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Abstract: Current evidences state clear that both normal development of breast tissue as well as
its malignant progression need many-sided local and systemic communications between epithelial
cells and stromal components. During development, the stroma, through remarkably regulated
contextual signals, affects the fate of the different mammary cells regarding their specification and
differentiation. Likewise, the stroma can generate tumour environments that facilitate the neoplastic
growth of the breast carcinoma. Mammographic density has been described as a risk factor in the
development of breast cancer and is ascribed to modifications in the composition of breast tissue,
including both stromal and glandular compartments. Thus, stroma composition can dramatically
affect the progression of breast cancer but also its early detection since it is mainly responsible
for the differences in mammographic density among individuals. This review highlights both the
pathological and biological evidences for a pivotal role of the breast stroma in mammographic density,
with particular emphasis on dense and malignant stromas, their clinical meaning and potential
therapeutic implications for breast cancer patients.

Keywords: tumour stroma; mammographic density; therapy resistance; ductal carcinoma in situ
(DCIS); invasive ductal carcinoma (IDC); breast cancer detection

1. Introduction

Breast cancer (BC), impacting over 2 million women each year, is the most common cancer
occurring in women and constitutes the second most frequent cancer overall. In 2018, 627000 women
died because of BC [1], the greatest number of cancer-related deaths in women. In this scenario, growing
evidence suggests that the percentage of mammographic density (MD), a concept first described in
the 1970s and obtained by weighing the proportion of high dense (stromal, epithelial) and low dense
(adipose) tissue, can be a risk factor for BC. MD has been positively associated with tumour size,
lymph node status and lymphatic or vascular invasion [2], and it may hamper tumour detection. The
mammary gland constitutes a complex structure in which mammary epithelial cells are embedded
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in a stroma composed of different types of cells (including adipose cells, immune cells, fibroblasts,
lymphatic and blood vessels) and an intricate extracellular matrix (ECM). This stroma regulates
the proliferation, differentiation and survival of the epithelial cells through a complex network of
interactions [3]. The microenvironment of the normal mammary tissue can also act as a barrier to
tumour growth and exert restraining forces that prevent tumorigenesis [4].

The relative abundance within the breast of low-density adipose tissue vs. high-density glandular
and fibroblastic stromal tissue and ECM determines the MD of every single individual [5,6]. The
composition of the mammary gland experiences dramatic changes along the life of women (expansion
and development during puberty, repetitive proliferation and apoptosis episodes during menstrual
cycle, full development of alveoli during lactation). Because of this dynamic and flexible scenario, a
significant feature of MD compared to other well-known risk factors is that it is modifiable and, as a
consequence of this plasticity, the reduction of breast density would be a valuable strategy to prevent
cancer onset.

Homeostasis in this kind of dynamic tissues imposes a strict control between cell proliferation and
cell death. The maintenance of this balance depends critically upon the intercellular communication,
not only between ductal epithelial cells and stroma cells, but also with elements of another important
regulator of tissue homeostasis and normal cell behaviour, the ECM. A correct stable tissue architecture
must rely upon tight junction and cell adhesion molecules that anchor cells to the ECM, such as
β1 integrins or E-cadherin. Ensuring a correct organ homeostasis can help preventing neoplastic
transformation [7].

2. Breast Cancer and Mammographic Density

The specific MD of every single woman has been shown to be a major independent risk factor for
breast cancer. Even though the reported results show an outstanding variability, high breast cancer
density has been correlated with larger tumours and with positive lymph nodes [8]. However, the
sensitivity of a mammogram is subjected to the density of the breast tissue [9]. In general, women
with high breast density (75% or more of MD due to a higher number of stromal and epithelial cells
and less fatty adipose tissue) have a 4–6 fold increased risk to develop BC in their lifetime compared
with those with low breast density (10% or less of MD due to a higher amount of fatty adipose tissue).
The different components of breast tissue react in a different way to X-rays. Fat tissue is relatively
translucent, since it absorbs few X-rays and thus it results in dark areas on the image. On their hand,
epithelial and stromal tissues filter X-rays more efficiently, absorbing their energy and thus appearing
as clear areas (Figure 1A1,A2).

Breast lesions are not easily discernible in these areas since dense tissue and tumours both appear
as white areas on a screening mammogram (Figure 1B1,B2). So, the lack of contrast between cancer
and healthy tissue may jeopardise the detection of BC in case of high MD, generating false positives
and false negatives [5].

