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Abstract

The interaction of water with membranes is fundamental in many biological

processes. Recently we found that, upon increasing hydration, water molecules

first fill completely the interior of the membrane, next accumulate in layers in the

exterior region. Here, we show by all-atom simulations that the translational

and rotational dynamics of water molecules is strongly determined by their

local distance to the membrane so that we can identify the existence of an

interface between the first hydration shell, partially made of hydration water

bound to the membrane, and the next shells entirely made of unbound hydration

water. Bound hydration water has a possible structural role and an extremely

slow dynamics, while unbound hydration water, with no water-lipids hydrogen

bonds, has a dynamics ten time faster than bound water but still one order of

magnitude slower than bulk water. Our results could be relevant to understand

the slowdown of biological activity upon dehydration.
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1. Introduction

The structure and function of biological membranes is greatly determined

by the properties of hydration water. In fact, the stability and fluidity of the

phospholipid bilayer–the main component of biological membranes–is a conse-

quence of the hydrophobic effect, which favours a reduction of the exposure of

the apolar hydrocarbon tails of phospholipids to water. Interfacial water also

plays an important role in the tasks that the cell membrane performs, mainly

related to transport and signalling functions, since it mediates the interaction

between membranes and solutes such as ions, proteins, DNA and other mem-

branes [1, 2]. For these reasons it is essential to have a proper description of the

structural and dynamical properties of water at the interface with membranes.

Phospholipid bilayers or monolayers of a single type of phospholipid are used

as model systems to understand the basic properties of more complex biological

membranes, which also contain proteins, sugars and cholesterol in large propor-

tions. In particular, the properties of hydration water at phospholipid mem-

branes have been extensively investigated in experiment [3, 4, 5, 6, 7, 8, 9, 10]

and using computer simulations [11, 12, 2, 13, 14, 15, 16]. NMR spectroscopy

has been used to study the translational dynamics of interfacial water, evidenc-

ing the different rates of lateral and normal diffusion and revealing the effect

of lipid hydration on water dynamics [3, 4]. The slowdown of water dynamics

due to the interaction with the phospholipid membrane has also been observed

with the help of molecular dynamics (MD) simulations [12, 2]. NMR exper-

iments and vibrational sum frequency generation spectroscopy have provided

insight on the ordering and orientation of water molecules around phospho-

lipid headgroups [5, 6], in agreement with the picture extracted from computer

simulations of hydrated phospholipid membranes [11, 2]. Infrared spectroscopy

measurements indicate the formation of strong hydrogen bonds (HBs) with the

phosphate and carbonyl groups of phospholipids, as well as an enhancement of

the HBs between water molecules in the vicinity of phospholipid headgroups

[7, 6]. The rotational dynamics of water molecules is also dramatically affected
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by the presence of phospholipids and the hydration level of the membrane, as

evidenced experimentally using a variety of techniques including ultrafast vibra-

tional spectroscopy [8], terahertz spectroscopy [9], and neutron scattering [10].

MD simulations have complemented these studies by exploring the decay of wa-

ter orientation correlation functions in phospholipid membranes with different

hydration levels [13, 14, 15, 16].

The studies mentioned above indicate that the dynamics and structure of

interfacial water is determined by the proximity to the phospholipid membrane

and by its level of hydration. In view of this evidence, after a short summary

of our previous results, here we investigate using all-atom MD simulations the

structure and dynamics of hydration water as a function of both the water local

distance to a dimyristoylphosphatidylcholine (DMPC) phosholipid membrane

and the level of hydration of the membrane. With this approach we identify

the water layers relevant to understand the overall translational and rotational

dynamics of hydration water. Among a wide variety of lipids, DMPC are phos-

pholipids incorporating a choline as a headgroup and a tailgroup formed by two

myristoyl chains. Choline based phospholipids are ubiquitous in cell membranes

and used in drug targeting liposomes [1].

2. Methods

2.1. MD Simulations

As in Ref. [15], the simulated system consists of a bilayer membrane of 128

DMPC lipids distributed in two leaflets in contact with hydration water (Fig. 1).

