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Abstract: Two-dimensional (2D) transition-metal nitrides and carbides (MXenes), containing 

a few atomic layers only, are novel materials which have become a hub of research in many 

applied technological fields, ranging from catalysis, to environmental scrubber materials, up to 

batteries. MXenes are obtained by removing the A element from precursor MAX phases, and it 

is for this reason that it is often assumed that the resulting 2D material displays the MAX atomic 

layer stacking —an ABC sequence with trigonal (D3d) symmetry. By means of density 

functional theory based calculations, including dispersion, the present work thoroughly explores 

the stability of alternative ABA stacking, with D3h hexagonal symmetry, for a total of 54 

MXene materials with M2X, M3X2, and M4X3 stoichiometries (M = Ti, Zr, Hf, V, Nb, Ta, Cr, 

Mo, or W; and X = C or N), revealing that for clean MXenes, the ABA stacking is fostered i) by 

the number of d electrons of the transition metal, ii) when the MXene is a nitride rather than a 

carbide, and iii) when the MXene surface is terminated by oxygen adatoms. The present results 

suggest that stacking phase transitions are likely to take place under working operando 

conditions, surmounting affordable layer sliding energy barriers, in accordance to the 

experimentally observed layer distortions found in Mo2N. Finally, we tackle the adsorptive and 

catalytic capabilities implications of such a layer phase transition by considering N2 adsorption, 

dissociation, and hydrogenation on selected ABC and ABA stacked MXenes. Results highlight 

changes in adsorption energies of up to ~1 eV, and in N2 dissociation energy barriers of up to 

~0.3 eV, which can critically change the reaction step rate constant by three to four orders of 

magnitude for working temperatures in the 400-700 K range. Consequently, the present results 

highlight the need of carefully determining the atomic structure of MXenes and to use models 

with the most stable stacking when inspecting their chemical or physical properties. 
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Introduction 

Recently, a new class of two-dimensional (2D) materials was discovered by Naguib et al. [1] 

These materials, called MXenes, exhibit high electrical conductivity, hydrophilicity, large 

surface area, tunable structure, and superior oxidation resistance, among many other properties 

[2]. Not surprisingly, applications based on MXenes are gaining momentum in areas such as 

ecofriendly energy [3], greenhouse gases scrubber materials [4,5], batteries [6], water 

purification [7-9], or heterogeneous catalysis [10], among many other fields of technological 

applicability. MXenes are usually obtained by selective etching —typically with hydrofluoric 

acid, HF— of the A element from a precursor MAX phase [11-13]; where M is usually an early 

transition metal —e.g. Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W—, the A element belongs to a subset of 

groups XII-XVI of the periodic table, and X is carbon and/or nitrogen [14]. In general, MXenes 

have n+1 layers of hexagonal close-packed transition metals intercalated by n layers of 

hexagonal close-packed C or N atoms, with a face-centered cubic (fcc) —i.e. ABC— stacking, 

and n = 1-3. As a result of the synthesis procedure [1], MXenes feature a surface termination, 

usually denoted as Tx, so that the general formula of MXenes is often expressed as Mn+1XnTx, 

where Tx is in most cases a mixture of -OH, -O, -H, or -F moieties. Nevertheless, the progress in 

this field evolves very rapidly and recent HF-free syntheses have been reported yielding 

MXenes terminated by H and OH only [15,16], or upon fine tuning the layer sequence, reaching 

thicker n = 5 MXenes, with a central metal layer different from the other ones [17]. Also, even 

post-synthesis annealing and hydrogenation protocols have been developed to successfully 

defunctionalize MXene surfaces [5], thus modifying their properties by increasing their 

electrical conductivity [18]. 

While MXene surfaces are highly reactive, their atomic structure remains virtually 

unchanged in the presence of an adsorbate, yet some oddities have been found to occur. For 

instance, Shao et al. [19] predicted that Mo2N and W2N MXenes become structurally distorted 

upon adsorbing a nitrogen molecule, a feature that is observed as well on W2C and Cr2N. In a 

recent synthesis and characterization study, V2N and Mo2N MXenes were produced by 

ammonia treatment of the parent carbides [20]. There, the hexagonal phase of V2N displayed the 

usual trigonal D3d symmetry of MXenes —fcc ABC stacking—, but the resulting Mo2N sample 

was described as having a distorted structure with hexagonal close-packed (hcp) D3h symmetry 