Therefore, outcomes obtained through screening mammography of highly dense breast tissue
seem to be less effective and/or inconclusive in discovering suspicious lesions and probably lead to
late-stage diagnosis [8]. Nonetheless, in spite of this drawback, mammography continues to be the most
commonly method used for BC detection, but even the newest improvements to this technique, such
as full field digital mammography (FFDM) or digital breast thomosynthesis (DBT), cannot completely
overcome the occurrence of false negatives in women with high MD [10]. Moreover, to increase breast
cancer detection and benefit women with exceedingly dense breasts, a supplemental tailored breast
screening strategy, such as magnetic resonance imaging (MRI), in between conventional screening
mammograms is a valuable option. Recent findings demonstrate that MRI screenings is capable to
minimize false positive outcomes compared to normal mammography alone [11]. Unfortunately the
high cost of this technique is threatening the implementation of MRI screening as a routine control
strategy. To this respect, different approaches/protocols, such as ultrafast, 3-min breast MRI, are under
evaluation to reduce cost and improve access and tolerance as well [12].
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Figure 1. Schematic representation of mammary gland organisation and representative mammograms
of healthy breast tissue, including low (A1) and high (A2) mammographic density areas; and malignant
lesions, including DCIS (B1) and IDC (B2). MD: mammographic density; DCIS: ductal carcinoma in
situ; IDC: invasive ductal carcinoma.

A large number of studies show a strong positive correlation between a high dense breast and
the risk of developing BC beyond the mere possibility of interfering with screening mammography
results [13–16]. Not only detection of tumours is more difficult in women with dense breast tissue, but
also tumours might grow quickly between examinations [17]. A critical factor seems to be the MD
status when BC is diagnosed. A low MD is usually reported to be associated with a better BC outcome,
with a lower risk of local recurrence, although it does not seem to affect neither the risk of metastasis
nor the mortality specifically associated to BC [17].

However, so far the biological mechanisms underlying the phenomenon of how breast density
increases the risk of breast cancer have proven elusive and it is upon this point that recent studies of
the interactions between cancer cells and stroma can shed some new light. When the normal network
of cell-cell signalling is disrupted, the changes in microenvironment can create a permissive milieu for
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tumour growth. New players such as mutagens, inflammatory molecules, cytokines and growth factors
and other promoting forces, acting alone or in combination, can break the myoepithelial and basement
membrane barrier prompting tumour formation [4] (Figure 2). Thus, in this new pro-inflammatory
environment, stromal fibroblasts can upregulate in a continuous manner matrix metalloproteinases
(MMPs) and other enzymes that can provoke a disruption of the ECM. This breach can be followed
by an invasion of immune cells that can in turn overproduce different factors, which will end up
promoting abnormal proliferation and invasion [7]. Once initiated, this process will progress until
the normal organisation of the tissue collapses and functional disorders may appear. In this new
context, any pre-existing epithelial cells with tumorigenic potential can find favourable conditions
to proliferate [18]. Cancer cells can now proliferate and interact with this new microenvironment,
thus promoting or enhancing abnormal interactions. When this point is reached, the tumour can be
considered as a different organ from the original one, embedded in a new permissive environment that
it can help create and maintain.

Figure 2. Schematic model of breast epithelium and its stroma. Major changes in cell types and in
extracellular matrix (ECM) between: (A) healthy mammary gland and (B) invasive breast carcinoma
are depicted.

Paradoxically, as the age progresses, MD shows a tendency to decrease while breast cancer
incidence generally increases. This apparent contradiction may be explained considering the model of
breast cancer incidence proposed by Pike, which contemplates that the real breast tissue age is the
result of its cumulative lifetime exposure to hormones and growth factors rather than its chronological
age. So, for describing breast cancer’s incidence, this real breast tissue age should be the appropriate
measure to apply [19]. It is especially evident in breast cancers associated to persistent hormones
exposure (such as oestrogen in advanced age first-time mothers) which usually have a higher degree
of MD [20]. Another significant positive link between hormones, high MD and breast cancer incidence
is represented by the follicular-phase oestradiol level which is associated with invasive and ER+/PR+

breast cancer in premenopausal women [21].