We consider phospholipid bilayers with six different hydration levels (i.e., water

molecules per lipid) ω = 4, 7, 10, 15, 20, and 34. This range extends from the

weakly hydrated systems probed in recent experiments [8, 9, 17, 10] to a fully

hydrated membrane (with hydration level ω = 34), which has been thoroughly

studied both experimentally and using computer simulations [18, 12].

We perform MD simulations using the NAMD 2.9 [19] package at a tempera-

ture of 303 K and an average pressure of 1 atm. We set the simulation time step
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Figure 1: Snapshot of a representative case of the systems considered in our study with

hydration level ω = 34. The beads are color coded to represent different elements (gray:

nitrogen, red: oxygen, orange: phosphorous). Gray lines represent the hydrophobic tails of

the phospholipid and blue lines water molecules. The dashed line indicates the size of the

simulation box. By convention, we set the vertical dashed lines parallel to the z axis, and

the horizontal dashed line to the x axis of the reference frame. The simulated system has a

typical area of ' 3900Å2 and a height from ' 38Å for ω = 4 to ' 69Å for ω = 34.
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to 1 fs. We describe the structure of phospholipids and their mutual interactions

using the recently parameterized force field CHARMM36 [20, 21], which is able

to reproduce the area per lipid in excellent agreement with experimental data.

The water model employed in our simulations, consistent with the parametriza-

tion of CHARMM36, is the modified TIP3P [22, 23]. We cut off the Van der

Waals interactions at 12Å with a smooth switching function starting at 10Å.

We compute the long-range electrostatic forces using the particle mesh Ewald

method [24] with a grid space of ' 1Å. We update the electrostatic interactions

every 2 fs. After energy minimization, we equilibrate the hydrated phospholipid

bilayers for 10 ns followed by a production run of 50 ns in the NPT ensemble

at 1 atm.

We use a Langevin thermostat [25] with a damping coefficient of 0.1 ps−1 to

control the temperature and a Nosé-Hoover Langevin barostat [26] with a piston

oscillation time of 200 fs and a damping time of 100 fs to control the pressure.

Aksimentiev and Schulten shown that the Langevin thermostat with a small

damping coefficient has a negligible effect on dynamical quantities for a system

with parameters as in our simulations [27]. Furthermore, the use of a barostat

is important in MD simulations of membranes, because constant volume simu-

lations do not allow for sufficient pressure relaxation and the system does not

equilibrate to appropriate pressures. This effect has been reported in the liter-

ature for systems consisting of phospholipid monolayers [28] and phospholipid

bilayers [29] and has its origin in the lack of fluctuations of the periodic cell,

which restricts the phospholipids from assuming energetically favorable confor-

mations. On the other hand, the use of periodic boundary conditions in our

simulations allows us to describe a system of perfectly stacked phospholipid

bilayers with a homogeneous prescribed hydration level ω.

2.2. Definition of local distance from the interface

To properly define the interface between water and phospholipid membranes

a suitable definition of a distance to the membrane is required. Indeed, the

water-membrane interface is not flat when observed at the relevant length-scale
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given by the size of the water molecule: it exhibits spatial inhomogeneities of

' 1 nm. Such inhomogeneities are dynamical, but they change over times signif-

icantly longer than the relevant timescale of water dynamics. This is evidenced

by the disparity of diffusion coefficients: while the typical diffusion coefficient

of water is of the order of 1 nm2/ns, the diffusion coefficient of phospholipids

is of ' 0.001 nm2/ns [30]. In addition, the interface is soft and not easily de-

fined because water molecules can penetrate into the membrane, as shown by

experiments [31] and numerical simulations [32, 33]. In order to describe the

interface, we adopt a local definition of the water molecules distance from the

membrane devised by Pandit et al. [32, 2]. Given the planar symmetry of our

3-dimensional setup (Fig. 1), the definition is the following: for each snapshot

we perform a 2-dimensional Voronoi tesselation of the planar projection of the

membrane into the xy-plane, using as centers of the cells the phosphorous and

nitrogen atoms of the phospholipid heads. To each water molecule we assign

the Voronoi cell given by its center of mass projection into the xy-plane, and

a distance ξ ≡ zwater − zVoronoy to the membrane given by the difference be-

tween the z-coordinates of the water molecule, zwater, and the z-coordinates of

the corresponding Voronoi cell, zVoronoy. Smondyrev and Berkowitz shown that

the vector connecting phosphorous and nitrogen atoms, when the membrane is

solvated by water, is in average almost parallel to the interface [34]. Therefore,

calculating the local distance including both membrane atoms allows a better

definition than just including the phosphorous atoms [32] because it avoids the

overestimate of the distance, while the possible systematic error is small [34].