—ABA stacking. Given the above subtlety, one may wonder if MXene stacking structures other 

than fcc exist, and whether the transformation from ABC to ABA is intrinsic or can be prompted 

by either the Tx termination, as suggested on M2X MXenes with ABA stacking when having O 

termination ,aka BiXenes [21], or by the presence of an adsorbate. Both sources of restacking 

may indeed bestow a symmetry change, eventually translatable into a lowering of the stacking 

conversion energy barrier, and, ultimately, prompting a stacking phase transition. 
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Structural stacking changes may well imply different chemical surface activity, a point 

than can be key in chemically enhanced few-layered materials. Therefore, information on the 

preferred stacking of MXenes under working conditions is mandatory to guide future research 

on the field. However, obtaining this information requires investigating these materials at an 

inherent atomic level, an aspect difficult to be realized experimentally. Here, motivated by the 

aforementioned evidence indicating structural distortions and the existence of alternative 

stackings [19,20], we employ complete and accurate Density Functional Theory (DFT) 

simulations on suited MXene models to systematically analyze the stability of the ABA stacking 

relative to the usual ABC one. Thus, we consider a wide, organized set of MXenes 

encompassing different widths, inspecting both thermodynamic and kinetic aspects of the 

structural conversion. Although the study is mainly focused on pristine MXenes, the possible 

effect of surface termination on the stability of ABA stacking and/or its conversion is also 

addressed by considering Tx = O termination, and building oxygen-coverage phase diagrams. 

Finally, the effect of the ABA stacking on the surface chemical activity of the MXenes is 

analyzed addressing the textbook N2 adsorption and dissociation steps, key in the 

technologically relevant Haber-Bosch process of ammonia synthesis [22]. 

Computational details 

The present study relies on DFT-based first-principles calculations using the Vienna Ab initio 

Simulation Package (VASP) [23], carried out on suitable MXene periodic slab models. The 

calculations were performed within the generalized gradient approximation to the many-body 

exchange-correlation potential, namely, using the functional developed by Perdew, Burke, and 

Ernzerhof (PBE) [24], augmented with the Grimme D3 method to account for dispersive forces 

[25]. The valence electron density was expanded in plane-wave basis sets and the Projector 

Augmented Wave (PAW) method [26] was used to describe the effect of the atomic cores on the 

valence electronic density. The cutoff for the kinetic energy of the plane waves was set to 415 

eV although a higher value of 550 eV was used for the calculation of lattice constants. The 

convergence criteria for the self-consistent energies and forces on the relaxed structures were set 

to 10-6 eV and 0.01 eV·Å-1, respectively.  

The MXenes studied in the present work were modeled by hexagonal p(3×3) periodic 

supercells containing 9 atoms per layer, see Figure 1. In order to avoid interaction between 

MXene replicas due to periodic boundary conditions in the direction perpendicular to the 

surface, a vacuum region of at least 10 Å was set between periodic copies, both when the 

surface is clean and when it is Tx-terminated. We considered Mn+1Xn MXenes, where M is in the 

Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W list, X is C or N, and n = 1-3. Only two limit regular stacking 

possibilities —ABC and ABA— were initially considered, regardless of the MXene width, and 
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thus, neglecting other possible mixed situations, see Figure 1. The calculated lattice parameters, 

a, for the ABC-stacked lattices are in consonance with those reported in the literature [27,28], 

see Table 1, while the change in a for n ≥ 2 was found to be lower than 1%; thus, the same 

lattice constant was used regardless of the MXene thickness. The lattice constants of the ABA-

stacked surfaces, however, can vary up to 8% with respect to the ABC situation, the former 

being smaller than the latter, with the exception of Mo2N. For example, the calculated lattice 

parameters for ABC- and ABA-stacked Mo2C are 3.10 Å and 2.84 Å, respectively, in very good 

agreement with the corresponding values reported by Sun et al. of 3.06 and 2.88 Å, respectively 

[29]. The differences in lattice parameter for each stacking are crucial to obtain accurate, 

reliable and physically meaningful results, both quantitative and qualitative. Using the example 

of Mo2C as a test case, when one uses the same lattice parameter for both stackings, one finds 

that ABC is more stable, by 0.59 eV per formula unit, while the usage of the proper lattice 

parameters for each stacking phase yields instead a preference for ABA stacking, by 0.29 eV 

per formula unit, in very good agreement with previous estimates [29]. The reciprocal space 

Brillouin zone was sampled using a Monkhorst-Pack 5×5×1 grid of special k-points [30]. 

Convergence tests on k-point density and basis set size showed that calculations have a 

numerical accuracy of about 1 meV per atom. Preliminary tests also showed that spin 

polarization is required in order to obtain correct total energies for Ti2C, Zr2C, and Cr2C, 

regardless of their stacking. The saddle-point configurations of the minimum-energy pathways 

for layer realignments were located via the dimer method [31]. 

 

 

 

 

 

Figure 1. Top (left panels) and side (right panels) views of a p(3×3) M2X supercell. The top 

images represent ABC stacking, while bottom ones feature ABA stacking. Green (grey) spheres 
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denote M (X) atoms. Tags are shown for high-symmetry relevant surface sites, including bridge 

(B), top (T), hollow (H), hollow metal (HM), and hollow carbon/nitrogen (HX, in practice HC or 

HN) positions. The dashed orange rhombus represents the boundaries of the periodic supercell. 

