, the polarimetric properties in the 3D scene can be distinguished from the background 

and out-of-focus areas statistically by the un-normalized DoP with each Stokes parameter normalized by its standard 

deviation [16]: 

𝑋𝑧 = √∑ (𝑆𝑖
𝑧 𝜎𝑖⁄ )23

𝑖=1 , 𝑋𝑧~𝐶ℎ𝑖 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑖𝑓 𝑆𝑖
𝑧~𝑁(0, 𝜎𝑖

2).                                                                                                     (4) 

In the 3D DoP image, the statistic distribution of the Stokes parameters in (i) the out-of-focus depth and (ii) the non-

polarimetric in focus material area will follow Chi distribution [𝑆𝑖
𝑧~N (0, 𝜎𝑖

2)]. Furthermore, if the material only with linear 

polarized property, which is common in the nature, Xz will follow the Rayleigh distribution. However, Xz will not follow 

a Chi distribution when the Stokes parameters are measured from an in-focus depth of a polarimetric material [𝑆𝑖
𝑧~N (μ, 

𝜎𝑖
2), μ≠0]. The depth information of the polarimetric materials can be measured by the relative entropy of intensity 

distributions in the 3D DoP images along depth. The relative entropy is calculated by applying the Kullback-Leibler 

Divergence.  

3. EXPERIMENTAL RESULTS 

We performed indoor low illumination 3D polarimetric integral imaging experiments to verify the proposed method. In 

the experiments, the digital sensor used in the experiments is with a resolution of 2048 pixels (H) × 2048 pixels (V), and 

its sensor pixel size is 6.5 μm (H) × 6.5 μm (V). As shown in Fig. 2, the 3D scene includes a mannequin, and a linear 

polarizer sheet was attached on it. SAII based polarimetric imaging and reconstruction were performed with a total of 49 

[7 (H) × 7(V)] perspectives, the pitch between adjacent perspectives is 30 mm in both directions.  
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Fig. 2. Low illumination integral imaging experiment. (a) Original images (with dark offset). (b) Images without camera dark offset. (i) An example of 

2D elemental image. (ii) 3D image focused in the object plane. (iii) 3D image focused on the background. Green window corresponds to the object 

(signal) area and red window corresponds to the background (noise) areas for SNR [16].    

Figs. 2(a) illustrate the original 2D elemental image with offset noise and the corresponding reconstructed images at 

different focus distances. The corresponding data with reduced offset noise is shown in Fig. 2(b). As discussed in Section 

2.2, the camera dark offset is subtracted from the captured 2D images. 100 bias frames were recorded with a minimum 

camera exposure time of 3ms and a maximum f-stop.  In addition, we estimate the number of photons falling on the image 

sensor by using the derived image without camera offset. The flow for photon estimation is first convert the intensity 

image to electrons by the conversion gain of the camera (conversion coefficient), then we divide the converted electrons 

with the quantum efficiency (QE) to achieve the photons / pixel recorded by the sensor.  

𝛾 = (𝐼 − 𝑏𝑖𝑎𝑠𝑖𝑚𝑔) ×
𝐶𝐹

𝑄𝐸
.                     (5) 

In the experiment, the estimated number of photons per pixel falling on the image sensor is 1.24. We further calculate the 

SNR by selecting identical areas on both the 2D and 3D images. The SNR can be derived as: 

𝑆𝑁𝑅 = (𝜇𝑠 − 𝜇𝑛) √𝜎𝑠
2 + 𝜎𝑛

2⁄ ,                    (6) 

where 𝜇𝑠 , 𝜇𝑛 are the mean value of object and background areas, respectively. 𝜎𝑠
2 , 𝜎𝑛

2are the variance of object and 

background areas, respectively. The data are extracted from the red and green boxes shown in Fig.2.  

Fig. 3 shows the DoP images between the proposed approach and conventional 2D methods. Without reducing the camera 

offset, the 2D DoP [see Fig. 3a (i)], and 3D DoP [see Figs. 3a (ii) and (iii)] intensities are close to 0, DoP images cannot 

reveal the accurate polarimetric information of the scene. By removing the offset, the polarimetric images may contain 

zero or negative digitized intensity values, and the corresponding 2D DoP may be saturated (DoP >1 or <0) [see Fig. 3b(i)]. 

The 3D DoP image can mitigate the saturation effect; however, it is still noisy as shown in Figs. 3b (ii) and (iii). The total 

variation (TV) denoising algorithm [18] is further applied [see Figs. 3c (ii) and (iii)] to enhance the image quality.  

 Fig. 3.  2D and 3D DoP images, (a) with camera offset, (b) without camera offset, and (c) without camera offset and with total variation 

(TV) algorithm. (i) 2D DoP, (ii) 3D DoP at z = 3.2 meters, and (iii) 3D DoP at z = 5.2 meters. Yellow and red windows correspond to 

the polarimetric and non-polarimetric material areas [16]. 
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The SNR results are shown in Table 1. The SNR of the 2D DoP [see Fig. 3a(i)] is negative with a value of -0.19, and the 

saturated 2D DoP [see Fig. 3b(i)] provides a unreliable SNR value. The 3D DoP at 3.2 meters with offset [see Fig. 3a(ii)] 

and without offset [see Fig. 3b(ii)] have SNR values of 0.50 and 1.27, respectively. With the proposed approach, the SNR 

is 7.39 as [see Fig. 3c (ii)]. The histograms of the random variables derived from the 3D un-normalized DoP is illustrated 

in Figure 4(a)-(b) for depths of 3.2 meters and 5.2 meters, respectively. Fig. 4(c) depicts the KL Divergence curve between 

the polarimetric and non-polarimetric areas along the depth range. 

 

Table 1. SNR of the DoP images for 2D and 3D polarimetric images with and without camera offset, and with TV algorithm.  

Estimated photons/pixel = 1.24 [16]. 

 2D DoP 3D DoP (at 3.2meters depth) 

 
With offset Without offset With offset Without offset 

Without offset 

+ TV  

SNR -0.19 NaN 0.50 1.27 7.39 

      

 

Fig. 4. Histograms of un-normalized DoP [see Eq. 5] at (a) 3.2 meters focused on object, and (b) 5.2 meters (background). PM = 

polarimetric material, NPM = non-polarimetric material. Estimated photons/pixel = 1.24. Windows [see Fig. 3b(ii)] were selected on 

areas corresponding to the PM area (yellow box), and NPM area (red box). (c) Kullback-Leibler Divergence between the windows along 

depth range Z [16]. 

4. CONCLUSION 

In this letter, we have demonstrated a previously reported approach for effectively extracting 3D polarimetric information 

under low illumination conditions. 3D Stokes polarization parameters are obtained by the integral imaging technology and 

the DoP images are calculated without the effect of camera offset. Total variation algorithm is further applied to enhance 

the DoP image quality. We also developed a statistical approach to analyze 3D polarimetric properties in the scene. 

Experimental results verified that the proposed approach can extract 3D polarimetric information in low light conditions, 

and it outperforms the 2D polarimetric imaging which performed poorly in these conditions.  
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