2.3. Structural observables

For all the hydration levels, we study the structure of the hydrogen bond

(HB) network by considering HBs formed by water with other water molecules

or with oxygen atoms in phosphate and carboxylate groups of the DMPC phos-

pholipid. We calculate as function of ξ the water density profile and the average

number of HBs 〈nHB〉 ≡ 〈2NHB〉/N , where NHB and N are the total num-

ber of HBs and water molecules in the system, respectively, and 〈·〉 represents
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the thermodynamics average. The normalized distribution of water-water and

water-lipid 〈NHB〉 provides an estimate of the probability of a water molecule

to be H-bonded with another moiety at different regions of the interface. For

the calculation of 〈NHB〉 we symmetrize the results from the two leaflets of the

phospholipid bilayer.

2.4. Dynamical observables

We calculate the mean square displacement on the plane of the membrane

(MSD‖(t)) of the center of mass of water molecules located in layers at dif-

ferent distances ξ from the membrane. In general, particles at a given layer

eventually leave and enter other layers which are characterized by different dy-

namics. Hence, an unrestricted calculation of MSD‖(t) over all the molecules in

the layer i at a given time would mix dynamics of different layers if the times is

large-enough. On the other hand, evaluate MSD‖(t) by selecting only the water

molecules which stay in the studied layer during at least the entire time used

for the calculation would induce a bias favoring the slow molecules, which are

more likely to stay in the layer during the entire time, with respect to the very

mobile water molecules.

Therefore, to avoid a significant bias we need, first, to calculate for each

layer the average time that a water molecules spends in a layer without leaving

it and, second, estimate MSD‖(t) over this specific time by considering only

those water molecules which remain within the considered layer over the entire

time interval. The largest time interval over which MSD‖(t) is well defined is

given by the characteristic residence time τ
(i)
res that a water molecule spends in

the layer i [35]. To estimate τ
(i)
res we calculate the survival probability S(i)(τ),

which is the probability that a given water molecule stays in the layer i for a

time interval τ . We define S(i)(τ) as [35]

S(i)(τ) ≡
〈
N (i)(t0 + τ)

N (i)(t0)

〉
, (1)

where N (i)(t0 + τ) is the number of water molecules remaining in layer i during

the time interval τ and that were part of the number N (i)(t0) in the same layer
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at t = t0. The brackets 〈...〉 indicate average over different time origins t0. We

estimate the residence times for the layer i using

τ (i)res ≡
∫ ∞
0

S(i)(t)dt . (2)

Once we know τ
(i)
res , we can characterize the diffusion on the plane of the mem-

brane by calculating the diffusion coefficient for each layer D‖(ξ), within the

residence time.

We study also the reorientation dynamics of water molecules at different

layers by calculating the rotational dipolar correlation function,

Crot
sim(t) ≡ 〈µ̂(t) · µ̂(0)〉 , (3)

where µ̂(t) is the direction of the water dipole vector at time t and 〈...〉 denote

ensemble average over all water molecules and time origins.

Finally, we calculate the HB time correlation functions

Cw−α
HB (t) ≡ 〈n

w−α(t)nw−α(0)〉
〈nw−α(0)〉 , (4)

where the index nw−α(t) = 1 when at time t a given water forms a HB with

another water (α = w) or a lipid (α = l), and is zero otherwise. The brackets 〈...〉
indicate averaging over all water-water or water-lipid group pairs and multiple

time origins. Cw−α
HB (t) provides a measure of the probability that a HB at time

0 remains formed at a later time t.

