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Abstract    

Here we explore the accuracy of Stefan equation and broken-bond model semiempirical 

approaches to obtain surface energies on transition metals. Cohesive factors are 

accounted either via the vaporization enthalpies, as proposed in Stefan equation, or via 

cohesive energies, as employed in the broken-bond model. Coordination effects are 

considered including the saturation degree, as suggested in Stefan equation, employing 

Coordination Numbers (CN), or as the ratio of broken bonds, according to bond-cutting 

model, considering as well the square root dependency of the bond strength on the CN. 

Further, generalized coordination numbers 𝐶𝑁 are contemplated as well, exploring a 

total number of 12 semiempirical formulations on the three most densely packed 

surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), 

body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. 

Estimates are compared to available experimental surface energies obtained 

extrapolated to zero temperature. Results reveal that Stefan formula cohesive and 

coordination dependencies are only qualitative suited, but unadvised for quantitative 

discussion, as surface energies are highly overestimated, favoring in addition the 

stability of under-coordinated surfaces. Broken-bond cohesion and coordination 

dependencies are a suited basis for quantitative comparison, where square-root 

dependencies on CN to account for bond weakening are sensibly worse. An analysis 

using Wulff shaped averaged surface energies suggests the employment of broken-bond 

model using CN to gain surface energies for TMs, likely applicable to other metals. 

Keywords: Surface Energy · Transition Metals · Broken-Bond Model · Stefan Equation 

· Surface Tension · Wulff Construction  
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1. Introduction  

Surfaces are the main defect on an otherwise infinite material. In fact crystalline 

materials periodically repeat their bulk structure along the three-dimensional space up to 

the surface terminations. Material nanoparticles, micrograins, up to macroscopic single 

crystals expose certain preferential surface endings, which in turn outline the particle 

shape. Infinite plane endings exist within a crystal, yet groups of them are equivalent 

due to the materials bulk intrinsic crystal group symmetry. The natural observed trend is 

that materials expose those terminations or surfaces families that are more stable, 

typically being the most close-packed ones. The rationalization is simple; those 

terminations where surface atoms are more saturated lack less bonds, and so, the fewer 

bonds are missed, the more stable the surface is.  

 The stability of a given surface termination is quantified by the so-called surface 

energy, γ, also known as surface tension, given per exposed surface area —typically in J 

m-2 or N m-1 units. Ideally, when a bulk is truncated into two surface endings, the 

cleavage energy equals to both surface energies added up. Surface energies include 

immediate post-cleavage effects such as surface relaxation or atomic reconstructions. 

These processes are considered secondary though, and the materials bulk cohesive 

strength is actually normally regarded as the main property sizing the surface energy. 

Again the concept is straightforward; the stronger the bonds in the material are, the most 

costly to create a surface is, and, therefore, the higher the surface energy.   

 The surface energy is the main energetic descriptor of a crystal termination, and 

many physicochemical surface properties hang upon it. For instance, Wulff construction 

procedure is used as a top-down approach to ascertain the crystal equilibrium shape 

from independent surface energies [1]. The moiety shape can affect the overall 

electronic structure of material nanoparticles, and even alter their magnetic solution 

[2,3]. Furthermore, the presence of certain surface terminations can induce particular 

moiety aggregations, such as metal nanowires from isolated nanoparticles [4]. The 

different surface terminations differ in their electronic structures, and so surface 

properties depend on them, e.g. the work function, of vital importance in processes 

where electrons are ejected from the material, like in electrochemical processes, or 

surface science techniques like the X-ray photoemission spectroscopy and scanning 

tunneling microscopy. 