Table 1. Calculated lattice parameters, a, in Å, for the studied MXenes with ABC (ABA) 

stacking. Values are given for M2X MXenes, as they are equivalent for cases with larger n. 

a C N 
Ti 3.06 (3.00) 2.98 (2.86) 
Zr 3.27 (3.23) 3.24 (3.08) 
Hf 3.21 (3.16) 3.17 (3.04) 
V 2.90 (2.76) 2.89 (2.67) 

Nb 3.13 (2.94) 3.15 (2.90) 
Ta 3.09 (2.94) 3.09 (2.88) 
Cr 2.82 (2.62) 2.68 (2.61) 
Mo 3.10 (2.84) 2.79 (2.82) 
W 2.88 (2.84) 2.78 (2.78) 

 

To take into account the effect of termination, we consider the particular case of 

oxygen. To this end, the O2 partial pressure, 𝑝!!, vs. temperature, T, phase diagrams were built 

by terminating one MXene surface side by O adatoms, and calculating for each T/𝑝!! pair the 

Gibbs free energy of adsorption, Gads, for a number of O adatoms, 𝑁! ∈ 1,9 , added on the 

other MXene surface side, and picking the lowest Gads for a given coverage as the ground state. 

The Gads is calculated as [32] 

  𝐺!"# 𝑇, 𝑝!! = 𝐸!"# − 𝑘!𝑇 ln
!!!/!"#$#

!!!
!!/!

   (1), 

where 𝐸!"# is the simultaneous adsorption energy of 𝑁! oxygen adatoms, including the Zero 

Point Energy (ZPE) term, kB is the Boltzmann constant, 𝑄!!/!"#$# the partition function of the 

MXene fully terminated by O on one side, and with NO O adatoms on the other side, and 

𝑄!!
!!/! the partition function of 𝑁! oxygen atoms as in gas phase isolated O2 molecules. 

The adsorption energy of 𝑁! O atoms on a MXene surface, including ZPE, is  

 𝐸!"# = 𝐸!!/!"#$# + ZPE!!/!"#$# − 𝐸!"#$# −
!!
!

E!! + ZPE!!    (2), 

where 𝐸!!/!"#$# is the total energy of the MXene fully terminated by O on one side and with 

NO O adatoms on the other side, ZPE!!/!"#$# the corresponding ZPE term involving 3·NO 

normal vibrational frequencies, EMXene the total energy of the MXene fully O terminated on only 

one side, 𝐸!! the total energy of an O2 molecule, and ZPE!! the ZPE term for its stretching 

vibrational mode. The NO/MXene partition function is 
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    𝑄!!/!"#$# =
!

!!!"# !!!!
!!!!

!     (3), 

where 𝑣! are the 3·NO normal vibrational frequencies of the 𝑁! O adatoms. The partition 

function of the O2 molecule in gas phase is the product of vibrational, rotational, and 

translational contributions, 𝑄!! = 𝑞!"# · 𝑞!"# · 𝑞!"#$%, where the vibrational contribution is 

computed in the same way as 𝑄!!/!"#$# albeit involving one vibrational frequency only; the 

rotational partition function is 

      𝑞!"# =
!

!!!!
     (4), 

where θ!! is the rotational temperature of the O2 molecule, calculated from the diagonalization 

of its inertia tensor, and the translational partition function is 

    𝑞!"#$% =
!!!!!!!!

!!

!/! !!!
!!!

    (5), 

where 𝑚!! is the mass of one O2 molecule.  

Results and discussion 

Let us first assess the stability of ABA stacking relative to the ABC one for the explored 54 

MXenes. Table 2 reports the calculated values and Figure 2 provides the corresponding plots of 

the energy difference per MXene formula unit, ΔEstack = EABA – EABC, for X= C, N and for the 

different n values. Negative values indicate that the ABA stacking is preferred, and values close 

to zero correspond to near-degeneracy between the two stacking configurations. For the M2X 

stoichiometry (n = 1), all group VI MXenes and group V nitrides but V2N either prefer ABA 

stacking or both stackings are found to be nearly equally stable. This prediction is in agreement 

with experiments indicating that V2N exhibits the ABC stacking [20]. On the remaining M2X 

surfaces, the ABC stacking is clearly preferred. Note also that ΔEstack is smaller by at least 

several tenths of eV on each M2N than on its corresponding M2C MXene, with the sole 

exception of W2X, where the order of stability is actually reversed. In the case of M3X2 (n = 2) 

or M4X3 (n = 3) the stacking preferences on group VI are maintained with respect to the thinner 

MXenes, although ABA stacking becomes the most stable for V3N2 and V4N3. 