3. Results and Discussion

3.1. Structure: bound and unbound hydration water

As in Ref. [15], we calculate the density of water molecules as a function of

the local distance to the membrane ξ for the phospholipid bilayers with different

hydration level (Fig.2). From inspection of the water density profile for the fully

hydrated membrane (with hydration level = 34) we can clearly observe that it

displays a local maxima at ξ < 0 and another at ξmin > 33Å just before vanishing

at the largest distance. These two maxima correspond to the water molecules
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Figure 2: Water density profile for stacked DMPC phospholipid bilayers at different hydration

levels: ω = 4 (black dots), ω = 7 (blue squares), ω = 10 (cyan down triangles), ω = 15 (green

up triangles), ω = 20 (magenta pentagons), and ω = 34 (red hexagons). Symbols are placed

to identify the corresponding lines. In all the cases, the average xy-plane of one of the two

membrane layers is at ξ = 0. Water molecules at (i) ξ < 0 are within the reference membrane

layer, (ii) at 0 < ξ < ξmin are outside the two membrane layers, with the average xy-plane of

the second membrane layer at ξmin where the largest minimum of the density profile occurs

(e.g., ξmin ' 33Å for ω = 34), and (iii) at ξ > ξmin are within the second membrane layer.

For high hydration, e.g., ω = 34, within the region (ii) a clear maximum is observable at

≈ 5Å from each membrane layer, representing the first hydration layer (0 < ξ < 5Å and 28Å

< ξ < ξmin ' 33Å). The water in the range 5Å < ξ < 28Å is exterior to the two stacked

membranes.
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within the interior of each DMPC phosholipid leaflet. The minima at ξ = 0

and ξmin ' 33Å are the average xy-planes of the two membrane layers. In the

range 0 < ξ < ξmin we can distinguish three main regions: the first hydration

layer of the first leaflet (0 < ξ < 5Å), exterior layers (5Å< ξ < 28Å), and the

first hydration layer of the second leaflet (28Å< ξ < ξmin ' 33Å). For the less

hydrated cases the same structure is preserved, although the exterior region is

thinner (in the cases with ω = 15, 20) or nonexistent (in the cases with ω = 4,

7, 10).

We observe that, as hydration increases, water molecules accumulate in a

layering structure. Water molecules first fill the interior and first hydration lay-

ers before they start accumulating in the exterior region. The interior and first

hydration layers become saturated for hydration levels 7 < ω < 10, in agree-

ment with X-ray scattering experiments [36]. Note that for the least hydrated

cases (ω = 4, 7), although the interior and first hydration layers are formed,

they are not yet “full”. The layering structure observed in systems of hydrated

stacked phospholipid bilayers is in contrast with the formation of droplets re-

ported for low hydrated systems of confined water in between monolayers of

SDS surfactant [37].

We analyze how both water-water HBs and water-lipid HBs change as a

function of ξ (Fig. 3). For the completely hydrated membrane (with ω = 34),

we observe that the number of water-lipid HBs in the interior of the membrane

is ' 1 and decreases to zero in the first hydration layer, while water-water HBs

are ' 2 in the interior, 2 or more in the first hydration layer and saturates to

' 3.45 at larger distance. The number of water-water HBs suggests that water

forms files of & 3 H-bonded molecules deep inside the membrane.

The situation does not show qualitative changes for ω =20, 15 and 10, cor-

responding to cases for which water completes the first hydration layer of both

leaflets. Instead, for the cases with ω = 4 and 7, in which there is not enough

water to fully hydrate the two leaflets, we observe a qualitative difference: the

number of water-water HBs decreases both inside and in the first hydration

layer, and the number of water-lipid HBs increases, especially in the first hy-
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Figure 3: Average number of HBs 〈nHB〉 as a function of ξ for the different hydrated phos-

pholipid bilayers considered. Full circles represent HBs formed between water molecules, and

empty circles the HBs formed by water molecules with selected groups of the phospholipid.

dration layer. Therefore, upon dehydration of the membrane, water partially

compensates the reduced number of HBs among water molecules with an in-

crease of HBs with lipids. This increase of adsorption of water on the polar

groups of the membrane at low hydration is similar to what happens on the

exposed polar residues of dry proteins [38, 39].

