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Abstract 35 
 36 

The pharmacophore concept is a fundamental cornerstone in drug discovery, playing a critical role in 37 
determining the success of in silico techniques, such as virtual screening and 3D-QSAR studies. The 38 
reliability of these approaches is influenced by the quality of the physicochemical descriptors used to 39 
characterize the chemical entities. In this context, a pivotal role is exerted by lipophilicity, which is a major 40 
contribution to host-guest interaction and ligand binding affinity. Several approaches have been undertaken 41 
to account for the descriptive and predictive capabilities of lipophilicity in 3D-QSAR modelling. Recent 42 
efforts encode the use of quantum mechanical-based descriptors derived from continuum solvation models, 43 
which open novel avenues for gaining insight into structure-activity relationships studies. 44 
 45 
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1. The pharmacophore concept and its application in drug design. 70 

Almost all processes of life are determined by the recognition between biomolecules, a process dictated by 71 

the chemical complementarity between the interacting partners [1]. An effective characterization of the 72 

chemical features associated to the structure of both "host" and "guest" is necessary for disclosing the key 73 

molecular determinants implicated in the formation of the host-guest complex. In drug discovery studies 74 

addressing the interaction of small molecules (ligands) with macromolecular receptors, these determinants 75 

are generally encoded under the concept of pharmacophore. A simple and intuitive definition can be 76 

attributed to Paul Ehrlich, since this concept can be related to “a molecular framework that carries (phoros) 77 

the essential features responsible for a drug’s (pharmacon) biological activity” [2]. Nevertheless, Ehrlich did 78 

not use the term pharmacophore in his papers, where the terms haptophore and toxophore were adopted [3]. 79 

Instead, the modern concept of pharmacophore evolved from the identification of "chemical groups" to the 80 

definition as "patterns of abstract features in space" by Schueler [4], reflected in early models depicting key 81 

features for biological activity that must satisfy certain geometrical relationships [5, 6], and the development 82 

of the first pharmacophore pattern recognition programs [7]. Thus, according to the International Union of 83 

Pure and Applied Chemistry (IUPAC), a pharmacophore "does not represent a real molecule or a real 84 

association of functional groups, but a purely abstract concept that accounts for the common molecular 85 

interaction capacities of a group of compounds towards their target structure", being the largest common 86 

denominator shared by a set of active molecules [8].  87 

This evolution has been accompanied by the progressive refinements triggered by advances in molecular 88 

descriptors and computational methods seen in the last 30 years, since a variety of in silico techniques have 89 

exploited the pharmacophore concept. This is exemplified by virtual screening (VS) studies of large 90 

molecular databases performed to identify new promising compounds according to their similarity to a given 91 

privileged template, which should contain reference physicochemical features relevant for biological activity 92 

[9-11]. Molecular/chemical (global/local) similarity is a subjective concept since it depends on the specific 93 

details of the methodological approach, the nature of the molecular features relevant for similarity 94 

assessment, and the definition of the similarity function [12]. A sensitive and effective estimation of 95 

molecular similarity is a fundamental pre-requisite for the identification of potential leads starting from a 96 

chemical reference, which represents the paradigm of virtual screening. 97 

Another successful application of the pharmacophore concept is linked to 3D quantitative structure-activity 98 

relationships (3DQSAR) [13], such as CoMFA [14], CoMSIA [15] and GRID/GOLPE [16]. These methods 99 

permit to identify a pharmacophore from the relationships between the biological activities of a set of aligned 100 

molecules and the projection of selected physicochemical descriptors into the surrounding space, leading to 101 



the disclosure of regions favourable or not to the bioactivity of compounds. 3D-QSAR approaches are also 102 

used to model ADME(T) properties in the attempt to predict whether a molecular candidate would be able to 103 

achieve its biological target [17]. Optimization of both ligand potency and ADME(T) profile is absolutely 104 

required to translate promising molecular candidates to successful low-dose therapeutics. However, the 105 

success of this operation is not trivial, since the final result depends on factors such as the quality of the input 106 

data, as well as the adequacy and level of description of the physicochemical parameters used in the analysis. 107 

In fact, Gleeson and collaborators [18] have observed the existence of a diametrically opposed relationship 108 

between descriptors that efficaciously model drug potency and ADME(T) properties, making more 109 

challenging the drug discovery process.  110 

 111 

2. Lipophilicity in drug design 112 

The relevance of lipophilicity in understanding the pharmacological profile of drug-like compounds is 113 

widely recognized [19], as a broad variety of biodistribution and toxicological processes are ultimately 114 

related to the differential solubility of solutes in aqueous and non-aqueous environments. This is illustrated 115 

by Lipinski’s rule-of-five [20], which relates the drug-likeness of oral compounds with molecular weight, 116 

hydrogen bonding, and lipophilicity. Being a key property for the prediction of ADME(T) properties, this 117 

has stimulated the development of experimental and computational approaches to quantify the lipophilicity 118 

of a (bio)organic molecule.  119 

Experimentally, the lipophilicity of a molecule can be quantified by its partition coefficient (P), as this 120 

equilibrium thermodynamic property measures the ratio of concentrations of the compound between two 121 

immiscible solvents, generally water and n-octanol. In turn, the partition coefficient can be expressed in 122 

terms of the transfer free energy (∆𝐺𝑡𝑟
𝑜/𝑤) between the two solvents (Eq 1).  123 

 124 

∆𝐺𝑡𝑟
𝑜/𝑤 = −2.303 𝑅𝑇 𝑙𝑜𝑔𝑃          Eq 1 125 

Lipophilicity reflects the complex interplay between the intermolecular forces that dictate the differential 126 

solvation in the aqueous and organic phases. Accordingly, it can be factorized in terms of selected physico-127 

chemical properties of the compound that may be relevant for the preferential solvation in aqueous and non-128 

aqueous solvents, as shown in Eq 2 [21, and references therein].   129 

 130 

𝑙𝑜𝑔𝑃 = 𝑣𝑉 −  Λ + 𝐼 + 𝐼𝐸          Eq 2 131 

where v is a constant, V is the molar volume, which encompass the ability of the solute to elicit nonpolar 132 

interactions, Λ is related to the polarity of the compound, and finally I and IE accounts for the solute capacity 133 



to form ionic interactions, which favor partitioning into the aqueous phase, and for the contribution due to 134 

intramolecular effects, respectively. 135 

Let us note that lipophilicity and hydrophobicity, which are often used as equivalent concepts, are not strictly 136 