For all of the M/X combinations, ΔEstack appears to vary linearly with n. For the d2 

MXenes and d3 carbides, ΔEstack increases by circa 1 eV per M-X layer per formula unit, 

meaning that the addition of more layers further stabilizes the ABC stacking. On the d4 MXenes 

and d3 nitrides, the opposite holds, and ABA becomes more stable by an average of around 0.49 

eV per formula unit per added layer. The sole exception to this trend are the aforementioned 

vanadium nitride MXenes, as the ABC stacking is favored for V2N, but ABA becomes 
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stabilized by around 0.26 eV per formula unit per V-N layer, which is enough to change the sign 

of ΔEstack, from 0.23 eV on V2N, to the nearly degenerate -0.02 eV on V3N2, to -0.30 eV on 

V4N3. The Wn+1Cn MXenes display the greatest preference towards ABA, with this stacking 

becoming ~1 eV more advantageous per formula unit per added W-C layer. In summary, the 

rule of thumb is that each type of MXene releases/absorbs a fixed amount of energy per 

realigned layer, so that an increase in n usually maintains the stacking preference, reinforcing its 

energetic preference. 

Table 2. Energetic difference per formula unit, ΔEstack, in eV, between ABC and ABA stacking 

on all the studied 54 pristine (leftmost numeric columns) or oxygen-terminated (rightmost 

collumns) MXenes. Bold font indicates energetic preference for ABA stacking, or a nearly 

degenerate state in between ABC and ABA. 

X M M2X M3X2 M4X3 M2XO2 M3X2O2 M4X3O2 
C Ti 1.24 2.51 3.71 1.18 1.82 3.20 
 Zr 1.46 2.68 3.91 1.45 2.20 3.70 
 Hf 1.58 2.90 4.27 1.61 2.31 3.93 
 V 0.88 2.00 2.73 0.59 0.76 1.48 
 Nb 0.69 1.46 2.15 0.96 1.19 1.95 
 Ta 0.84 1.67 2.63 0.99 1.17 1.90 
 Cr 0.00 0.01 -0.27 -1.05 -1.49 -1.85 
 Mo -0.29 -0.60 -1.05 -1.52 -2.37 -2.95 
 W -0.46 -1.34 -2.56 -2.33 -3.51 -4.69 

N Ti 0.90 1.64 2.50 0.87 0.78 1.52 
 Zr 0.84 1.47 2.31 1.06 1.10 1.89 
 Hf 0.89 1.59 2.55 1.15 1.17 1.97 
 V 0.23 -0.02 -0.30 -0.01 -0.37 -0.76 
 Nb -0.03 -0.53 -0.95 0.04 -0.54 -0.78 
 Ta -0.19 -0.81 -1.52 -0.01 -0.78 -1.21 
 Cr -0.19 -0.88 -1.53 -1.13 -1.72 -2.32 
 Mo -0.29 -0.77 -1.09 -1.28 -1.49 -1.90 
 W -0.38 -0.86 -1.10 -1.30 -1.42 -1.89 
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Figure 2. Plots of ΔEstack as a function of the M element for several MXene widths, n, X 

compositions —C in black, N in blue—, with and without O termination. The dashed red line 

denotes the equal energetic stability of ABC and ABA stacking, with negative values indicating 

preference for the latter.  

 

The above trends are very similar when the MXene surfaces are terminated by oxygen, 

but generally considerably strengthening the ABA stacking, as shown in Table 2 and Figure 2. 

In fact, nearly all ΔEstack values for the O-terminated MXenes in Table 2 are smaller than those 

of clean systems. As seen in Figure 2, the O-termination greatly stabilizes ABA stacking on 

group VI Mn+1XnO2 MXenes, with ΔEstack becoming even more negative, by differences between 

-0.79 to -2.17 eV per formula unit. Note, however, that the formula unit is different for each 

stoichiometry and, hence, comparison should be restricted to a given family of MXenes. From 

this energetic analysis it becomes clear that the ABA stacking preference is enhanced when i) 

the number of d electrons of the metal increases, ii) N is present instead of C, i.e. the number of 

X p electrons increases, and/or iii) the MXenes are O-covered, regarded as an electron-rich Tx 

termination, altogether suggesting that ABA stacking is fostered by a higher electronic density 

of the material. These conclusions are in line with the experimentally observed ABA stackings 

on Mo2N [20], and the previously reported ABA energetic preferences for W2C, Cr2N, and 

Mo2C [29]. Note also that, although the present results corroborate the stability of ABA Mo2C 

or Mo2CO2 on the hydrogen evolution reaction, as posed by Lv and coworkers [21], their 

proposal of preferential ABA stacking for Ti2C, Nb2C, V2C, and Ti3C2 —or their O-terminated 

versions, Ti2CO2, Nb2CO2, V2CO2, and Ti3C2O2— is not supported by the present calculated 

data. Even though such structures have been proven to be dynamically stable over 3 ps ab initio 
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molecular dynamics runs, the present results clearly show that, for these MXenes, the ABC 

stacking phases are energetically favorable so that long enough molecular dynamics runs would 

eventually lead to the lowest ABC structure. A critical point here is whether the adoption of an 