3. Hormonal Therapy and Mammographic Density

Regarding the specific implication of MD in breast cancer therapy, most of the research has been
done in the field of hormone treatments. Oestrogenic activity strongly influences MD, and accordingly
MD can change in response to tamoxifen anti-oestrogen treatment. However, the results obtained
using other oestrogen receptor modulators or aromatase inhibitors have proven less conclusive [22]. A
relation between adjuvant therapy and MD changes among women with BC have been described [23].
Patients under adjuvant tamoxifen experienced a higher MD decline than patients who did not received
hormonal therapy [23]. Other studies have shown that this decline in MD due to tamoxifen treatment
results in a reduced BC risk when administered as chemopreventive treatment and in better BC
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outcomes (such as a lower risk of recurrence and lower rates of BC specific death) when in adjuvant
settings [23]. Other studies have demonstrated that tamoxifen-associated MD decline translates into
reduced breast cancer risk in the chemopreventive setting and improved breast cancer outcomes,
including reduced risk of recurrence and breast cancer specific death, in the adjuvant settings [22,24].
Once BC is diagnosed, a diminution of MD has also been proposed as a prognostic marker for better
long-term survival among patients that have received adjuvant therapy [25].

Nevertheless, discrepant literature can be also found in terms of MD decline as a response of
tamoxifen treatment. This is mainly due to poor adherence of patients to treatment, as a consequence
of adverse side effects, which results in treatment discontinuation [25–28].

In terms of correlation between MD changes and primary prevention efficacy only one study
has directly linked tamoxifen-induced MD reduction to response and risk of BC developing [26]. In
this study, the reduction in MD induced by tamoxifen is used to segregate women in function of the
possible benefit they can get from the prophylactic treatment with this molecule. 46% of women
receiving tamoxifen experienced a 10% or greater reduction in their MD after 12–18 months, which
correlated with a 63% lower BC risk. On the contrary, those women receiving tamoxifen but showing
less than a 10% reduction in their MD had no BC risk decrease. The study concluded that MD can be
an excellent predictor of response to the preventive use of tamoxifen [26].

Finally, it is worth mentioning that hormone replacement therapy (HRT) used to ameliorate the
symptoms of menopause increases breast cancer risk and mammographic density. HRT may consist of
oestrogens alone or in combination with progestin. The possible role of MD in the relationship between
HRT and BC has been studied [12] and a partial role of MD has been found since the association
between HRT and BC risk is stronger in women with high MD [14].

4. Relevance of MD in the DCIS-to-ICD Transition

The most common non-invasive breast cancer lesion is ductal carcinoma in situ (DCIS), a highly
heterogeneous pre-invasive lesion whose evolution is different in every patient. In some instances,
DCIS can rapidly progress to the more aggressive form of invasive ductal carcinoma (IDC) if untreated
or undertreated, whereas most of them will remain virtually unaltered for up to 20 years or will even
not progress at all [29]. In this context, and considering that DCIS diagnosed patients are generally
treated, there is a need to better define the particular risk of these patients to evolve to the invasive
phenotype. Biologically, DCIS is defined by the proliferation of clonal cancerous epithelial cells that
accumulate in the lumen of the ducts, but not migrating into the stroma of the mammary gland,
thus preserving the myoepithelial cell layer and the basement membrane (BM) [30]. In fact, DCIS
is usually regarded as a non-obligate previous step in the development of IDC, since the loss of
myoepithelial cells and the breach of BM leads to an IDC, in which tumour epithelial cells invade the
mammary stroma and eventually evolve to metastatic BC [30] (Figure 1B1). Epidemiologically, DCIS
represents 20–25% of all new BC cases diagnosed [31] and this incidence is increasing as a result of
an upgraded resolution of breast mammography [32]. Around 80% of the DCIS are identified by the
presence of micro-calcifications and the remaining 20% by the detection of architectural deformation in
mammography screening [33,34] (Figure 1B2).