synonymous, the latter being in fact one of the contributions to molecular lipophilicity [22]. Thus, while 137 

hydrophobicity can be defined as the tendency of non-polar groups of a molecule to aggregate in order to 138 

minimize the unfavourable exposition to the surrounding polar (water) solvent, lipophilicity is a measure of 139 

the affinity of the molecule for the non-polar solvent in a biphasic system constituted by a polar and a non-140 

polar solvent. 141 

Lipophilicity affects a number of pharmacokinetic parameters (Figure 1). Low lipophilicity is responsible of 142 

high aqueous solubility, which is a key factor for drug-likeness, but an excessively low lipophilicity could 143 

compromise the ability of the drug to achieve the biological target. On the opposite site, highly soluble 144 

compounds possess poor permeability through biological membranes, limiting absorption along the 145 

gastrointestinal tract, or the transport across the blood-brain barrier. Therefore, optimal requirements for 146 

efficient solubility and permeability properties are inevitably enclosed in a very narrow range of 147 

lipophilicity. Another key aspect for drug-likeness is bioavailability, which is inversely correlated to low 148 

first-pass clearance. Once again, lipophilicity is crucial since high lipophilicity is associated to high 149 

clearance and low metabolic stability. Overall, a careful handling of lipophilicity is required to optimize 150 

compound availability at the biological target. 151 

 152 

Figure 1 here 153 

 154 

 155 

On the other hand, lipophilicity has rarely been used as the primary descriptor in ligand-receptor recognition. 156 

Indeed, following the IUPAC recommendation for the definition of a pharmacophore, it is defined as "the 157 

ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interactions 158 

with a specific biological target structure" [8]. This definition hides the key role played by (de)solvation in 159 

the recognition and binding of a drug-like compound to its macromolecular target [23], especially keeping in 160 

mind that the maximal achievable affinity that can be attained for target binding sites is largely influenced by 161 

nonpolar desolvation [24]. This is consistent with the concept that favourable drug binding is largely driven 162 

not only by the global lipophilicity of a compound, but more importantly by the spatial distribution of polar 163 

and apolar regions along the chemical skeleton. Thus, while apolar regions determine the binding affinity 164 

with complementary lipophilic regions of the binding site, polar interactions would provide 'anchor points' 165 



contributing to ligand specificity and/or directionality in the binding pocket, as well as to modulate binding 166 

kinetics of the ligand [25-30]. 167 

Taken together, these data suggest that a concomitant optimization of both pharmacokinetic profile and drug 168 

potency have to be done to obtain successful drug products. This is encoded in the concept of lipophilicity 169 

efficiency (LipE), which provides a metric that normalizes the potency (generally measured as Ki or IC50) of 170 

the ligand against a protein target for the lipophilicity of the compound [31-33]. This is achieved by 171 

substracting the logP (or the distribution coefficient for ionizable molecules, logD) from the negative 172 

logarithm of the potency (Eq 3).  173 

 174 

𝐿𝑖𝑝𝐸 =  − 𝑙𝑜𝑔 potency −  𝑙𝑜𝑔𝑃        Eq 3 175 

 176 

LipE can be useful to provide guidelines to study the simultaneous effects exerted by structural changes on 177 

potency and lipophilicity, which is central for drug design and lead optimization programmes, thus giving 178 

support to the formulation of the “lipophilic pharmacophore” concept.  179 

 180 

3. From empirical fragment/atom-based approaches to 3D structure-based methods to estimate lipophilicity 181 

Numerous efforts have been done to assess lipophilicity by means of experimental methods [34-36]. 182 

Similarly, a plethora of computational approaches for estimating logP have also been developed [37-42]. We 183 

limit ourselves to remark selected fundamental concepts, while the reader is addressed to the previously 184 

quoted reviews for detailed comparative analysis. 185 

Within the framework of substructure-based methods for logP estimation, fragmental and atom-based 186 

techniques follow a general additive scheme as shown in Eq 4, 187 

 188 

𝑙𝑜𝑔𝑃 =  𝑎𝑖𝑓𝑖 
𝑛
𝑖!! +  𝑏𝑗𝐹𝑗

𝑚
𝑗!!          Eq 4 189 

 190 

where logP is the sum of the weighted (𝑎𝑖) contribution of each fragment/atom (𝑓𝑖) and a correction factor 191 

(𝑏𝑗𝐹𝑗).  192 

Fragmental methods are illustrated by the work of Leo, Hansch and Elkins [43] as well as Nys and Rekker 193 

[44]. The former relies on the concept of substituent constant, which encodes the lipophilicity contribution of 194 

a chemical group or atom when it replaces an hydrogen atom in a reference compound, and the theoretical 195 

estimation of logPo/w follows an additivity scheme, named cLOGP. This method permits to extrapolate the 196 

partition coefficients starting from a list of experimentally fitted fragmental contributions to lipophilicity. An 197 



arbitrary set of interfragmental rules was then used to compile a database library of fragment-weighted 198 

lipophilicity contributions,. On the other hand, Nys and Rekker [44] introduced the concept of hydrophobic 199 

fragmental constant (f), which represents the lipophilicity contribution of a constituent part of a structure to 200 

the total lipophilicity of a given compound. Fragments range from atoms to heterocyclic rings, so that 201 

functional groups with direct contribution to resonance interactions were left intact, and are differentitated 202 

upon linkage to aliphatic and aromatic structures. The differences between experimental logP and the 203 

additive value estimated from the ∑f approach was accounted for by correction rules, reflecting factors such 204 

as the presence of vicinal electronegative centres in the chemical structure, aromatic condensation, cross-205 

conjugation or hydrogen-bonding [45]. 206 

An example of atom-based partitioning strategy was undertaken by Ghose and Crippen, who developed a 207 

procedure that combines lipophilicity contributions at an atomic level leading to the ALOGP method. This 208 

method encompassed a list of 120 atom types for carbon, hydrogen, oxygen, nitrogen, sulfur, and halogens 209 

[46-48]. An alternative strategy is the XLOGP method [49], which is based on the summation of atomic 210 

contributions derived from experimental lipophilicity data of 1831 organic molecules, and includes 211 

correction factors for some intramolecular interactions. 212 

In the last decades, the evolution of computer performances enabled the development of whole molecule-213 

based strategies to predict the lipophilicity by taking into account the three-dimensional structure of 214 

compounds, and thus the effect of molecular conformation. Among all the available techniques, the 215 

molecular lipophilicity potential (MLP) [51] offers an empirical quantitative 3D description of the 216 

lipophilicity potential from all the molecular fragments on the surrounding space of a compound. The MLP 217 

approach is then intended to model the lipophilic interactions between ligand and receptor as noted in Eq 5, 218 