ABA stacking would be kinetically inhibited, especially when such MXenes are generated from 

ABC-stacked MAX phases. In order to address the possible kinetic inhibition for the 

ABC→ABA phase transition, the conversion energy barriers, Eb, were calculated for the 

MXenes which displayed energetic preference towards ABA, i.e. ΔEstack < 0. The corresponding 

values for pristine MnXn+1 MXenes are reported in Table 3. For n = 1, the mechanism involves 

only a simple C→A sliding. However, for n ≥ 2, the transition from ABC to ABA occurs in 

several steps, involving the lateral sliding of a few layers, and the values shown in Table 3 

correspond to the highest energy barrier among all the considered steps, acting as the rate-

limiting energy step. Figure 3 shows examples for n = 1-3; W2C, W3C2, and W4C3, showing a 

guide to all the contemplated sliding steps, given that other MXenes follow similar mechanisms.  

Let us analyze the exemplary W2C, W3C2, and W4C3 cases in fine detail. On W2C, the 

transition from ABC to ABA stacking (top row of Fig. 3) implies a single exothermic step. On 

W3C2, the ABCAB transition to ABABA stacking (middle row of Fig. 3) implies three 

exothermic steps; the first two align the outer W layers with the inner one, while the last one 

aligns the remaining C layers with each other. Lastly, the W4C3 transition from ABCABCA to 

ABABABA stacking comprises five steps (bottom row of Fig. 3); the first two are exothermic 

and align an outer W layer and its adjacent C layer with the inner closer W and C layers, 

respectively. The third step is highly exothermic, ΔE = -1.08 eV per W4C3 unit, and aligns the 

other outer W layer with its closest W layer. After this step, the stacking is CACABAB, which 

is none other than two ABA-stacked W2C surfaces glued by a layer of carbon. This stacking is 

very stable and, for this reason, the step that follows, that is, the sliding of the first outer W layer 

to become aligned with the two farthest W layers is endothermic, ΔE = 0.48 eV per W4C3 unit, 

making this the highest-barrier step in the process, with an Eb of 1.12 eV per W4C3 unit. The last 

step aligns the last W layer with the other three, and the final ABABABA stacking is achieved, 

with a global ΔEstack of -2.56 eV per W4C3 unit. Note that the sliding of the outer W layers 

normally implies low Eb values, in between 0.49 and 0.62 eV per W4C3 unit, whereas the inner 

W or C layers slides require surmounting larger Eb values, between 0.69 and 1.10 eV, again per 

W4C3 unit. The sole exception is the aforementioned realignment of the outer W layer in W4C3, 

as here the outer Eb of 1.12 eV per W4C3 unit is clearly biased by the positive ΔE = 0.48 eV per 

W4C3 unit, likely due to the breaking of two C-glued ABA W2C units. 

From the values in Table 3, it is clear that the ABC→ABA conversion is actually not 

inhibited at all in many cases (see e.g. the Mo2N, Mo3N2, and W2N cases, with Eb values of 0.12 

eV per formula unit), and a rapid conversion towards the energetically more stable ABA 
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stacking is to be expected. The global observed trend is that the phase transition energy barrier 

increases with the MXene thickness, i.e. with n, surpassing 1 eV per formula unit on M4C3 and 

W3C2. Interestingly, while the Wn+1Cn family displays the largest preference for ABA stacking 

among all MXenes, W3C2 and W4C3 also exhibit some of the highest energy barriers to reach 

that atomic structure, suggesting a possible kinetic hindrance. Nevertheless, the energy barrier 

values are not as high as to become insurmountable at working catalytic operando conditions 

between 400 and 700 K although the time scale may be an issue. 

Table 3. Calculated ABC→ABA stacking phase transition energy barriers, Eb, in eV per 

formula unit, for the studied Mn+1Xn MXenes.  

Eb Mn+1Cn Mn+1Nn 
n 1 2 3 1 2 3 

Ti — — — — — — 
Zr — — — — — — 
Hf — — — — — — 
V — — — — 0.72 0.91 

Nb — — — 0.64 0.54 0.72 
Ta — — — 0.53 0.52 0.70 
Cr 0.72 0.88 1.04 0.33 0.32 0.69 
Mo 0.52 0.93 1.22 0.12 0.12 0.51 
W 0.49 1.10 1.12 0.12 0.26 0.77 

 

To investigate the effect of the surface termination on the relative kinetic stability of 

ABC and ABA stackings, we consider the case where both sides of the surfaces are fully 

covered by oxygen. The Eb values for the ABC→ABA phase transition on O-terminated 

MXenes are encompassed in Table 4, and are, generally, lower than on the pristine MXene 

counterparts, as one might well predict regarding the enhanced energetic preference towards 