Overall, these observations show that at low ω, water is less bonded but more

adsorbed to the membrane [15]. Moreover, it seems appropriate to distinguish

between water H-bonded to lipids, boundhydration water and water not bonded

to lipids, present at ω ? 7, as unbound hydration water.

The average number of HBs, however, does not give a complete picture of

the HB structure. To get a better insight we calculate the probability of a water

molecule to be H-bonded with another moiety at different regions of the interface

in a completely hydrated DMPC stacked membrane with ω = 34 (Fig. 4). The

first observation is that bound hydration water accounts for '65% of water in

the interior of the membrane, because only '35% of water molecules are non

H-bonded to lipids (Fig. 4.a, central panel). This feature decreases to '38% in

the first hydration shell and vanishes for the exterior of the membrane (central
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panels of Fig. 4.b and c, respectively).

The local changes of the HB network are also reflected by the number of

water-water HBs (left panels of Fig. 4): in the interior of the membrane its dis-

tribution is quite symmetric with only '42% of water forming two HBs, '25%

forming one, '24% forming three and '5% forming four. The distribution shifts

toward higher values in the first hydration shell, with a maximum at three HBs,

and in the exterior of the membrane, with a maximum between three and four

HBs and a non vanishing probability of forming five (high-energy, distorted)

HBs, consistent with the averages of these distributions Fig. 3).

The hydrogen bond distribution also depends on the hydration level of the

membrane in cases where layers are not completely full, as shown in Fig. 5 for

ω = 4. The fraction of bound hydration water for low hydrated membranes

increases from '18% at ω = 34 to '81% at low hydration with ω = 4 [15],

consistent with the experimental estimate of 92± 7% of water H-bonded to the

membrane at weak hydration [17].

We calculate, as a function of ω, also the fraction of total HBs formed by

water and DMPC involved in bridging, i.e. water molecules with two HBs

to lipids [40, 41, 42]. Such water molecules contribute to the structure and

mechanical properties of the membrane [41, 42]. We observe that the overall

fraction of bridging HBs strongly depends on the hydration level at low values

of ω and saturates at '31% for ω ≥ 15 (Fig. 6.a), consistent with the case at

ω = 22.5 previously studied [40, 41, 42]. These results confirm that for ω ≥ 15

the membrane interior and first hydration shell are fully hydrated (as seen in

Figs. 2 and 3) and show that almost one third of the water-lipids HBs at full

hydration are structural bridges, supporting our definition of bound hydration

water.

In particular, our analysis reveals that a large fraction of water-lipids HBs

in the interior of the membrane are bridging between two lipids (Fig. 6.b). We

find that this fraction is weakly dependent on ω, being always between 38% and

45%. Furthermore, our calculations show that the exponential decay observed

in the overall fraction is dominated by the contribution coming from the first
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Figure 4: Normalized distribution of the number of HBs formed by a water molecule in a

completely hydrated DMPC stacked membrane (ω = 34) at different regions of the interface:

(a) Interior (ξ < 0), (b) first hydration layer (0 < ξ/Å< 5), and (c) Exterior (5 < ξ/Å< 15).

We symmetrize the results from the two leaflets of the phospholipid bilayer. For each case, we

show the distribution of the total number of HBs and of those HBs formed with other water

molecules and lipid groups.

13



0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
F
re
qu
en
cy

Wat

0 1 2 3 4 5

Lip

0 1 2 3 4 5

Tot

Number hydrogen bonds

(a) Interior

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re
qu
en
cy

Wat

0 1 2 3 4 5

Lip

0 1 2 3 4 5

Tot

Number hydrogen bonds

(b) 1st hydration layer

Figure 5: Normalized distribution of the number of HBs formed by a water molecule in low

hydrated DMPC stacked membrane (ω = 4) at different regions of the interface: (a) Interior