 219 

𝑀𝐿𝑃𝑘 =  𝐹𝑖 𝑓 𝑑𝑖𝑘
𝑁
𝑖!!          Eq 5 220 

 221 

where 𝐹𝑖 is the lipophilic fragmental contribution and 𝑓 𝑑𝑖𝑘  is a distance function which depends on the 222 

separation between a given fragment (i) and any point on the molecular surface or volume (k).  223 

Molecular fields derived from the MLP potential have found a wide range of pharmaceutical applications, 224 

including the prediction of skin permeation and distribution of new chemical entities [50], modeling of 225 

peptides and proteins [52, 53], and structure-activity relationships studies [54]. 226 

The Hydrophobic INTeraction (HINT) method represents an alternative, promising strategy for the study of 227 

lipophilicity in biomolecular interactions [55, 56]. This method exploits a scale of hydrophobic fragments 228 

constants at the atomic level by means of an adaptation of the CLOGP method, which are then used to 229 



evaluate a pairwise interaction energy term (𝑏𝑖𝑗) between atoms i and j in the interacting partners according 230 

to Eq 6. 231 

 232 

𝑏𝑖𝑗 =  𝑎𝑖𝑆𝑖𝑎𝑗𝑆𝑗𝑇𝑖𝑗𝑅𝑖𝑗 +  𝑟𝑖𝑗           Eq 6 233 

 234 

where ai and Si are respectively the hydrophobic constant and the accessible surface area of the atom i, Tij is a 235 

logic function describing the character of interacting pairs (attraction or repulsion), and Rij and rij denote 236 

functions of the distance between atoms i and j, the former following an exponential form and the latter a 237 

Lennard-Jones implementation.  238 

Eq. 5 encodes the formalism of the “natural” HINT force-field, which has been used to explore a variety of 239 

applications in ligand-protein and protein-protein interactions [57-61].  240 

Other approaches have relied on molecular properties derived from quantum mechanical treatments of 241 

molecules. An early attempt is the work by Roger and Cammarata [62, 63], who related the logP of aromatic 242 

compounds with the charge density of both π and σ electron frameworks and the induced polarization. In a 243 

distinct approach, the BLOGP method relied on semiempirical AM1 calculations to derive geometrical and 244 

quantum chemical descriptors for the prediction of logP [64, 65]. In a similar approach, Clark and coworkers 245 

performed AM1 and PM3 calculations to derive a series of descriptors, including electrostatic potentials, 246 

total dipole moments, mean polarizabilities, surfaces, volumes and charges, which were used in the 247 

prediction of partition coefficients [66, 67].  248 

These efforts can also be exemplified with the concept of heuristic molecular lipophilic potential (HMLP) 249 

[68, 69]. In this approach, the lipophilic/hydrophilic features of a compound are determined from the 250 

analysis of the electrostatic potential computed at the molecular surface. To this end, a dimensionless 251 

distance-dependent screening function is used to compare the local electron density at the surface of a given 252 

atom with the electrostatic potential generated on the rest of atoms. The screening function, which was 253 

derived from statistical mechanical treatment of polar solvent molecules as dipoles, accounts for the 254 

influence exerted by the atomic descriptors of the electrostatic potential from surrounding atoms. Ultimately, 255 

such a comparison leads to the definition of an atomic lipophilicity index, which can adopt positive or 256 

negative values, reflecting the lipophilic and hydrophilic nature, respectively, of such an atom. 257 

Finally, a distinct approximation comes from the usage of solute-solvent correlation functions derived by 258 

using the Reference Interaction Site Model (RISM) as descriptors for QSAR studies. By using a classical 259 

statistical mechanics-based solvent model combined with machine learning, 1D solute-solvent correlation 260 

functions were used to predict Caco-2 cell permeabilities [70]. As an extension of this approach, Güssregen 261 



et al. proposed the Comparative Analysis of 3D-RISM Maps (CARMa) methodology [71]. In this 262 

computational strategy, the classical electrostatic and steric fields generally used in CoMFA are replaced by 263 

solute–solvent distribution functions determined from 3D-RISM computations, which are subsequently 264 

treated as descriptors to perform QSAR analysis. The method was validated using a set of serine protease 265 

inhibitors as a test system. 266 

Even though CARMa uses a statistical mechanics solvent model, the electrostatic and steric effects 267 

implemented in CoMFA cannot be directly captured. This issue has been recently addressed by solving 3D-268 

RISM equations for a solvent comprising CoMFA probes in aqueous solution, this extension being referred 269 

to as CARMa(electrolyte) [72]. The analysis performed for six protein–ligand systems reveals a small but 270 

consistent increase in prediction accuracy compared to CoMFA. 271 

 272 

4. Lipophilicity from QM continuum solvation methods. 273 

More elaborate methods for estimating the partition coefficients have been proposed in the framework of 274 

QM-based continuum solvation models [73, 74], which were developed with the aim of predicting the 275 

solvation free energy of solutes treating the solvent as a continuum polarizable medium. In spite of this 276 

rather crude approximation, these methods have proved to be a promising strategy that combines well 277 

established physical formalisms, a straightforward mathematical implementation, and a reduced 278 

computational cost, while predicting solvation free energies of (bio)organic compounds with chemical 279 

accuracy after a careful parameterization against experimental data [75-77]. Since a broad review of these 280 

formalisms and their applications exceeds the aims of this review, we limit ourselves to stress a selected set 281 

of recent studies addressing the potential impact of QM-based continuum methods in drug design.  282 

 283 

4.1 COSMO and COSMO-RS-based approaches 284 

In this context, the Continuum Solvation Model for Real Solvents (COSMO-RS) has been recently utilized 285 

to evaluate the similarity between molecules within the so-called COSMOsim method [78]. This method 286 

relies on the conductor-like screening model (COSMO) calculations to derive the so-called σ-profile of a 287 

given compound. The σ-profile collects the set of polarization charge densities generated on the surface 288 

patches of the molecule immersed in the solvent, which is treated as an ideal conductor. The one-289 

dimensional histogram distribution of the σ values for the whole set of surface elements enclosed in the 290 

molecular surface gives rise to a characteristic signature of the solute, which can be used to measure a σ-291 

profile-based similarity between compounds with application for the detection of bioisosteric fragments or 292 



molecules. In order to enhance the computational efficiency, the σ-profile of a new compound can be 293 

replaced with a composition of partial σ-profiles taken from similar fragments of precalculated molecules 294 

stored in a database using COSMOfrag [79].  295 

Since the σ-profile does not contain information about the spatial distribution of the polarization charge 296 

density, COSMOsim3D has been recently proposed to alleviate this limitation [80]. To this end, 297 