Stromal cancer biology changes such as ECM remodelling, stromal cell alterations and chemical
cues (hormones, cytokines and growth factors) correlate with patient outcome [35] and around 90% of
these alterations occur during the DCIS phase [36]. In fact, these interactions between the epithelial and
the stromal compartment clearly influence breast density and therefore its MD [6] already in the DCIS
stage. While there is a lack of information about the association between MD and DCIS, in general
terms it seems that high MD could correlate with the detection of DCIS lesions, although this association
is less evident than with invasive breast cancer [37]. Thus, dense regions in mammographies have
been tagged as susceptible areas of DCIS occurrence [38]. It has been reported that patients diagnosed
with DCIS and presenting high MD (over 75%) have a higher probability to develop a second breast
cancer, particularly in the contralateral breast when compared with low MD (under 25%) patients [39].
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Other reports show a higher risk to develop DCIS in patients with MD over 75% [40]. To better classify
DCIS lesions during diagnosis, a very recent communication correlates histopathological features
of human patients with breast mammographies [41], evaluating mammographic digital images by
principal component analysis taking into account stromal and glandular texture traits and MD. The
authors thus provide the first preliminary results about the possibility to use mammographic patterns
to improve the current DCIS classification. In addition, a very interesting recent study points towards
a direct association between immune system activation and higher MD, since macrophages, dendritic
cells, pro-inflammatory cytokines and B lymphocytes can increase MD in all cancer phases including
pre-invasive DCIS lesions. B lymphocytes seem to be particularly important in the increase of MD in
the benign lesions including DCIS [42].

5. Tumour Stroma as a Prognostic Factor

Classically, cancer research has focused mainly on the neoplastic cells within tumours. However,
especially in the last years, it has become obvious that while tumour epithelial cells that have undergone
genetic and epigenetic events are essential for the initiation of breast cancer, a variety of populations
from the surrounding microenvironment also influence tumour progression [43]. The role of stromal
factors in aiding cancer initiation, growth and progression has been well described [43–47], and during
the last years it has also been suggested that the stroma components can have a crucial influence in the
therapeutic outcome, and thus can be envisaged as possible relevant new targets [48].

It has been unanimously accepted that the stroma of a normal breast differs considerably from the
one found in BC, but some trends in the normal tissue can be more predisposing to cancer development.
Mammographically dense areas are associated with increased collagen I tissue deposition [49]. Using
the Col1a1tmJae transgene model of reduced collagen proteolysis, it has been reported that a high
collagen level in the stroma of murine mammary tissue results in a three-fold higher risk of developing
BC with a more invasive phenotype [50]. Collagen density can exert this tumour-promoting role by
at least two different mechanisms: i) By directly increasing the matrix stiffness and ii) by indirectly
modulating mammary fibroblasts. In the first case, collagen would be diminishing the contractility of
epithelial cells and thus altering focal adhesion and Rho signalling. In the second one, fibroblasts would
start secreting aberrant soluble factors (among others transforming growth factor beta, epidermal
growth factor and insulin-like growth factor) which would in turn modify the behaviour of epithelial
cells [50].

Moreover, by next generating sequencing-based expression profiling, signatures from benign
stromal proliferations have been identified that define stromal components of breast cancer with
predictive value. Thus, genes known to be involved in hypoxic and angiogenic responses within
tumours or in tumour-associated macrophage immune response have been identified in high MD tissue
and related to a poor survival prognosis [51]. In addition, higher expression levels of cell adhesion and
cell-cell contact genes have also been reported in non-tumoural stromal microenvironments in high
MD tissues [52]. In a different study using samples from women undergoing prophylactic mastectomy
because of their high BC risk profile, high MD tissues with no alterations in hormone receptor or Ki-67
marker status (and thus reputed as cancer-free) were described to have increased collagen deposition
and changes in its organization, compared to low MD tissues [53]. These data highlight the importance
of weighing both qualitative and quantitative stroma elements when evaluating the influence of
mammographic density.

6. CAFs, MD, Cancer Progression and Chemoresistance

Fibroblasts are the most abundant and active cell population of the breast stroma and so partially
responsible for high MD. Besides, it is becoming increasingly clear that they are also prominent
modifiers of cancer progression [48]. Activated fibroblasts are known as cancer-associated fibroblasts
(CAFs) and are thought to be involved in tumour growth and metastasis [48]. CAFs can affect the
phenotype of epithelial cells in a variety of ways, from cell-to-cell contacts to the secretion of aberrant
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soluble molecules of by altering critical ECM components [54]. It is well-known that alterations
in stromal composition correlate with increased MD and it has been suggested that the numerous
fibroblasts responsible for areas of high MD may be secreting soluble factors that would be inducing
epithelial cell proliferation [55] (Figure 3A).