 On top of that one has to regard that surfaces are the main region where 

materials interact with media, and so, of pivotal importance in cutting-edge surface-
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driven processes where nowadays research focus onto, e.g. chemical resolution of 

enantiomers [5], CO2/CH4 gas separation [6], patterning of two-dimensional organic 

frameworks [7], electron/hole separation in photocatalysis [8], and heterogeneous 

catalysis [9], to cite a few examples of technological relevance. Moreover, a given 

structural shape in turn expresses other lower dimensionality defects such as edges and 

corners, which may also feature, due to their lower atomic coordination, a markedly 

different chemical activity [10-12]. Shape, size, and surface tension are determining 

factors of transition metal nanoparticles reactivity [13-15], where surface energies have 

been claimed as a main indicator of the overall metal surface activity [16], and because 

of this posed as a descriptor of its catalytic activity [17]. As it happens, other 

coordination [18] and electronic [19] descriptors are intimately linked to a particular 

surface termination.  

 The experimental measurement of a solid metal surface energy is challenging: 

On one hand it is important to measure a system without impurities, which otherwise 

could substantially affect the determined γ. On the other hand, the employed techniques 

typically require having the metal (nearly) molten. Different procedures can be 

employed, such as sessile and pendent drops, drop weight, capillary rise, and maximum 

bubble or drop pressures, for whose detailed description we refer to the literature [20]. 

In all cases, the γ drops with the temperature, but only ranging 0.1-0.4 mN m-1 K-1, this 

is, the effect of the temperature only becomes significant at very large temperatures 

above 1000 K [21]. In any case, from the linear dependence of γ with respect the 

temperature T on can gain extrapolated surface energy values at 0 K, with multiple 

acquired values over the last decades, ensuring finite values with an overall associated 

error of ± 2% [21]. 

 These experimentally extrapolated γ values arise from (nearly) molten metal 

situations, with a highly dynamical admixing of particular surface endings, and because 

of that, difficult to assign to a particular crystallographic ending. This lack of atomistic 

knowledge on surface energies from the experimental point of view can be mended 

from the computational chemistry one, where density functional theory calculations on 

slab models are commonly used to mimic specific surface endings under study, and to 

obtain estimates of their surface energies. These estimates allow comparing the 

experimental surface energies with those obtained on slab models of most stable 

surfaces [22], as they are presumably those most exposed on a nanocrystallite according 
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to Wulff construction [1,23], or even to a combination of surface endings of low Miller 

indices surfaces, profiting from a Wulff constructed shape [24]. 

 Despite of the benefits on acquiring surface energy values from DFT 

calculations, some questions are to date under debate. Focusing only on transition 

metals as a large representative subset of metallic systems, one may wonder whether the 

employment of a given exchange-correlation (xc) functional may bias the surface 

energy estimates; in this regard, it seems clear that xc functionals within the generalized 

gradient approximation are best suited in describing metal bulks [22,25], although the 

question mark is still present when addressing metal surfaces. Furthermore, the 

modeling and optimization of surface slabs is computational demanding, and thorough 

studies are limited nowadays to maximum miller indices of two [24], despite surfaces 

with higher Miller indices can be highly stable and so present in any system, or 

stabilized in case of their technological importance; see e.g. Cu(321) surface utilization 

in the catalysis of the water gas shift [26], or Cu(3117) chiral metal surfaces used for 

enantioselective chemical separation [27], to mention a couple of cases. 

 In that sense, the usage of semiempirical equations to estimate the surface 

energies of a particular surface ending becomes quite appealing, given their easiness 

and rapid utilization, more if, in addition, they are able to deliver surface energies with a 

high degree of accuracy. Historically, one has to remark the Stefan equation [28], in 

which the surface energy can be obtained as; 

    𝛾 = ∆!!"#! !! !

!
!
!!!

!
!

!"!
!"!