COSMOsim3D projects the surface charge density of each surface segment onto a regular 3D grid, so that 298 

each point of the grid has an associated local σ-profile. In other words, instead of generating a single 1D σ-299 

profile for the entire molecule, COSMOsim3D creates a local 1D σ-profile at each position of a regular 3D 300 

grid. This process leads to a four-dimensional histogram defined by the three Cartesian dimensions of the 301 

grid point and the local σ-profile as the fourth dimension. If calculated for two molecules, this strategy can 302 

be ultimately used to estimate their overall similarity. Furthermore, these local σ-profiles have been also 303 

used to generate molecular interactions fields for 3D-QSAR studies [81]. 304 

 305 

4.2 Fragmental lipophilicity model from the MST method: The Hyphar approach 306 

The Miertus-Scrocco-Tomasi (MST) solvation model has been used to develop 3D distribution patterns of 307 

lipophilicity, which in turn have been exploited in predicting molecular overlays and 3D-QSAR studies [82-308 

83]. The MST model is a parametrized version of the polarizable continuum model developed by Tomasi 309 

and coworkers [85, 86] at both semiempirical, Hartree-Fock and B3LYP levels [87-90] (for a review see 310 

[91]). From the solvation free energies in water and n-octanol, one can derive the n-octanol/water partition 311 

coefficient (Eq 1), which is a property of the whole molecule. Nevertheless, by decomposing the solvation 312 

free energy into atomic contributions, one can obtain the 3D profile of lipophilicity from the corresponding 313 

atomic contributions to the logP. For a molecule (M) containing N atoms, this is achieved by decomposing 314 

the logP (or the corresponding transfer free energy, Δ𝐺𝑡𝑟,𝑀
𝑜/𝑤 ) into electrostatic (𝑙𝑜𝑔𝑃𝑒𝑙𝑒,𝑖), cavitation (𝑙𝑜𝑔𝑃𝑐𝑎𝑣,𝑖) 315 

and van der Waals (𝑙𝑜𝑔𝑃𝑣𝑊,𝑖) components, which can be derived from the polar (Δ𝐺𝑒𝑙𝑒,𝑖
𝑜/𝑤) and non-polar 316 

(Δ𝐺𝑐𝑎𝑣,𝑖
𝑜/𝑤 ,  ΔG𝑣𝑊,𝑖

𝑜/𝑤 ) contributions to the solvation free energy (Eqs 7 and 8). 317 

 318 

Δ𝐺𝑡𝑟,𝑀
𝑜/𝑤 =  Δ𝐺𝑡𝑟,𝑖

𝑜/𝑤𝑁
𝑖!! =  Δ𝐺𝑒𝑙𝑒,𝑖

𝑜/𝑤 +  Δ𝐺𝑐𝑎𝑣,𝑖
𝑜/𝑤 +  Δ𝐺𝑣𝑊,𝑖

𝑜/𝑤𝑁
𝑖!!      Eq 7 319 

𝑙𝑜𝑔𝑃𝑀 =  𝑙𝑜𝑔𝑃𝑖
𝑁
𝑖!! =  𝑙𝑜𝑔𝑃𝑒𝑙𝑒,𝑖 +  𝑙𝑜𝑔𝑃𝑐𝑎𝑣,𝑖 +  𝑙𝑜𝑔𝑃𝑣𝑊,𝑖

𝑁
𝑖!!      Eq 8 320 

 321 



Partitioning of the electrostatic term into atomic contributions can be made resorting to a perturbation 322 

approximation of the coupling between the solute charge distribution and the solvent reaction field [92], 323 

leading to Eq 9. 324 

 325 

𝑙𝑜𝑔𝑃𝑒𝑙𝑒,𝑖
𝑜/𝑤 =  !

!
Ψ! 𝑞𝑘

𝑤

𝑟𝑘
𝑤! 𝑟

𝐾
𝑘!!
𝑘∈𝑖

−  𝑞𝑙
𝑜

𝑟𝑙
𝑜!𝑟

𝐿
𝑙!!
𝑙∈𝑖

Ψ!       Eq 9 326 

 327 

where  is the solute wave function in the gas phase, and K and L stand for the total number of reaction 328 

field charges in water ( ) and n-octanol ( ), located at positions  and .  329 

The atomic decomposition of the cavitation and van der Waals terms takes advantage of the linear 330 

dependence with the solvent-exposed surface of the atoms in the molecule (Eqs 10 and 11). 331 

 332 

𝑙𝑜𝑔𝑃𝑐𝑎𝑣,𝑖
𝑜/𝑤 = 𝑆𝑖

𝑆𝑇
 Δ𝐺 𝑃,𝑖

𝑜/𝑤𝑁
𝑖!!           Eq 10 333 

𝑙𝑜𝑔𝑃𝑣𝑊,𝑖
𝑜/𝑤 =  𝑆𝑖Δ𝜉𝑜/𝑤𝑁

𝑖!!           Eq 11 334 

 335 

where Δ𝐺 𝑃,𝑖
𝑜/𝑤 = Δ𝐺 𝑃,𝑖𝑤 − Δ𝐺 𝑃,𝑖𝑜 , Δ𝐺𝑃,𝑖 being the cavitation free energy of atom i, Δ𝜉𝑜/𝑤 = 𝜉𝑤 − 𝜉𝑜, with  336 

𝜉𝑖 being the atomic surface tension, and 𝑆𝑖 denotes the contribution of atom i to the total molecular surface 337 

(𝑆𝑇).  338 

In contrast to the COSMO-RS-based approaches, which rely on the concept of σ-profile (see above), the 339 

MST-derived applications use the atomic contributions to the thermodynamic components of the differential 340 

solvation free energy in water and n-octanol, which are encoded under the partition coefficient between these 341 

two solvents. Accordingly, they take into account the effect of specific chemical features of the molecule, 342 

such as the existence of specific tautomers or conformational species, or the formation of specific 343 

intramolecular interactions (i.e., hydrogen bond), in the computation of the 3D distribution pattern of 344 

molecular lipophilicity.  345 

These patterns have been exploited to predict the chemical similarity between compounds [84]. By using the 346 