1 

 

 

Figure 3. Paracrine crosstalk between fibroblasts and neighbouring epithelial cells. The abundance
of stromal fibroblasts correlates with areas of high MD and stimulates epithelial cell proliferation
by secreting copious soluble factors (A). The overstimulated epithelial cells, in turn, can undergo
phenotypic changes and secrete fibroblast-activating factors. In these areas of high MD, the altered
microenvironment can lead to the activation of fibroblasts into CAFs, which facilitate the growth and
progression of the tumour cells. The secretion of growth factors, cytokines and proteases by CAFs
establishes a positive feedback loop between both cell types which eventually leads to infiltration of
immune cells and to chemoresistance. This pro-tumoural stroma also promotes angiogenesis, metastasis
and therapy resistance (B).

Fibroblasts can regulate different aspects of tumour biology and therefore play an important role in
the different stages of breast tumour progression. Initially, in the early stages of tumour development,
fibroblasts can inhibit proliferation by forming gap junctions among them [56] but in later phases, they
can promote tumour growth and progression by secreting growth factors, cytokines and proteases,
which leads to immune cell infiltration. This, in turn, will promote angiogenesis and metastasis [57].
Furthermore, CAFs can also secrete plasminogen activators and different MMPs, that can be used by
the tumour in two different ways: to degrade ECM components and thus allow tumour expansion and
promote angiogenesis; or to cleave soluble factors and cell adhesion molecules, which will result in an
increased motility and EMT capacity [57] (Figure 3B).
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Additionally, the existence of a crosstalk between stromal and epithelial cells can be deduced
from the fact that highly dense stroma promotes epithelial cell proliferation in women showing high
MD. A good candidate to participate in such a crosstalk is CD36, whose levels are significantly lower
in fibroblasts from highly dense stroma than from low-density stromal fibroblasts from disease-free
women [58]. This decrease in CD36 is particularly meaningful, since a similar downregulation of CD36
expression is observed in CAFs compared to fibroblasts from healthy reduction mammoplasty tissue,
thus suggesting that it can be an early event in tumour formation [58].

The acquisition of resistance to therapeutic drugs by cancer cells seems to be also influenced by
the tumour microenvironment. This progressive accumulation of mutations to generate the resistant
population needs that cells that will develop the acquired genetic alterations to become resistant to a
certain drug must obtain first a certain degree of protection from the lethal effects of the drug through
a non-genetic mechanism. This protection of a pre-resistant cell population can be provided by the
microenvironment, which would create the conditions needed by the cells to acquire all the genetic
and epigenetic changes to become resistant [43,59].

In view of the central role CAFs play in the biology of BC, it is highly probable that they may also
play a relevant role in the survival of tumour cells after the exposure to drugs. From co-culture and
xenograft experiments, it has been shown that cell cycle arrest or senescence of stromal fibroblasts
is critical for the sensitivity of the tumour to chemotherapy [60]. Fibroblasts from the stroma can
also exert their influence on the chemosensitivity of tumour cells by indirect mechanisms, such as
modulating ECM behaviour and stimulating integrin-mediated adhesion to fibronectin [61]. CAFs
secrete type I collagen, which decreases chemotherapeutic drug uptake in tumours, favouring primary
tumour cell proliferation and metastasis in multidrug-resistant murine breast cancer [62].

Increasing evidences have revealed that CAFs can cause endocrine, chemotherapy and targeted
therapy resistance [63,64], including also anti-angiogenic therapy and TKI-targeted therapy [49,65].
Our own group has shown that HER2-positive CAFs secrete soluble factors, such as FGF5, that
are able to switch the phenotype of HER2-positive breast cancer cells from sensitive to resistant
to trastuzumab and lapatinib [66], in agreement with other results, obtained in 3D co-cultures of
fibroblasts and breast cancer cells in which the later were protected from lapatinib [67]. CAFs have also
been shown to induce trastuzumab resistance in HER2-positive BC cells by expanding the cancer stem
cell population and activating several signalling pathways such as NFkB [68]. Furthermore, CAFs are
also involved in resistance to tamoxifen [69]. Tamoxifen induces aromatase expression in CAFs, thus
leading to the promotion of aggressive behaviour of breast tumours in response to tamoxifen, via the
activation of a G protein coupled oestrogen receptor (GPER/GPR30) [70]. All these studies provide
solid indications that preventing fibroblast activation can represent a novel therapeutic strategy in
targeting tumour microenvironment.

7. Future Perspectives: CAFs as Therapeutic Targets and Improved Mammographic Monitoring

Traditionally, the development of new drugs against cancer has been centred on different trends of
the tumour cell. Recently, the strategies for novel therapeutic and prevention strategies have focused
rather on the tumour microenvironment than in the cancer cell itself. Among the various non-immune
cells that surround a tumour, some stromal cells such as fibroblasts have been proven to play a critical
role in promoting tumour proliferation, angiogenesis, invasion and metastasis [71].