     (1), 

where ∆𝐻!"#!  is the material vaporization at standard conditions of pressure and 

temperature —105 Pa and 273.15 K—, ρ is the material density, M the molar mass, and 

NA the Avogadro constant. Aside from these variables, the surface energy depends on 

the relation in between the Coordination Number (CN) of the surface (CNs) with respect 

that of the material bulk (CNb). The Stefan equation can be then decomposed into two 

clearly differentiated terms; the CNs/CNb, which quantifies the degree of saturation of 

surface atoms with respect bulk conditions, and the rest of the equation, which is a 

weighted value of ∆𝐻!"#! , accounting for the materials atomic cohesion. Hence, these 

terms account for the above-stated cohesion and coordination dependences, and stem 

from the experimental observation of dependence of γ with respect ∆𝐻!"#!  [20], and 

CNS/CNb terms [29].  
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 The other extendedly used empirical adjustment is that of the bond-broken 

model, also known as bond-cutting model [30]. There the surface energy γ is expressed 

as  

      𝛾 = !"!!!"!
!"!

𝐸!"!     (2), 

where Ecoh is the material cohesive energy, which naturally accounts for the material 

cohesion dependence. At variance with Stefan equation, the saturation proportionality 

term depends on CNb-CNs, this is, the number of broken bonds when creating the 

surface. Criticism arose on the broken-bond model in the sense that ignores the 

variation of bond strengths with respect CN [31], such as in the above commented 

surface relaxation processes, and lower dimensionality defects. Tight-binding theory 

showed a square root dependency on CN for covalent bonds [32], and so the broken 

bond equation could be reformulated as 

      𝛾 = !"!! !"!
!"!

𝐸!"!     (3), 

where its usage on transition metals has been advised, claiming an agreement compared 

to ab initio estimates being improved by 20-50% [33-35], although the explicit 

agreement or improvement with respect experimental values was not addressed. 

 At this point, it is clear that many questions remain open when using these 

empirical equations: What cohesion term is better suited, standard vaporization 

enthalpies or cohesive energies? Moreover, is surface saturation better treated in terms 

of coordination, or as broken bonds? Would the above commented square root 

dependency apply when comparing to experimentally determined surface energies? On 

top of that, recently generalized coordination numbers (𝐶𝑁) have been suggested and 

employed as better geometric descriptors of the transition metals surface activity 

compared to CN [36,37], allowing distinguishing different similarly packed surfaces, by 

considering the saturation of subsurface and vicinal lower-dimension sites. In this sense, 

would 𝐶𝑁 be a better coordination parameter to quantify the surface stability in terms of 

γ? To solve these questions, we here present a profound analysis on the 

parameterization and dependences employed for the cohesion and coordination effects, 

by comparing surface energies obtained based on Stefan equation and broken-bond 

models, compared to precise values of surface energies considering 26 transition metals 

as a broad and representative study set.  
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2. Computational Details 

Different empirical equations have been tested, either based on Stefan equation 

employing standard vaporization energies as cohesion descriptor, or based on the 

broken-bond model, and, therefore utilizing cohesive energies for that purpose. The list 

of experimental standard vaporization energies, densities, and cohesive energies is 

found in the Supplementary Information. These cohesion terms are combined with the 

above stated  

    (1) !"!
!"!

 , (2) !"!!!"!
!"!

, or (3) !"!! !"!
!"!

   (4) 

cohesion terms, either employing standard coordination numbers, CN, or generalized 

coordination numbers, 𝐶𝑁 . This implies the screening of 12 possible empirical 

relationships. The selected 26 Transition Metals (TMs) are those which feature a face 

centered cubic (fcc) crystallographic arrangement (Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au), a 

body centered cubic (bcc) one (V, Cr, Fe, Nb, Mo, Ta, and W), or an hexagonal closed 

packed (hcp) crystal structure (Sc, Ti, Co, Zn, Y, Zr, Ru, Cd, Hf, Re, and Os), whose 

zero temperature surface energies, γ, are known, extrapolated from γ versus T plots [21], 

and here listed in the Supplementary Information. The bulk CNb —and also 𝐶𝑁!— are 

12 for fcc and hcp transition metals, and 8 for bcc metals, see Table 1. 