MST-based hydrophobic descriptors 𝑙𝑜𝑔𝑃𝑒𝑙𝑒,𝑖
𝑜/𝑤  and 𝑙𝑜𝑔𝑃𝑐𝑎𝑣,𝑖

𝑜/𝑤  , a computational procedure has been proposed to 347 

identify the molecular overlay that maximizes the lipophilic similarity. To this end, molecular similarity was 348 

achieved by comparing the hydrophobic fields generated by the molecules, which were pre-aligned 349 
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following multipole expansions of the atomic lipophilic contributions. On the other hand, simple descriptors 350 

of the hydrogen-bond (HB) donor/acceptor character of atoms were used to complement the information 351 

about the chemical nature of polar atoms in a molecule (briefly, the current implementation assigns an 352 

arbitrary value of +1 to hydrogen atoms in HB donors, and -1 to N and O atoms that may act as acceptors). 353 

This choice obeys to the fact that the polar nature of hydrophilic groups cannot distinguish the HB 354 

donor/acceptor character, as this information is not implicitly encoded by the 𝑙𝑜𝑔𝑃𝑒𝑙𝑒,𝑖
𝑜/𝑤 term. Hydrophobic and 355 

HB properties are then projected into a 3D grid using the exponential function (Eq 12) implemented in 356 

CoMSiA [15], and then compared by means of the Tanimoto coefficient.  357 

 358 

𝑝𝑞 =  𝑤𝑖
𝑁
𝑖!! 𝑒!𝛼𝑟𝑖𝑞

!
          Eq 12 359 

 360 

The method was implemented in PharmScreen software [83,93] and was successfully used to evaluate the 361 

molecular overlay for a collection of 121 molecular systems compiled by AstraZeneca, denoted as the 362 

AstraZeneca Overlays Validation Test Set [94]. This set contains molecular overlays experimentally 363 

characterized for 119 targets, which were grouped in four categories according to the expected difficulty in 364 

predicting the experimental overlay: easy, moderate, hard, and unfeasible. The results pointed out that  365 

correct overlays were predicted for 94% (easy), 79% (moderate), and 54% (hard) of the cases. Moreover, the 366 

overall performance obtained from classical electrostatic/steric descriptors and from Hyphar ones was fairly 367 

similar for easy and moderate subsets, but the accuracy obtained with Hyphar for the subset of hard cases 368 

exceeded the performance obtained with electrostatic/steric properties. Finally, it was found that the similar 369 

performance of Hyphar and electrostatic/steric descriptors does not imply that they lead to identical overlays. 370 

Rather, the analysis of the predicted poses revealed that the degree of identity in molecular overlays was 371 

reduced with the increase in the difficulty of the target. Overall, these findings point out that Hyphar 372 

descriptors may be a valuable alternative for molecule superposition and virtual screening of chemical 373 

libraries, especially for targets that may be challenging for predictive molecular similarity techniques.  374 

On the other hand, the atom-centered MST-derived hydrophobic contributions have also been used as 375 

physicochemical descriptors to derive 3D-QSAR models using PharmQSAR [82]. MST/IEFPCM 376 

calculations were performed for 5 sets of compounds, including dopamine D2/D4 receptor antagonists, 377 

antifungal chromanones, glycogen synthase kinase-3 inhibitors, cruzain inhibitors, and thermolysin 378 

inhibitors. The compounds in these sets covered a wide range of variance in selected physicochemical 379 

properties (molecular weight, hydrogen-bond donor/acceptor, clogP, and number of rotatable bonds). The 380 

3D-QSAR models obtained with the hydrophobic pharmacophore (HyPhar) were found to have a predictive 381 



accuracy comparable to standard CoMFA and CoMSiA techniques. Moreover, Hyphar descriptors were also 382 

valuable to discriminate the selectivity of compounds acting as inhibitors of thrombin, trypsin, and factor Xa 383 

[83]. 384 

Overall, these findings support the usefulness of the MST-derived lipophilic descriptors as a valuable 385 

alternative to electrostatic/steric properties to carry out virtual screening of chemical libraries for molecular 386 

similarity, as well as to derive 3D lipophilic pharmacophores, thus providing valuable complementary 387 

information to gain insight into the molecular determinants of bioactivity. 388 

 389 

5. A comparative analysis between Hyphar and electrostatic/steric properties  390 

The strength of Hyphar descriptors in 3D-QSAR studies may be attributed to two major features. First, the 391 

concept of lipophilicity is very intuitive and widely accepted in medicinal chemistry. Second, the partitioning 392 

of lipophilicity, which reflects a property of the whole molecule, into atomic or fragmental contributions 393 

permits to obtain a graphical representation of the distribution pattern of polar and apolar regions adapted to 394 

the 3D structure of a given compound. In turn, this paves the way to rationalize the recognition between a 395 

small compound and its macromolecular target from the complementarity between hydrophilic and lipophilic 396 

groups of the ligand and the polar and apolar nature of the side chains of residues that shape the binding 397 

pocket. As an additional remark, let us note that resorting to Hyphar descriptors benefits from the accurate 398 

description of the molecular charge distribution that can be attained by QM methods, which may take into 399 

account the influence arising from the chemical features of the bioactive compound, such as the ionization 400 

state, the preference for a tautomeric species, and the adoption of a given conformational state representative 401 

of the binding mode of the ligand. 402 

Given the novelty of MST-based atomic lipophilicity contributions, it is nevertheless necessary to explore 403 

their suitability for 3D-QSAR studies. In this context, this section reports the results of a comparative 404 

analysis performed to calibrate the performance of Hyphar descriptors through comparison with 405 

electrostatic/steric ones. This analysis has been carried out using the comprehensive benchmark data set 406 

compiled by Sutherland and coworkers [95],  which comprises 113 angiotensin converting enzyme (ACE) 407 

inhibitors, 111 acetylcholinesterase (AChE) inhibitors, 147 ligands for benzodiazepine receptors (BZR), 282 408 

cyclooxygenase-2 (COX-2) inhibitors, 361 dihydrofolatereductase (DHFR) inhibitors, 66 glycogen 409 

phosphorylase b (GPB) inhibitors, 74 thermolysin (THER) inhibitors, and 87 thrombine (THR) inhibitors. 410 