(ξ < 0) and (b) first hydration layer (0 < ξ/Å< 5). We symmetrize the results from the

two leaflets of the phospholipid bilayer. For each case, we show the distribution of the total

number of HBs and of those HBs formed with other water molecules and lipid groups.
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Figure 6: Fraction of bridging HBs, with respect to the total number of water-lipids HBs, as a

function of the hydration level ω. (a) Overall fraction: symbols are from our simulations, line

is an exponential fit with the parameters indicated in the legend. (b) Different components

of the fraction of bridging HBs: for molecules in the interior of the membrane (squares), for

those in the first hydration shell (triangles) and for the overall system. Lines are guides for

the eyes.
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hydration shell, where for ω ≥ 15 approximately 1/4 of the water-lipids HBs

are bridging between two lipids.

The number of water-lipid HBs inside the membrane, together with the

observation that water inside the membrane is bridging between different pho-

spholipids even at the lowest hydration levels, support previous observations

stating that water among the lipids have a structural function for the membrane

and contribute to its stability [41, 42]. In particular, Pasenkiewicz-Gierula et

al. showed that water bridges and charge pairs, between the positively and

negatively charged groups of two DMPC molecules, together form an extended

and dynamic network of interactions among DMPC headgroups linking 98% of

all membrane phospholipids with average lifetimes of DMPC–DMPC dynamic

associations of up to 1500 ps [41].

Finally, we observe that our simulations do not show any significant fraction

of unbounded water molecules in any of the regions and hydration levels ω con-

sidered (e.g., right panels of Fig. 4 and Fig. 5). However, even at low hydration

level, a small amount of water is not H-bonded to lipids. For example, at ω = 4

we find that '25% of water in the interior of the membrane, and '18% in the

first hydration shell, has only water-water HBs, therefore belonging to unbound

hydration water.

The existence of this unbound hydration water could be the possible reason

why in previous experimental works it has been hypothesized the existence of

fast water in weakly hydrated phospholipid bilayers [9]. Nevertheless, as we will

discuss in the following sections, our results do not support this interpretation of

the experimental data, showing that both bound and unbound hydration water

are slower than bulk water.

3.2. Water translational dynamics as a function of distance from the membrane

Next, we investigate the dynamics of water molecules as a function of their

distance ξ to the phospholipid membrane for the completely hydrated membrane

with ω = 34. To study the water translational diffusive dynamics, we consider

layers of 5Å-width in each region, as defined from our structural analysis of the
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Figure 7: Survival probability for 5Å-width layers in the interior, the first hydration layer and

the exterior of the membrane as defined from the structural analysis for ω = 34.

previous paragraph, and calculate how the water survival probability changes

among the regions (Fig. 7). From Eq.(2) we estimate the residence times for the

different regions as τ intres = 64ps, τ1stres = 16ps, and τ extres = 8ps for water molecules

in the interior, first hydration layer and exterior region, respectively.

Once we know τ
(i)
res for each layer i with 5Å-width, we can correctly calculate

the MSD‖(t) of water molecules in each layer for t < τ
(i)
res (Fig. 8.a), considering

layers up to the center of the system (with ξ < 20Å). We observe that for all

distances, water molecules are in the diffusive regime for t > 2ps, with MSD‖(t)

scaling linearly with time. Furthermore, the calculations are clearly grouping in

three main behaviors corresponding to the three regions, interior, first hydration

layer and exterior of the membrane.

From the diffusive regime we can estimate the diffusion coefficient for each

layer D‖(ξ) (Fig. 8.b). We find that D‖(ξ) increases monotonically with distance

to the membrane. However, even at the largest distance from the membrane,

' 18Å, the in-layer diffusion coefficient does not reach the bulk value, Dbulk ' 6

nm2/ns at 303 K [43, 44].