 Concerning CNs —and also 𝐶𝑁! —, three different surfaces have been 

contemplated for each family of metals, considering a maximum Miller index order of 

one. These are the (001), (011), and (111) surfaces of fcc anc bcc TMs, and (0001), 

(1010), and (1120) surfaces for hcp TMs, which a priori include always the most 

stable exposed surface, that with highest packing; the (011), (111), and (0001) surfaces 

for bcc, fcc, and hcp TMs, respectively. Model surfaces allow one for acquiring surface 

CNs and 𝐶𝑁! values, following a recipe previously described [37]. The obtained surface 

energy values are used to build Wulff construction shapes [23], from which ratios of 

surface exposure can be used to obtain surface-weighted mean nanoparticle surface 

energies.  

3. Results and Discussion 

To being with, the most stable obtained surface energy with any of the examined 12 

empirical equations for each TM under study has been compared to its experimentally 

determined surface energy. This comparison is extendedly used in research [16], and the 

reason for that is the assumption that, in any metal system, the most exposed surface is 

that most stable, a rule-of-a-thumb not exempt of criticism and exceptions, specially 
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when Wulff constructed shapes limit the extent of such an argument [23], although, 

regardless of that, one can consider such approximation as a good initial guess, just 

succinctly modified (increased surface energies) when considering other less stable 

surfaces.  

 All that said, the comparison serves as a first screening, and clearly shows that 

the Stefan equation, as originally proposed (eq. 1), is exceedingly overestimating the 

surface energies, see Figure 1. The CNs/CNb coordination relation implies that surface 

energies are lower for those terminations with less surface coordination, contrary to the 

above-commented conceptualization of higher stability associated to a larger 

coordination. This relation then implies a much higher surface energy for densely-

packed terminations, which explains the overestimation when plotting the most densely 

packed (011), (111), and (0001) surfaces for bcc, fcc, and hcp TMs, respectively. 

However, the differences in surface energy values because of such coordination 

dependence range 1-3 J m-2, and so, just partly account for the full overestimation, 

where the rest stems out from the energetic dependency on ∆𝐻!"#! . 

 To further support that, notice that the overestimation is greatly improved when 

using the original broken-bond model coordination relation (eq. 2). There the most 

stable surfaces are the employed highly-packed, and so, usage of other surfaces would 

only increase the discrepancy. Furthermore, the coordination effect based on missing 

bonds seems more suited to reality, although still overestimating. Indeed, the square-

root dependency of bond strength on coordination (eq. 3) further counteracts this 

overestimation, with values comparable to the experimental ones. One has to remark 

that, regardless of the explored coordination proportionality, the cohesion dependence is 

always followed, and so, despite the overestimation(s), one can use such dependences to 

qualitatively claim a higher surface energy of one material to another, by simply 

comparing vaporization energies, a fact of possible usage in treating bimetallics or 

alloys of different compositions. Concerning the employment of generalized 

coordination numbers, 𝐶𝑁 , the improvement is clear on Stefan equation, as the 

𝐶𝑁! /𝐶𝑁!  decreases, but slightly detrimental for broken-bond based relationships. 

Therefore its usage would only be advised for qualitative comparative purposes. 

 The cohesion dependence on Ecoh is tackled in Figure 2, and, compared to ∆𝐻!"#!  

based results in Figure 1, one immediately sees that cohesive energies largely bridge the 

gap of the above-commented overestimation, with obtained values much closer to the 
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experimentally determined ones. Because of this, overall, the broken-bond model is 

better suited than Stefan equation in accurately determining TM surface energies, and 

likely, other metals and materials. In any case the mutual relative surface energies 

among metals are correctly described at any explored combination of terms, given the 

linear dependence of vaporization enthalpy with respect cohesive energy. That said, the 