Accordingly, the CoMFA/CoMSiA results reported in ref. 95 were compared with the 3D-QSAR models 411 

obtained using Hyphar descriptors, which combine both “polar” (𝑙𝑜𝑔𝑃!"!,!) and “non-polar” (𝑙𝑜𝑔𝑃!"#,!) 412 

hydrophobic contributions (see above). To this end, the atomic electrostatic and non-electrostatic 413 



components of the lipophilicity were used to generate the molecular fields through projection into a grid that 414 

encloses the set of aligned compounds using a similarity index function (see [82] for further details). For the 415 

sake of comparison, the original molecular geometries and protonation states of compounds were kept in this 416 

study. All the details about models generation, grid dimensions and points, training/test sets, and related 417 

activity ranges for the eight sets compiled by Sutherland are reported in Supplementary Material (Tables S1-418 

S3). 419 

As a preliminary step, the effect of the QM method selected to derive the hydrophobic contributions on the 420 

performance of the 3D-QSAR Hyphar models was evaluated for a subset of four systems (D2 inhibitors, 421 

antifungal chromanones, GSK3-β and cruzain inhibitors) taken from our previous study [82]. To this end, 422 

Hyphar descriptors were derived from continuum computations performed with the MST version 423 

parametrized for the semiempirical RM1 method [96], and alternatively with the version parametrized at the 424 

B3LYP/6-31G(d) level [90]. Comparison of the statistical parameters obtained for the subset of training and 425 

test compounds defined for each molecular system is shown in Table 1.  426 

 427 

Table 1. Statistical parameters of the 3D-QSAR HyPhar models obtained from MST/B3LYP and MST/RM1 428 
calculations for the four sets of compounds.a 429 

 430 
 Training set Test set  Field (%) 
System r2 q2 S Spress r2 S Nc  Elec Non-elec 
D2 
MST/B3LYP 0.94 0.77 0.31 0.60 0.78 0.57 3 68.6 31.4 
MST/RM1 0.93 0.74 0.28 0.65 0.71 0.63 3 70.9 29.1 
Chromanones  
MST/B3LYP 0.77 0.51 0.49 0.29 0.81 0.20 3 34.3 65.7 
MST/RM1 0.76 0.42 0.51 0.32 0.66 0.82 3 42.1 57.9 
GSK3  
MST/B3LYP 0.91 0.80 0.12 0.19 0.79 0.21 3 54.5 45.5 
MST/RM1 0.91 0.82 0.30 0.18 0.79 0.21 5 64.7 35.3 
Cruzain  
MST/B3LYP 0.81 0.50 0.31 0.51 0.69 0.47 2 53.0 47.0 
MST/RM1 0.91 0.65 0.31 0.44 0.70 0.46 3 58.4 41.6 

     431 
a See [92] for a proper description of the molecular sets. Nc denotes the number of PLS components in the 432 
best 3D-QSAR model, and the terms Elec and Non-elec stand for the fraction (in percentage) of electrostatic 433 
(𝑙𝑜𝑔𝑃!"!,!) and non-electrostatic (𝑙𝑜𝑔𝑃!"#,!) hydrophobic contributions to the final model.  434 
 435 

The results reveal that there is large resemblance in the overall performance of the 3D-QSAR models 436 

obtained from MST/RM1 and MST/B3LYP Hyphar descriptors for all data sets. This finding is remarkable, 437 

since 3D-QSAR models derived from the RM1 hydrophobic descriptors compare well with the performance 438 



obtained at the B3LYP level, but at a much lower computational cost, making the usage of semiempirical 439 

methods highly attractive for the study of large libraries of drug-like compounds. Accordingly, the 440 

computationally less demanding RM1 method seems to be a promising choice for 3D-QSAR studies with 441 

Hyphar parameters. 442 

On the basis of these results, the benchmark data set reported by Sutherland and coworkers [95] was 443 

examined using the MST/RM1 Hyphar descriptors. The 3D-QSAR Hyphar models were compared with the 444 

CoMFA/CoMSIA results reported in [95], which were obtained by using electrostatic potential-fitted charges 445 

at the MNDO level, but for the THER set, where Gasteiger-Marsili charges were used. For the sake of 446 

comparison, an additional model, denoted CoMFA (RM1), which exploits RM1 electrostatic-potential fitted 447 

partial charges in conjunction with an steric field obtained from the Lennard-Jones potential with a positively 448 

charged C.3 atom probe, was also examined. This model, therefore, is intended to explore the efficiency of 449 

RM1-based partial charges in defining electrostatic features of molecules at the atomic level. 450 

Table 2 shows the statistical parameters of the 3D-QSAR models. In general, similar performances were 451 

obtained for the different 3D-QSAR models determined for molecules in the training test included in a given 452 

system, as noted in the large resemblance between the statistical values of the regression (r2) and cross-453 

validation (q2) models. The same trend can be observed for the test set compounds, although a small 454 

improvement was found for CoMFA (RM1) and Hyphar models in GPB and THERM systems compared to 455 

reference CoMFA/CoMSiA models. In addition, a higher level of accuracy was also achieved by the models 456 

derived from RM1 calculations since the number of outliers in the test set was lower than in classical 457 

CoMFA/CoMSIA (Supplementary Material, Table S4). On the other hand, both BZR and COX2 were 458 

confirmed to be challenging systems for QSAR modelling, as already noted by Sutherland and coworkers 459 

[95]. For instance, in case of COX2, part of the reason for the poor predictive behaviour may probably be 460 

ascribed to the fact that training and test set cover different ranges of in the property space. 461 

 462 

Table 2. Statistical parameters obtained for CoMFA and CoMSiA models reported in [95] with the results 463 

determined by using COMFA (RM1) and Hyphar models in this study for the eight molecular systems 464 

(ACE, AChE, BZR, COX2, DHFR, GPB, THERM and THR).a 465 

 Training set Test set  Field (%) 
System r2 q2 S Spress r2 S Nc * Ele N-Ele HB 
ACE b 
CoMFA 0.80 0.68 1.04 - 0.49/0.55 1.54/1.47 3 - - - 
CoMSiA 0.76 0.65 1.15 - 0.52/0.58 1.48/1.41 3 - - - 
CoMFA (RM1) 0.82 0.67 0.42 1.37 0.54/0.61 1.45/1.32 3 29.4 70.6 - 
Hyphar 0.75 0.64 0.51 1.43 0.42/0.62 1.62/1.35 2 28.8 53.5 17.7 
AChE   
CoMFA 0.88 0.52 0.41 - 0.47/0.56 0.95/0.87 5 - - - 