In particular, we observe that, within the membrane, water has a diffusion

coefficient more than 20 times smaller than bulk water, at the first hydration
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shell D‖ is '15% than the bulk value and, at the layer centered between the two

confining membranes at '15Å, the in-plane diffusion coefficient is only '83%

than the bulk value, indicating a long range effect of the interface on water

translational dynamics.1

3.3. Water rotational dynamics as a function of distance from the membrane

Next, we calculate the rotational correlation function Crot
sim(t) for water molecules

at the interior, exterior and first-hydration layers (Fig. 9). We can clearly

identify three different behaviors depending on the local distance ξ of water

molecules from the membrane: one associated to the interior, one for the first

hydration layer and another for the exterior of the membrane. To each region

corresponds a different rotational relaxation time. In particular, for water inside

the membrane we estimate the characteristic relaxation times as τ
(1)
R = 28ps,

for the first hydration layer as τ
(2)
R = 6.1ps and for the water at further distance

as τ
(3)
R = 2.4ps.

The prediction of the model for bulk water at ambient condition is τR '
1.9ps, consistent with the value reported in the literature [45].2 Therefore, the

membrane slows down the orientational dynamics of water in its interior by

a factor ' 15 and in the first hydration shell by a factor ' 3. Water at the

furthest distance, with 10Å < ξ < 15Å, still exhibits a 20% slower orientation

relaxation than bulk water.

This result demonstrates a clear correlation between the location of water

molecules within the interface and their rotational dynamics and validates the

division into layers done in terms of its structural properties [9].

1The facts that the diffusion is limited in a quasi-2-dimensional layer and that in 2 di-

mensions the diffusion constant is expected to be larger than in 3 dimensions, reinforce the

result.
2TIP3P-water underestimates the orientational relaxation time when compared with the

experiments by a factor between two and three [46].

18



0 5 10 15 20
time (ps)

0

2

4

6

8

10

12

14

M
S
D

‖
(Å
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Figure 8: Translational diffusion dynamics of water molecules on planes parallel to the

membrane as a function of distance ξ for ω = 34. (a) MSD‖(t) for water molecules with

−10 ≤ ξ/Å< −5 (black dots), −5 ≤ ξ/Å< 0 (blue squares), 0 ≤ ξ/Å< 5 (cyan down trian-

gles), 5 ≤ ξ/Å< 10 (green up triangles), 10 ≤ ξ/Å< 15 (magenta pentagons), 15 ≤ ξ/Å< 20

(red hexagons). (b) Diffusion coefficient of water molecules in layers centered at ξ.
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3.4. HB dynamics as a function of distance from the membrane

The dynamical properties of liquid water are determined by its capacity of

breaking and reforming HBs with other molecules. Hence, as in Ref. [15], we

relate the water dynamics to its HB dynamics. While in Ref. [15] the analysis

was performed averaging over all the different regions of the interface, here

we calculate for the fully hydrated case with ω = 34 the water-water and the

water-lipid HB correlation functions, Cw−w
HB (t) and Cw−lip

HB (t) respectively, in

each separate region: the interior, the first hydration layer and the exterior of

the membrane (Fig. 10).

We find that the water-water HBs in the interior region of the membrane

are significantly more robust than in the exterior (Fig. 10.a). Their behavior

resemble what we found on average for the low hydrated cases [15] and can be

explained in a similar way, based on two main reasons. One, they form long-

lived HBs with the lipid headgroup (Fig. 10.b), which anchors them in a fixed

position for long times. Second, the density of water inside the membrane, lower

than in the other two regions, suppresses the HB switching events between water
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molecules [47, 13]. In the first hydration layer, although the water density is

higher than in the exterior layers (Fig. 2), water molecules form also long-lived

HBs with the lipid (Fig. 10.b) and Cw−w
HB (t) decays slower than in the exterior

layers.

Therefore, the slowdown of translation and rotational dynamics of water

inside the membrane and in its first hydration shell is a consequence of the

strong water-lipid HBs, as demonstrated by Bhide and Berkowitz in Ref. [12].

This result reinforce the concept of bound hydration water as structurally and

dynamically different from unbound hydration water at the membrane.

Nevertheless, the second reason of the dynamics slowdown at the membrane

interface associated to the density variation, i.e. the suppression of HB switching

due to the lack of available water molecules, also plays a relevant role. This can

be better seen by reducing the hydration, as we discuss in the next section.