Because the development of drug resistance seems to depend on the genetic stability of target
cells, stromal cells, that are genetically more stable than tumour cells, have been proposed to be a more
beneficial therapeutical target, since the possibility of acquiring drug resistance would be lower. At
least 80% of stromal fibroblasts in breast cancer may have an activated phenotype [72], and since CAFs
are genetically more homogeneous than cancer cells, they are less likely to acquire resistance to drugs,
making them an attractive target for cancer therapy.

Several aspects of the biology of CAFs make these cells an attractive choice for effective anti-cancer
therapies. Since PDGF and TGFβ play a key role in fibroblast activation, the development of inhibitors
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against these molecules has recently become a promising field of research [73]. Imatinib inhibits the
tyrosine kinase activity of the PDGF receptor, so it has been used in the therapy of chronic myeloid
leukaemia, among other cancers [73].Promising inhibitors of the TGFb signalling pathway at different
levels have entered several clinical trials and shown encouraging results [74]. Yet another interesting
target is the fibroblast activation protein (FAP). This membrane-bound protease is over-expressed
in cells from the stroma and can enhance tumour growth in vivo [75]. This protein is the target of
Sibrotuzumab, a humanized monoclonal antibody designed against it, but also of vaccines developed
to generate an immune reaction to the FAP antigen [76]. An opposite strategy has been to exploit the
serine protease activity of FAP to activate pro-toxins in the vicinity of the tumour [76].

Patients with an ER-negative BC showing the over-expression of a specific stromal gene
signature show a worse response to neoadjuvant chemotherapy [75] thus supporting the concept that
microenvironment can be an efficient target to improve their clinical response. [77]. The comparison
between the transcriptome of normal fibroblasts and CAFs from different malignancies can lead to the
identification of unique transcriptional signatures of potential clinical interest [78–81].

Despite the fact that clinical trials have been focused on the immune and vascular component
of tumour microenvironment, new studies on targeting CAFs are appearing. The disruption of the
communication pathway between stroma and tumour by inhibiting integrins is another strategy that
has reached some clinical trials, although the drugs used have shown limited efficacy by now [82,83].
The first phase 1 and 2 clinical trials of Sibrotuzumab, an antibody targeting FAP, did not obtain a
good outcome [84], and neither the inhibition of the protease activity of FAP with specific inhibitors
has resulted in better survival rates for the patients [84]. Currently, there is one more study that is
underway involving targeting of FAP. In the context of breast cancer, a phase 1 study evaluates the
safety, pharmacokinetics and therapeutic activity of RO6874281 as monotherapy, RO6874281 combined
with Trastuzumab, or RO6874281 combined with Cetuximab, for patients with breast and head and
neck cancers (NCT02627274) [85]. In addition, several antifibrotic drugs (e.g., losartan, tranilast,
pirfenidone), because of their capability to normalise the tumour microenvironment and to potentiate
chemotherapy by enhancing the drug delivery, have been proposed as new promising drugs for dual
use in clinical trials [54].

Finally, it has been postulated that changes in MD could be used as a biomarker for evaluating
breast cancer prevention strategies [38] and as a surrogate biomarker for preventive and adjuvant
endocrine therapies [22,25]. However, the use of MD in the clinical practice still requires the optimization
of MD techniques and feasible in-depth computer-assisted analysis.

In this sense, recent MD analysis advances and digital image evaluation by principal component
analysis, which provides more accurate information about mammographic traits, also propose MD
patterns as prognosis and possibly follow-up tools in BC patients [41]. Other strategies include the use
of ultrasound elastography (also known as strain imaging) to monitor the effects of chemotherapy on
BC and peritumour stromal cells. This technique assesses the relative stiffness of a given tissue, as a
reflection of the degree of necrosis, fibrosis and inflammation [86]. Thus, it may be an indicator of
the response to chemo/hormonal therapy and helpful in monitoring the patient’s response to therapy,
paying special attention to the stromal component (NCT01737970).

Therefore, the avenue of new and improved MD detection techniques, along with the joint
therapeutic approach against the stromal and non-stromal cellular compartments of the tumour
will provide clinicians with empowered tools to prevent BC and fine-tuning patient’s responses
and follow-up.
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