CNs/CNb or 𝐶𝑁! /𝐶𝑁!  relationships are unadvised, as they favor the less saturated 

surfaces, as above commented. The question mark here is whether the direct 

(generalized) coordination number or the square root dependency is better. An ideal 

agreement with the experimental values should deliver linear dependency with both 

regression coefficient and slope of unity, with an intercept at zero. Taking this into 

account, the linear dependencies, as provided in the Supplementary Information, render 

the broken-bond model based equation with direct (generalized) coordination numbers 

as best in estimating surface energies, with intercepts of -0.04 and -0.05 J m-2 —thus in 

the range of experimental accuracy of ± 2% [21]—, slopes of 0.81 and 1.22, when using 

CN or 𝐶𝑁, respectively, and regression coefficients R in both cases of 0.86. Notice that 

the claimed improvement when using root-square dependencies does not apply for TMs, 

and so, the original broken-bond equation (eq. 2) is better suited, likely extendable to 

other metals. 

 At this point one may wonder whether such comparison of the experimental 

values to the most stable (packed) surface is well sustained, and whether neglecting of 

the other less stable surfaces implies deviations on such linear dependencies. To further 

investigate this, we here constructed Wulff shapes [1,23] with the above commented 

estimates of surface energies, either based on CN or 𝐶𝑁 coordination, for fcc, bcc, and 

hcp metals, see Figure 3. Notice how the usage of generalized coordination numbers 

slightly favors the appearance of less stable (001) surfaces on fcc and bcc TMs, 

although no effect is visible in hcp transition metals. In the case of fcc metals, the Wulff 

shape is a truncated octahedron composed of (111) facets with small truncated (001) 

ones. In the case of bcc, the Wulff shape is a dodecahedron exposing (011) facets, 

although some truncation could be visible showing (001) facets. In the case of hcp TMs, 

the equilibrium Wulff shape is an hexagonal prism featuring with hexagons being the 

(0001) surfaces, with (1010) edges.  

 Table 2 contains the surface ratio as extracted from Wulff shapes in Figure 3, 

which has been used to leverage the surface energies of the above-commented broken-
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bond equations using either CN or 𝐶𝑁  coordination numbers. The obtained mean 

surface energies are then compared to the experimental values in Figure 4. Notice how 

the inclusion of less packed and so less stable surfaces slightly increases the mean 

surface energies. While this effect is detrimental when using generalized coordination 

numbers in the broken-bond model, where former values where slightly overestimated, 

it is beneficial when using regular coordination CN numbers, as they were formerly 

slightly underestimated, thus approaching the estimated values to the experimental 

reported ones. This is reflected in the linear regressions, where linear fitting using 𝐶𝑁 

delivers a worse R coefficient of 0.80, a worse intercept of 0.12 J m-2, and only a slight 

improvement of the slope of 1.15. When using CN, the R is slightly worsened to 0.82, 

whereas both intercept —almost matching value of -0.01 J m-2— and slope —value of 

0.87— are improved. The average associated errors on the cohesive energy estimates 

are of 0.1% and 0.1% when using CN and 𝐶𝑁 , respectively, well below the 

experimental mean error bars of 2% [21]. 

 All in all, present results comparing Wulff shape averaged surface energies to 

zero temperature extrapolated surface energies highlight the employment of the original 

formulation of the broken-bond model as a better suited empirical formula to estimate 

surface energies of transition metals, although results are probably extendable to other 

metals. The cohesion dependence on vaporization enthalpies and surface saturation as 

employed in Stefan formulation are unadvised for quantitative determinations, and so 

should be employed only for qualitative discussion. The employment of generalized 

coordination numbers is not critical, and so could be used for quantitative 

determinations, although regular coordination numbers are here found to be slightly 

better suited.  