3.5. Effect of layer filling on water dynamics

By decreasing ω, as seen in our structural analysis, we change the water

filling of the layers with a strong effect on the water dynamics, as we can see

by calculating the rotational correlation function for the interior and the first

hydration layer of the membrane (Fig.11). We observe that for systems in which

a certain layer is not completely filled, i.e., the cases with ω = 4 and 7 for the

interior region and ω = 7 and 10 for the first hydration layer, the relaxation of

the rotational correlation function is slower than for cases with higher ω and

filled layers. In fact, the relaxation for all cases with higher ω coincide. This

observation suggests that the lack of water molecules hinders the hydrogen bond

switch slowing down the dynamics. The slower dynamics of water molecules

in the inner layer and in the partially-filled first hydration layer, occurring in

cases with ω = 4 and 7, could be an indication of structural changes in the

phospholipid headgroup due to the proximity of the two opposing leaflets.

This is consistent with our calculation for the water-water HB correlation

function behavior for decreasing ω within the interior of the membrane. Indeed,

for those water molecules in systems where the interior layer is not complete,
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Figure 11: Dipolar rotational correlation function of water molecules in the (a) interior and

(b) first hydration layers of stacked DMPC bilayers with different hydration ω.

the breakage of HBs is slower (Fig. 12.a). Furthermore, it is reasonable also to

conclude that the suppression of HB-switching events between lipids and water

is responsible for the slower relaxation of the water-lipid HB correlation function

(Fig. 10.b).

4. Conclusions

We consider different hydration levels ω for stacked phospholipid membranes.

To filter out the smoothing effect of the fluctuation interface, we adopt a local

definition of distance ξ from the membrane [32] to perform our analysis of the

structure and dynamics of water.
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We show that, as the hydration of the membrane increases, water accu-

mulates in a layering fashion, starting from the interior (ξ < 0) and the first

hydration shell (0 < ξ/Å< 5) of the membrane. These bounded water molecules

form strong HBs with the lipids and become part of the membrane, playing a

possible role in stabilizing the phospholipid self-assembly with structural water

bridges between lipids and persistent HBs. Translation and rotational dynamics

of bound hydration water is almost frozen, with a diffusion coefficient 20 times

smaller, and a rotational dynamics 15 times slower, than in bulk.

Although at small hydration levels the majority of water is H-bonded to the

membrane, part of it (e.g., '20% at ω = 4) is not, being unbound hydration

water. The amount of unbound hydration water rapidly increases once the level

of bound hydration water saturates, which occurs for hydration levels ω ? 15,

accumulating in the exterior region with ξ > 5Å.

Unbound hydration water is much more mobile than water bound to the

membrane, forming only water-water HBs. Nevertheless, it is still slower than

bulk water, with an evident slowing-down effect of the interface even at ξ '
17.5Å, the largest possible distance from membranes in our geometry. We show

that the intensity of the effect depends on ξ: e.g., the water diffusion coefficient

in a layer at 5Å from the membrane is 85% smaller than in the bulk, and at

ξ ' 17.5Å it is still 17% smaller than in bulk. We find a similar effect for the

rotational dynamics with respect to bulk, with a slowing-down factor of 3 in the

first hydration shell and a 20% slower at ξ ' 15Å.

In both translational and rotational dynamics we find that the largest vari-

ation of the dynamics occurs across the first hydration layer (0 < ξ/Å< 5) and

the beginning of the exterior region (5 < ξ/Å< 10). Therefore, our results show

that the dynamics has a maximum variation at '5Å, marking an “interface”

between the first hydration shell, partially made of bound hydration water, and

the exterior at ξ >5Å, entirely made of unbound hydration water, reinforcing

the qualitative difference between the two kinds of water.

Our structural analysis and detail study of the HB dynamics allows us to

show how all these features depend on the different HBs that water molecules
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forms in the different regions of the interface. The results presented here might

be relevant to understand the slowdown of biological activity upon dehydration.

They are part of our efforts to develop a multiscale approach to gain access to

large scale and long time simulations of nanobio systems [48] where all the

components are considered, at least at coarse-grained level, including water

[49, 50], proteins [51, 52, 53], proteins interfaces [54], protein-protein interactions

[55, 56] and membranes.
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