ABA, as observed in Table 2. In the case of M2XO2, the phase transition generally involves two 

steps: the realignment of the M/X layers from ABC to ABA, and the posterior repositioning of 

the O atoms into their ground state adsorption site —HX on nearly all MXenes. The exception to 

the general trend is W2NO2, which prefers a mixed structure with one layer of O on HN and with 

the other O layer on an H site, cf. Figure 1. For comparative purposes, the values shown in 

Table 4 refer to the highest energy barrier per formula unit among the steps of the realignment 

of the M/X layers only. Nevertheless, in general terms, the energy barriers for surface O 

relocation are rather high, between 0.5 and 1.1 eV per formula unit, yet still surmountable 

depending on the operando conditions, see the example of Cr2CO2 in Figure 4. Comparing the 

Eb values of Tables 3 and 4, one readily notices that the O-termination usually reduces the 

energy barriers by a few tenths of eV. This is understandable, as the presence of O on the 

surface weakens the bonds between the outer metal atoms and the inner X layer atoms, allowing 
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for energetically easier layer sliding. On Mo2NO2, the realignment barrier is only 0.12 eV per 

formula unit. This, together with the relative energetic stability, 1.28 eV per formula unit in 

favor for ABA stacking, further justifies the experimental observation of a nitride phase with a 

different layer stacking than the precursor.20  

 

 

 

Figure 3. Side views of the sliding steps taken by the W2C (top), W3C2 (middle), and 

W4C3 (bottom) MXene surfaces in their transition from ABC to ABA stacking. Below each 

transition step, the values of the reaction step energy change, ΔE, and its energetic barrier, Eb, 

are given in eV and per formula unit. 

 

 

Figure 4. Side view of the sliding steps taken by Cr2CO2 MXene surface during its ABC→ABA 

stacking transition. Below each transition step, the values of the reaction step energy change, 

ΔE, and its energetic barrier, Eb, are given in eV. 
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Table 4. Calculated ABC→ABA stacking phase transition energy barriers, Eb, in eV per 

formula unit, for the studied fully O-covered Mn+1XnO2 MXenes. 

Eb Mn+1CnO2 Mn+1NnO2 
n 1 2 3 1 2 3 

Ti — — — — — — 
Zr — — — — — — 
Hf — — — — — — 
V — — — 0.53 0.59 0.71 

Nb — — — 0.54 0.55 0.67 
Ta — — — 0.39 0.45 0.52 
Cr 0.09 0.55 0.72 0.13 0.12 0.44 
Mo 0.44 0.70 0.92 0.12 0.11 0.30 
W 0.25 0.86 0.91 0.10 0.13 0.53 

 

Given the low Eb per formula unit values here reported for a series of cases, one may 

wonder whether O adsorption could be enough to drive the stacking phase transition. This is 

exemplified on the W2N system, being known to yield a D3h ABA symmetry [19]. We begin this 

analysis by covering its p(3x3) supercell with O adatoms on HM sites —the most stable sites for 

O adsorption— while the other side is sequentially saturated by O. The simultaneous adsorption 

energy per oxygen atom, Eads/NO, was calculated as detailed above, and the stepwise O 

adsorption, 𝐸!"#
!"#$, addressing the MXene continuous oxidation process was obtained as well, as 

   𝐸!"#
!"#$ = 𝐸!!/!"#$# − 𝐸!!!!/!"#$# −

!!!
!

    (6). 

The 𝐸!"#
!"#$ value gives information on the energy released when an MXene containing 

𝑁! − 1 O adatoms adsorbs an additional O atom. The Eads/NO and 𝐸!"#
!"#$ values are 

encompassed in Table 4,  for W2N in either an ABC or an ABA configuration. On the one hand, 

the values of Eads/NO in Table 5 are all negative, implying exothermicity, at least until full O 

coverage, with values ranging from -3.56 to -5.08 eV for ABC stacking, and varying much less, 

between -4.07 and -4.27 eV, for ABA stacking. On the other hand, the 𝐸!"#
!"#$ values are always 

negative as well, but on ABC stacking largely oscillate between -1.67 eV and -7.09 eV. Such 

fringe situations can be understood when the system symmetry is accounted for as NO increases. 

Indeed, the stepwise adsorption is stronger whenever the symmetry is reduced from C3v to C1h 

by adsorbing the extra O atom. This situation is not observed on the ABA stacking, with 𝐸!"#
!"#$ 

values ranging between -3.69 and -4.30 eV, as the surface is kept intact during the O coverage. 
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Table 5. Adsorption energy per O atom, Eads/NO, and stepwise adsorption energy, 𝐸!"#
!"#$, on the 

W2N MXene with ABC or ABA stacking configurations. 