CoMSiA 0.86 0.48 0.45 - 0.44/0.60 0.98/0.81 6 - - - 
CoMFA (RM1) 0.90 0.54 0.32 0.85 0.35/0.52 1.07/0.86 6 20.0 80.0 - 
Hyphar 0.76 0.45 0.50 0.92 0.65 0.78 4 64.1 18.7 17.2 
BZR  
CoMFA 0.61 0.32 0.41 - 0.00/0.18 0.97/0.81 3 - - - 
CoMSiA 0.62 0.41 0.41 - 0.08/0.30 0.93/0.75 3 - - - 
CoMFA (RM1) 0.60 0.36 0.64 0.53 0.21/0.21 0.81/0.80 3 30.5 69.5 - 
Hyphar 0.67 0.37 0.58 0.54 0.00/0.02 0.91/0.86 6 48.8 16.7 34.5 
COX2  
CoMFA 0.70 0.49 0.56 - 0.29/0.37 1.24/1.09 5 - - - 
CoMSIA 0.69 0.43 0.56 - 0.03/0.22 1.44/1.20 6 - - - 
CoMFA (RM1) 0.74 0.51 0.52 0.72 0.19/0.34 1.20/1.07 5 28.6 71.4 - 
Hyphar 0.60 0.52 0.63 0.71 0.26/0.40 1.15/0.99 3 85.4 4.3 10.3 
DHFR 
CoMFA 0.79 0.65 0.59 - 0.59/0.70 0.89/0.73 5 - - - 
CoMSiA 0.76 0.63 0.62 - 0.52/0.63 0.96/0.81 5 - - - 
RM1 CoMFA 0.81 0.67 0.44 0.73 0.42/0.55 1.04/0.91 4 17.7 82.3 - 
Hyphar 0.72 0.63 0.53 0.78 0.53/0.56 0.94/0.89 5 36.2 38.8 25.0 
GPB  
CoMFA 0.84 0.42 0.43 - 0.42/0.37 0.94/0.70 4 - - - 
CoMSiA 0.78 0.43 0.50 - 0.46/0.34 0.90/0.82 4 - - - 
CoMFA (RM1) 0.88 0.43 0.36 0.85 0.51 0.89 4 24.4 75.6 - 
Hyphar 0.83 0.54 0.42 0.75 0.71 0.68 3 52.0 2.7 45.3 
THERM c 
CoMFA 0.94 0.51 0.55 1.54 0.60 1.26 7 - - - 
CoMSiA 0.85 0.54 0.73 - 0.36/0.46 1.87/1.60 6 - - - 
CoMFA (RM1) 0.90 0.46 0.33 1.57 0.51/0.66 1.39/1.18 5 25.5 74.5 - 
Hyphar 0.84 0.49 0.41 1.51 0.67 1.13 4 37.9 25.5 36.6 
THR d 
CoMFA 0.86 0.59 0.36 - 0.54/0.73 1.59/0.56 4 - - - 
CoMSiA 0.88 0.62 0.34 - 0.55/0.62 0.76/0.66 5 - - - 
CoMFA (RM1) 0.89 0.59 0.33 0.64 0.45/0.58 0.86/0.82 5 16.0 84.0 - 
Hyphar 0.87 0.64 0.37 0.59 0.53/0.56 0.79/0.74 4 37.5 41.7 20.8 

 466 
a For test sets compounds, statistical parameters (r2

 and S) with (left) and without (right) outliers (i.e.,  467 
compounds with residuals higher than 2.5-fold the standard deviation) are indicated. The number of outliers 468 
for each system is reported in Supplementary Material (Table S4). 469 
b mol0088 (original file name mol_17) was excluded because it contains iodine atom. 470 
c Partition between training and test sets made as indicated in [15].  471 
d mol0088 (original file name 82) was excluded due to problems with the input geometry. 472 
 473 

The predictive performance of the models was also examined by analyzing their capacity to discriminate 474 

between active and inactive compounds. To this end, for each molecular system the compounds in the test 475 

set were ranked according to their experimental potency: “active/positive” (P) and “inactive/negative” (N) 476 

were categorized by applying a threshold value of 6.0 (in pIC50/pKi units). Then, test set compounds with a 477 

predicted pIC50/pKi value larger than the threshold value were considered “actives/positives” (TP), whereas 478 

compounds with a predicted pIC50/pKi value lower than the threshold were considered “inactives/negatives” 479 

(TN). For each molecular system, the number of P, N, TP and TN compounds, as well as false positives (FP) 480 

and false negatives (FN) are compiled in Supplementary Material (Table S5). In turn, these values were used 481 

to identify correctly negative (specificity or TNR; in green in Figure 2) and positive (sensitivity or TPR; in 482 



blue in Figure 2) compounds, and to reduce the false negative rate (“fall-out” or FPR; in red in Figure 2) by 483 

applying Eqs. 13-15.  484 

 485 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑇𝑁𝑅 = 𝑇𝑁
𝑁
= 𝑇𝑁

(𝑇𝑁!𝐹𝑃)
         Eq. 13 486 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑇𝑃𝑅 = 𝑇𝑃
𝑃
= 𝑇𝑃

(𝑇𝑃!𝐹𝑁)
         Eq. 14 487 

𝐹𝑎𝑙𝑙 − 𝑜𝑢𝑡 𝐹𝑃𝑅 = 𝐹𝑃
𝑁
= 𝐹𝑃

𝐹𝑃!𝑇𝑁
= 1 − 𝑇𝑁𝑅        Eq. 15 488 

 489 

Figure 2 here 490 

 491 

These parameters, which can vary from 0 to 1, can be considered a measure of the predictive performance of 492 

the model. According to this classification, a model can be considered good if it has high 493 

specificity/sensitivity and low fall-out values. Nevertheless, this analysis requires a balanced partition of 494 

active and inactive compounds in the set of compounds, a requirement that is not fulfilled in the case of BZR 495 

and GPB systems, since only one inactive and one active compound are present in these two sets, 496 

respectively. Accordingly, the results obtained for BZR and GPB should be excluded from the analysis. For 497 

the rest of molecular systems, both CoMFA (RM1) and Hyphar models exhibit generally similar trends 498 

(Figure 2). The Hyphar model has a slightly better performance in sensitivity/specificity and fall-out values 499 

for AchE, THERM and THR systems, whereas the opposite trend in found for CoMFA (RM1) in ACE and 500 