 

4. Conclusions  

Here we have explored the validity and accuracy of two main semiempirical approaches 

to rapidly obtain estimates of surface energies. These are the Stefan equation and the 

broken-bond model. Cohesive factors are contemplated either via the vaporization 

enthalpies as proposed in the Stefan equation, or via the cohesive energies, as employed 

in the broken-bond model. Coordination effects are accounted including the saturation 

degree as employed in Stefan equation using CN, or as the ratio of broken bonds 

following the broken-bond model, including the square root dependency of the bond 

strength on the CN, as posteriorly proposed to deliver much accurate estimates. Further 
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than that, the usage of 𝐶𝑁 instead of CN has been contemplated, accounting for a total 

number of 12 explored empirical formulations of surface energies, which have been 

tested on the three most densely packed and presumably most stable surfaces of 3d, 4d, 

and 5d TMs displaying fcc, bcc, or hcp crystallographic structures. 

 The obtained results on the most densely packed surface compared to 

experimentally available zero temperature extrapolated surface energies reveal that 

Stefan formula cohesive and coordination dependencies are suited for a qualitative 

analysis, but they are unadvised for quantitative discussion, as the obtained surface 

energies are highly overestimated, favoring the stability of under-coordinated surfaces. 

The same comparison grants the broken-bond cohesion dependency on cohesive 

energies a suited basis for a quantitative discussion, where the original coordination 

dependency based on missing bonds yields the best agreement with experiments, at 

variance with square-root dependencies, which are sensibly worse. A further analysis 

comparing Wulff shaped averaged surface energies with experiments further suggests 

the employment of the broken-bond model as a quantitatively accurate semiempirical 

method to gain surface energies for TMs, likely applicable to other metals.      
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Table 1. Bulk and surface coordination numbers, CNb and CNs, respectively, and 

generalized bulk and surface coordination numbers, 𝐶𝑁! and 𝐶𝑁!, respectively, for the 

different surfaces under study of bcc, fcc, and hcp TMs.  

 

Crystal Surface CNb CNs 𝐶𝑁! 𝐶𝑁! 

bcc Bulk 8  8  

 (001)  4  4.00 

 (011)  6  5.00 

 (111)  4  3.63 

fcc Bulk 12  12  

 (001)  8  6.67 

 (011)  7  5.83 

 (111)  9  7.50 

hcp Bulk 12  12  

 (0001)  9  7.50 

 (1010)  8  6.67 

 (1120)  7  5.83 
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Table 2. Ratio of exposed surfaces as following the equilibrium Wulff shapes for fcc, 

bcc, and hcp TMs, see Figure 3.  

 

Wulff Crystal Surface CN 𝐶𝑁 

bcc (001) 0 0.010 

 (011) 1 0.990 

 (111) 0 0 

fcc (001) 0.098 0.202 

 (011) 0  

 (111) 0.902 0.798 

hcp (0001) 0.333 0.333 

 (1010) 0.667 0.667 

 (1120) 0 0 
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Figure	1. Stefan equation surface energies, γtheo, either using coordination numbers (CN 

– top panel) or generalized coordination numbers (𝐶𝑁 - bottom panel), employing the 

different coordination dependences as outlined in eq. 4, with respect the experimental 

values extrapolated to zero temperature [21], γexp. 
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Figure	2. Broken-bond model equation surface energies, γtheo, either using coordination 

numbers (CN – top panel) or generalized coordination numbers (𝐶𝑁 - bottom panel), 

employing the different coordination dependences as outlined in eq. 4, with respect the 

experimental values extrapolated to zero temperature [21], γexp. 
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Figure	3. Wulff constructed shapes for fcc, bcc, and hcp metals, using the surface 

energies from the broken-bond model formula (eq. 2), either using the coordination 

numbers (CN) or generalized coordination numbers (𝐶𝑁). 
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Figure	4. Surface energies obtained from the broken-bond model formula (eq. 2), either 

using the coordination numbers (CN – in green) or generalized coordination numbers 

(𝐶𝑁 - in blue), using the most stable surface energy (light colors) or surface averaged 

according to the Wulff constructed shapes depicted in Figure 3 (dark colors).  
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