NO 
ABC  ABA  

Symmetry Eads/NO 𝐸!"#
!"#$ Eads/NO 𝐸!"#

!"#$ 

0 C3v ---- ---- ---- ---- 

1 C3v -3.56 -3.56 -4.24 -4.24 

2 C1h -5.08 -6.59 -4.27 -4.30 

3 C3v -4.02 -1.92 -4.24 -4.18 

4 C1h -4.79 -7.09 -4.23 -4.20 

5 C1h -4.19 -1.78 -4.20 -4.07 

6 C3v -3.77 -1.67 -4.19 -4.12 

7 C1h -3.89 -4.60 -4.15 -3.94 

8 C3v -3.69 -2.35 -4.11 -3.86 

9 D3d -3.58 -2.62 -4.07 -3.69 

 

The strongest 𝐸!"#
!"#$ values are associated to a surface relaxing effect observed on the 

MXene surface. As shown in Figure 5 for the initial O adsorptions with NO = 0-2, when the 

symmetry is C1h, the lattice becomes largely distorted, and the apparent stronger 𝐸!"#
!"#$ = -6.59 

eV is not due solely to the O adsorption itself, but in part due to the surface relaxation it 

promotes. The symmetry reduction caused by the adsorption seems to already reduce the energy 

barrier required by the W2N surface to relax into a more stable configuration. This explains the 

oscillation between small and large 𝐸!"#
!"#$ alongside the C3v and C1h symmetries. This conclusion 

was confirmed by repeating the calculations, but breaking the symmetry of the system, making 

it C1. Similar oscillations to the ones in Table 2 were obtained, yet for the last O adsorption, an 

𝐸!"#
!"#$ of very high absolute value of -12.77 eV was obtained, not corresponding to the sole O 

adsorption, but being mostly the result of the MXene layer realignment upon conversion of the 

ABC stacking into the ABA one, highlighting how the strong O adsorptions are enough to 

surmount the almost insignificant Eb values. Note that the positions occupied by the O atoms are 

not the same on both sides of the MXene after the transition to ABA: O is placed over H sites 

on one side, and over HN sites on the other side, see Figure 6, in line with the above results. This 

placement of the O atoms is preferred over pure HN or H by 0.05 and 0.54 eV per unit supercell, 

respectively. 
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Figure 5. Side views of the optimized W2NOx MXene (0001) surface, with ABC (top) or ABA 

(bottom) stacking, and with NO = 0 (left), NO = 1 (middle), both with C3v symmetry, and NO = 2 

(right), with C1h symmetry. Note the severe surface distortion that occurs when W2N with ABC 

stacking and one surface fully O-covered, adsorbs two O atoms on the other side. 

 

 

Figure 6. Side views of a W2NO2 MXene surface with ABC (left) and ABA (right) stacking. 

Dashed lines are guides to the eye; notice the asymmetry of the hollow sites occupied by the O 

atoms in the case of ABA. 

 

Following the previous discussion, the question of whether ABA stacking is more stable 

for any O coverage arises. From Figure 2, it is clear that the ABA stacking is more favorable for 

W2N both as pristine and fully O-covered, and the small Eb of the pristine W2N of 0.12 per 

formula unit would indicate that the energetic release by the adsorption of a moiety would 

actually be enough to overcome such a barrier. To further illustrate this point, the calculated 

T/𝑝!! phase diagram of oxygen coverage of W2N is shown in Figure 7. Each point of the 

diagram displays the situation with lowest Gads. This is exemplified e.g. on the left panel of this 

Figure for a fixed pressure of 1 bar (105 Pa), and different surface O coverage situations as a 

function of the temperature. Inspection of Figure 7 reveals that an O-free situation at 1 bar is 

only attainable at an extreme T above ~2200 K. The transition region between the fully O-
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covered situation, and the pristine MXene is very narrow, as seen in the phase diagram of 

Figure 7, and one should regard such MXenes as O-covered at normal O2 partial pressures, yet 

O-free surfaces are attainable at ultra-high-vacuum conditions and high temperatures, e.g. below 

10-8 Pa and T ~800 K, although there exist O-cleaning protocols by annealing and 

hydrogenation steps [5]. 

 

 

Figure 7. Gibbs free adsorption energies, Gads, as a function of temperature, T, for each fraction 

of O coverage (from the clean surface in black to the full monolayer of O adatoms in red), at a 

constant pressure of 1 bar (left). The T/𝑝!! phase diagram (right) showing the oxidation 

transition zone (pink) for W2N, separating the pristine (white area) and the fully covered (red) 

surface regions. 

 

Once the relative stability of the ABC and ABA stackings has been clarified for the 

scrutinized MXenes, there is still the question regarding the possible effect of the stacking on 

the chemical reactivity of the MXene surfaces. To answer that question, we studied the atomic 

N adsorption and molecular N2 adsorption and dissociation, technologically relevant in the 

Haber-Bosch ammonia synthesis [22], on the eight clean M2X where ABA stacking is preferred. 