COX2. 501 

Finally, the ability of CoMFA (RM1) and Hyphar models to rank the compounds according to their potency 502 

was also examined (Figure 3). To this end, the Spearman (Rs) coefficient for the first (Q1; in green), second 503 

(Q2; in blue) and third (Q3; in red) quartiles, which would encompass molecules with highest, medium and 504 

low activity/affinity, were determined for the test set compounds in each system. Although there is a notable 505 

resemblance in the general trends obtained for CoMFA (RM1) and Hyphar models, slightly better 506 

performances (higher Rs values) are observed for Hyphar models, especially for compounds of higher 507 

activity/affinity (Q1/Q2), whereas the differences are less pronounced for compounds in Q3, probably due to 508 

the larger noise associated to the biological activity low active compounds. 509 

 510 

Figure 3 here 511 

 512 



Overall, the results obtained for the benchmark systems reveal that the Hyphar descriptors yield 3D-QSAR 513 

models with an overall performance that compares with the results obtained using standard 514 

CoMFA/CoMSiA. Hyphar models also seem to be more effective in locating (high sensibility) and ranking 515 

(high Rs) true positives, especially in regions of high and medium activity/affinity.  516 

 517 

6. Final consideration and perspectives.  518 

The concept of pharmacophore is essential to disclose the key features that dictate the interaction between 519 

ligand and receptor. Hence, it represents an important tool to identify guidelines valuable in computer-aided 520 

drug design, covering a variety of applications such as molecular similarity, virtual screening, ligand 521 

optimization, scaffold hopping, as well as modeling of ADME(T) properties and target identification. The 522 

descriptive and predictive power of pharmacophores depends on the quality and adequacy of molecular 523 

properties used to disclose the hidden relationship between activity and chemical structure. In the last 524 

decades several strategies were developed to derive descriptors capable of capturing the chemical features 525 

relevant for drug design, including the application of descriptors derived from QM methods coupled to 526 

continuum solvation models. 527 

Although fundamental for the activity of drug-like compounds, inclusion of lipophilicity as a major 528 

descriptor has revealed more elusive, possibly due to the complexity of the chemical processes encompassed 529 

by this concept, or the difficulty to find a rigorous formalism to reduce it to atomic contributions since 530 

lipophilicity reflects a property of the whole molecule. In this context, it is worth stressing the efforts in 531 

deriving tools such as MLP [50] and HINT [55, 56], where the molecular lipophilicity was treated by means 532 

of empirical atomic contributions, and hence enabling the analysis of the 3D distribution of polar/apolar 533 

regions along the chemical scaffold to provide a novel interpretation to the molecular determinants 534 

responsible of biological activity. 535 

QM-based continuum solvation methods are a promising strategy for deriving 3D descriptors, such as 536 

COSMO-RS-based σ-profiles [78-81] or MST-derived 3D lipophilicity patterns [82-84,97-99], which in turn 537 

may be exploited in computer-aided drug design. The set of studies reported up to now for a variety of 538 

benchmark datasets, covering both measurements of molecular similarity for aligned compound or the 539 

derivation of 3D-QSAR models, are encouraging. In general, the statistical performance of these QM-based 540 

descriptors compares well with the results obtained from classical approaches, generally combining 541 

electrostatic and steric fields, as illustrated in the comparative analysis reported here for the sets of 542 

compounds considered by Sutherland and coworkers [95]. At least in part, this may be due to the limitations 543 

of electrostatic/steric descriptors for describing enthalpy and entropy contributions to the binding affinity. On 544 



the other hand, QM-based approaches permit to account directly for the specific features of the bioactive 545 

species of the ligand, including effects attributable to ionization, tautomerism, or the specific conformation, 546 

which may be advantageous compared to generic descriptors derived from empirical contributions. These 547 

computational approaches benefit from the usage of lipophilicity, a property widely used in drug design, 548 

easy to interpret by medicinal chemists, and linked to a physicochemical property that can be measured 549 

experimentally. Through partitioning of the molecular lipophilicity into atomic contributions, novel 550 

fractional models that account for the 3D lipophilicity pattern of compounds can then be exploited in 551 

computer-assisted drug design.  552 

Overall, the analysis of structure-activity relationships in terms of the lipophilic/hydrophilic balance may 553 

provide a useful signature to complement studies performed with electrostatic/steric properties. In this sense, 554 

the QM MST-based hydrophobic descriptors are valuable in predicting molecular overlays and elucidating 555 

molecular similarity patterns. The higher descriptive quality of these descriptors could thus offer interesting 556 

clues in searching for novel bioactive compounds, especially for challenging targets. 557 

 558 

Executive summary.  559 

! All biological and biochemical processes are driven by the general concept of host-guest 560 

complementarity. Accordingly, an essential but effective description of the “guest” is required for a 561 

successful prediction of “host” recognition. 562 

! The pharmacophore concept is a fundamental cornerstone in drug discovery, as it accounts for the 563 

common interaction features of a group of compounds towards their target structure, playing a 564 

critical role in determining the success of in silico techniques. 565 

! Optimized descriptors able to model both pharmacokinetics and pharmacodynamics properties in 566 

drug design are not easily achievable, and the use of sub-optimal physicochemical parameters may 567 

be a more effective strategy. 568 

! Besides the relevance in predicting ADME(T) properties, lipophilicity exerts a pivotal role in 569 

accounting for the maximal achievable affinity that can be attained between ligand and receptor. 570 

! The usage of lipophilicity descriptors may offer novel opportunities to disclose the underlying 571 

relationships between chemical features and biological activity. In this context, the availability of 572 

refined version of QM-based continuum solvation models may be an effective strategy for deriving 573 

novel descriptors well suited for drug design. 574 



! In 3D-QSAR studies, the MST-derived Hyphar descriptors have been shown to provide models for 575 

structure-activity relationships with a predictive accuracy comparable to CoMFA/CoMSiA 576 

techniques based on electrostatic/steric parameters. 577 

! The Hyphar descriptors are also a valuable alternative for molecule superposition and virtual 578 

screening of chemical libraries, especially for targets that may be challenging for predictive 579 

molecular similarity techniques. 580 

! The availability of “polar” and “non-polar” fractional descriptors obtained from MST-based 581 

continuum solvation models may be valuable to explore the molecular determinants of bioactivity, 582 

providing complementary interpretations to classical descriptors in the rational design of novel 583 

compounds.  584 

  585 
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