Table 5 reports the N2 adsorption energies, 𝐸!"#
!! , the N adatom adsorption energies, 𝐸!"#! , with 

respect to ½·N2, the N2 dissociation energy barrier, 𝐸!
!!, and the reaction step energy change, 

𝐸!"#$%&'(
!!→!! , when occurring either on the ABC or the ABA stacking conformations. The results 

reveal changes in adsorption energies that can be in some cases negligible, of 0.01 eV for N 

adsorption on Mo2N and W2N, to noticeable, of almost 1 eV for N2 adsorption on Nb2N. The 

impact on the reaction energy changes ranges between 0.03 and 0.70 eV. Some N2 dissociation 

energy barriers remained unchanged, while others varied by up to around 0.3 eV. Nb2N is the 

only case where the N2 dissociation barrier is found to be higher with ABA than with ABC 
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alignment. Lastly, we calculated the energy barriers for the triple hydrogenation of an N adatom 

on W2N to form NH3 for both ABC and ABA stacking. For the ABC-stacked W2N the 

calculated values are 1.24, 1.70, and 1.69 eV whereas for the ABA stacking of W2N these 

values change to 0.85, 1.21 and 1.72 eV, thus greatly facilitating the first two hydrogenations, 

reducing the barriers by 0.39 and 0.51 eV, while the third is merely heightened by 0.03 eV. 

Thus, it appears that the impact of stacking on a reaction profile can be significant, with 

adsorption strengths changes up to ca. 1 eV, and energy barrier changes of up to ~0.3 eV, which 

can signify changes in the reaction step rate constant of up to three or four orders of magnitude 

in the temperature range of 400-700 K. Consequently, and to avoid unduly model-biased 

artifacts in computed results, the use of the correct stacking conformation under working 

operando conditions is strongly advised. 

 

Table 5. N and N2 adsorption energies, 𝐸!"#!  and 𝐸!"#
!! , respectively, N2 dissociation energy 

barriers, 𝐸!
!!, and N! → 2N reaction step energy change, 𝐸!"#$%&'(

!!→!! , on the M2X MXenes with 

preference towards ABA stacking. All values are given in eV and include ZPE corrections. 

MXene 
ABC stacking ABA stacking 

𝐸!"#!  𝐸!"#
!!  𝐸!

!! 𝐸!"#$%&'(
!!→!!  𝐸!"#!  𝐸!"#

!!  𝐸!
!! 𝐸!"#$%&'(

!!→!!  

Cr2C -2.01 -2.12 0.85 -1.90 -1.71 -2.06 0.78 -1.37 

Mo2C -1.97 -1.59 0.93 -2.35 -1.76 -1.36 0.62 -2.16 

W2C -1.79 -1.11 0.37 -2.48 -1.84 -1.14 0.37 -2.53 

Nb2N -2.23 -1.76 0.60 -2.70 -2.34 -2.68 0.78 -2.00 

Ta2N -2.59 -2.12 0.48 -3.06 -2.61 -2.85 0.54 -2.38 

Cr2N -1.76 -1.66 0.61 -1.85 -1.94 -1.99 0.61 -1.89 

Mo2N -2.15 -1.55 0.45 -2.76 -2.16 -1.73 0.41 -2.60 

W2N -2.26 -1.34 0.28 -3.19 -2.25 -1.27 0.18 -3.22 

 

Conclusions 

A first-principles DFT study including dispersion was carried out for a total of 54 MXene 2D 

transition metal carbide and nitride materials. The analysis of the results reveals that the ABA 

type of layer stacking is competitive for a number of cases meaning that the MAX-derived ABC 

stacking cannot be taken as granted. Energetic data reveal that the ABA stacking appears to be 

more frequent than anticipated and is fostered by the number of the constituent metal d 

electrons, preferred by nitride instead of carbide MXenes, and favored by the O surface 

termination. The calculated sliding energy barriers for the conversion of ABC towards ABA 
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reveal very small energy barriers as low as 0.12 eV per formula unit for some MXenes, and 

higher ones, up to 1.12 eV per formula unit, for thicker M3X2 and M4X3 MXenes, in any case, 

surmountable at high temperature operando conditions. On M2X systems, the adsorption of 

species or the formation of an O overlayer can be enough to prompt the conversion from ABC 

towards an ABA stacking. This ABA layer stacking was found to influence the adsorption 

energies and reaction energy barriers of surface on-going processes, with energetic changes that 

can vary between a few hundredths of eV to ~1 eV, which can definitely bias the reaction 

profile, even the reaction step rate constants, by up to three or four orders of magnitude in usual 

working condition temperatures. To summarize, the present study provides compelling evidence 

that the atomic layer stacking on MXenes can be different from that expected from the MAX 

phase precursor for nearly half of the studied MXenes, with several important consequences for 

the MXene surfaces chemistry and, likely, on physical properties as well which call for further 

analysis. A careful atomic structure determination is advised rather than assuming that 

corresponding to the parent MAX phase. Computational models should seriously also consider 

this issue. 
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